JPH10281951A - Preparation of membrane sample for electron microscope observation - Google Patents

Preparation of membrane sample for electron microscope observation

Info

Publication number
JPH10281951A
JPH10281951A JP8364497A JP8364497A JPH10281951A JP H10281951 A JPH10281951 A JP H10281951A JP 8364497 A JP8364497 A JP 8364497A JP 8364497 A JP8364497 A JP 8364497A JP H10281951 A JPH10281951 A JP H10281951A
Authority
JP
Japan
Prior art keywords
sample
interface
tiw
tiw alloy
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8364497A
Other languages
Japanese (ja)
Inventor
Genichi Shigesato
元一 重里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8364497A priority Critical patent/JPH10281951A/en
Publication of JPH10281951A publication Critical patent/JPH10281951A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit a TiW alloy part to be formed into membrane with priority by polishing composite material which has interface of the TiW alloy which includes a specific percent of Ti and O, whose remainder is W, a semiconductor, or an insulator, forming it into a membrane shape by ion-milling for electroplating. SOLUTION: Composite material involving interface of a TiW alloy 1 which has Ti contents of approx. 0 to 70 wt.%, O contents of approx. 0 to 15 wt.%, and the remainder of W, and a semiconductor or an insulator 2 is split into two pieces of several millimeters around, and the TiW alloys 1 are bonded with each other by an adhesive 3. The thickness with the interface being put vertically is polished into approx. 50 μm by abrasive paper such as SiC particles, and platinum or stainless steel 4 is attached to a sample so as to be brought into contact with the TiW alloy 1. The thickness of the sample at the interface part is formed to be about. 5 to 10 μm by conducting dimpling with a dimpler 5, and the thickness of the semiconductor or insulator 2 in the vicinity of the interface is formed to be approx. 0.2 μm or smaller by an Ar ion milling. The sample and a negative plate 8 are immersed in NaOH aqueous solution 9 for electroplating. It is thus possible to form the TiW alloy 1 part into a membrane shape with priority.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、TiW合金と半導
体または絶縁体との界面部を透過型電子顕微鏡で観察す
るための薄膜試料作製方法に関するものである。
The present invention relates to a method for preparing a thin film sample for observing an interface between a TiW alloy and a semiconductor or an insulator with a transmission electron microscope.

【0002】[0002]

【従来の技術】異種材料の界面の構造を原子レベルで明
らかにすることは、半導体デバイスの開発において重要
である。例えば、DRAM(Dynamic Random Access Me
mory)においては、バリア膜材料として使われているT
iやTiW、TiNとSi基板との界面の構造や、Al
配線とSi配線との界面の構造がDRAMの特性を支配
しており、これらの界面構造を原子レベルで明らかにす
ることがDRAMの開発においては必要不可欠である。
2. Description of the Related Art It is important in the development of semiconductor devices to clarify the structure of the interface between different materials at the atomic level. For example, DRAM (Dynamic Random Access Me
mory), T is used as a barrier film material.
i, TiW, structure of interface between TiN and Si substrate, Al
The structure of the interface between the wiring and the Si wiring dominate the characteristics of the DRAM, and it is essential to clarify these interface structures at the atomic level in the development of the DRAM.

【0003】異種材料の界面の構造を原子レベルで明ら
かにするには、高分解能透過型電子顕微鏡による断面観
察が最も有効な手段である。しかしながら、高分解能透
過型電子顕微鏡による観察を行うためには、観察する領
域の試料厚さを電子線が十分透過できる厚さまで薄くす
る必要がある。この厚さは電子顕微鏡の加速電圧が20
0kVの場合、約0.2μm以下である。
In order to clarify the structure of the interface between dissimilar materials at the atomic level, a cross-sectional observation using a high-resolution transmission electron microscope is the most effective means. However, in order to perform observation with a high-resolution transmission electron microscope, it is necessary to reduce the thickness of the sample in the region to be observed to a thickness that allows the electron beam to be sufficiently transmitted. This thickness is such that the accelerating voltage of the electron microscope is 20
In the case of 0 kV, it is about 0.2 μm or less.

【0004】従来、異種材料の界面の構造を高分解能電
子顕微鏡で断面観察するための薄膜試料作製法として
は、例えば上田修、バウンダリー、1993年11月
号、P31〜38にみられるように、試料を適当な大き
さに切り出したものを二枚用意し、これらを接着剤で貼
り合わせ、SiC粒子などを塗布した研磨紙を用いて試
料厚さが50μm程度になるまで機械研磨し、ディンプ
ラーにより界面部分の試料厚さが20μm程度になるま
でディンプリングし、Arイオン照射により界面部分の
厚さを0.2μm以下になるまでイオンミリングする手
法が用いられてきた。しかしながら、この手法ではイオ
ンミリングによる薄膜化の速度が材料によって異なるた
め界面の両側で一様に薄膜化することが不可能であっ
た。
Conventionally, as a thin film sample preparation method for observing the cross-section of the interface structure of different materials with a high-resolution electron microscope, for example, as shown in Osamu Ueda, Boundary, November 1993, pp. 31-38, Prepare two pieces of the sample cut out to an appropriate size, stick them together with an adhesive, mechanically grind the sample to about 50 μm using abrasive paper coated with SiC particles, etc., and dimple it A technique has been used in which dimpling is performed until the sample thickness at the interface becomes about 20 μm, and ion milling is performed by Ar ion irradiation until the thickness at the interface becomes 0.2 μm or less. However, in this method, since the speed of thinning by ion milling differs depending on the material, it was impossible to uniformly thin the film on both sides of the interface.

【0005】この問題を解決する方法として、例えば特
開平7−174677号公報にみられるように、機械研
磨とイオンミリングによる薄膜化と化学エッチングによ
る薄膜化工程を組み合わせた手法が提案されている。こ
の手法はイオンミリングによる薄膜化速度が遅いほうの
材料を優先的にエッチングする化学エッチング液を用い
て、均一に薄膜化するものである。しかしながら、Ti
W合金とSiなどの半導体の場合や、あるいはTiW合
金とSiO2 などの絶縁体の場合、どのようなエッチン
グ液を用いて化学エッチングを行っても、界面部分が優
先的にエッチングされてしまい、TiW合金部分の薄膜
化が行われる前にTiW合金が半導体や絶縁体から剥離
するため、一様な薄膜が得られない。TiW合金以外で
も、材料系によっては同様の問題が生じる。例えばTa
やWと半導体または絶縁体の場合が挙げられる。
As a method for solving this problem, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-174677, there has been proposed a method which combines mechanical polishing, thinning by ion milling, and thinning by chemical etching. In this method, a thin film is formed uniformly by using a chemical etching solution which preferentially etches a material having a lower film formation speed by ion milling. However, Ti
In the case of a W alloy and a semiconductor such as Si, or a TiW alloy and an insulator such as SiO 2 , no matter what etchant is used for chemical etching, the interface portion is preferentially etched, Since the TiW alloy separates from the semiconductor or the insulator before the TiW alloy portion is thinned, a uniform thin film cannot be obtained. Similar problems occur with materials other than TiW alloys depending on the material system. For example, Ta
And W and a semiconductor or an insulator.

【0006】これらの材料系においては従来の手法では
界面近傍の一様な薄膜試料を作製することが困難であ
り、界面構造を透過型電子顕微鏡で観察することが出来
ていない。
In these material systems, it is difficult to produce a uniform thin film sample near the interface by the conventional method, and the interface structure cannot be observed with a transmission electron microscope.

【0007】[0007]

【発明が解決しようとする課題】本発明は、TiW合金
と半導体または絶縁体の界面部が一様な透過型電子顕微
鏡で観察するのみ最適な薄膜試料を作製する方法を提供
するものである。
SUMMARY OF THE INVENTION The present invention provides a method for producing an optimum thin film sample only by observing an interface between a TiW alloy and a semiconductor or an insulator with a uniform transmission electron microscope.

【0008】[0008]

【課題を解決するための手段】重量%で、Ti:0〜7
0%、O :0〜15%、を含有し残部がW及び不可避
的不純物からなるTiW合金と半導体または絶縁体との
界面を有する複合材料を薄膜化するに際し、機械研磨お
よびイオンミリングのいずれかあるいは両方を用いて試
料全体を薄膜化し、かつ、前記試料を電解研磨すること
によりTiW合金部分を優先的に薄膜化することを特徴
とする透過型電子顕微鏡観察用薄膜試料の作製方法、お
よび電解研磨の際にTiW合金部に白金あるいはステン
レス鋼を試料表面に付着させ電解研磨することを特徴と
する前記透過型電子顕微鏡観察用薄膜試料の作製方法を
要旨とする。
Means for Solving the Problems Ti: 0 to 7 by weight%.
When thinning a composite material having an interface between a semiconductor or an insulator and a TiW alloy containing 0% and O: 0 to 15% with the balance being W and unavoidable impurities, either of mechanical polishing or ion milling is used. Alternatively, a method for producing a thin film sample for transmission electron microscope observation, characterized in that the entire sample is thinned using both of them, and the TiW alloy portion is preferentially thinned by electrolytic polishing of the sample, and A gist of the present invention is a method for producing a thin film sample for observation by a transmission electron microscope, wherein platinum or stainless steel is adhered to the TiW alloy portion on the surface of the sample during polishing and electrolytic polishing is performed.

【0009】[0009]

【発明の実施の形態】本発明者らは、TiW合金と半導
体または絶縁体の界面を有する複合材料において、電解
研磨によってTiW合金部分が一様に薄膜化することを
見いだし本発明を完成した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that in a composite material having an interface between a TiW alloy and a semiconductor or an insulator, the TiW alloy portion is uniformly thinned by electrolytic polishing, and completed the present invention.

【0010】以下、本発明について詳細に説明する。ま
ず成分限定理由について述べる。 Ti:TiW合金においてTiが70%よりも多く含ま
れるとSiとの硬さの差がそれほど大きくなくなるた
め、化学エッチングや電解研磨を用いなくても機械研磨
とイオンミリングによって一様な薄膜試料が得られる。
このため、Ti含有量は0〜70%とした。
Hereinafter, the present invention will be described in detail. First, the reasons for limiting the components will be described. If the Ti: TiW alloy contains more than 70% of Ti, the difference in hardness from Si becomes so large that a uniform thin film sample can be formed by mechanical polishing and ion milling without using chemical etching or electrolytic polishing. can get.
For this reason, the Ti content was set to 0 to 70%.

【0011】O:OはTiW合金製造工程あるいは製造
後に大気中に置くことによって10%程度は含有され
る。15%以下であれば酸化物を形成することはなく電
解研磨に影響がないため15%以下とした。また、Ti
W合金製造を超高真空で行い、製造後にMoなどの酸化
防止膜で覆うことによりほとんど無視できる程度まで酸
素濃度を低下させることができることから、含有量範囲
を0〜15%とした。
O: O is contained in an amount of about 10% by being placed in the atmosphere after the TiW alloy is produced or after the TiW alloy is produced. If it is 15% or less, no oxide is formed and there is no influence on electrolytic polishing. Also, Ti
Since the W alloy is manufactured in an ultra-high vacuum and covered with an antioxidant film such as Mo after the manufacture, the oxygen concentration can be reduced to almost negligible level, so the content range is 0 to 15%.

【0012】図1に薄膜化工程を模式的に示す。まず、
(a)TiW合金1と半導体または絶縁体2の界面を有
する複合材料を数mm四方の適当な大きさに切り出したも
のを二枚用意し、(b)これらを接着剤3で貼り合わせ
る。貼り合わせはTiW合金どうしを貼り合わせたほう
が、一様な薄膜試料を得るために望ましい。次に、
(c)SiC粒子などを塗布した研磨紙を用いて、Ti
W合金と半導体または絶縁体との界面を研磨紙に対して
垂直にして機械研磨することによって試料厚さを50μ
m程度にする。
FIG. 1 schematically shows a thinning process. First,
(A) A composite material having an interface between a TiW alloy 1 and a semiconductor or an insulator 2 is cut out into an appropriate size of several mm square to prepare two sheets, and (b) these are bonded with an adhesive 3. It is preferable to bond the TiW alloys to obtain a uniform thin film sample. next,
(C) Using abrasive paper coated with SiC particles,
The thickness of the sample is reduced to 50 μm by mechanically polishing the interface between the W alloy and the semiconductor or insulator so that the interface is perpendicular to the polishing paper.
m.

【0013】次いで、(d)試料全体あるいは一部に白
金やステンレス鋼4などを付着させる。この際、白金や
ステンレス鋼4がTiW合金1に触れるように付着させ
ることが必要である。次いで、(e)ディンプラー5に
より界面部分の試料厚さが5〜10μm程度になるまで
ディンプリングする。この際、白金やステンレス鋼4の
一部はディンプリングによって研磨されないようにす
る。次いで、(f)Arイオンなどを用いたイオンミリ
ングにより界面近傍の半導体または絶縁体2の厚さを
0.2μm以下にする。この段階では半導体または絶縁
体部分は十分薄膜化しているがTiW合金部分は十分薄
膜化していない。
Next, (d) platinum or stainless steel 4 is adhered to the whole or a part of the sample. At this time, it is necessary that platinum or stainless steel 4 be attached so as to touch the TiW alloy 1. Next, (e) dimpling is performed by the dimple 5 until the sample thickness at the interface becomes about 5 to 10 μm. At this time, a part of platinum or stainless steel 4 is not polished by the dimpling. Next, (f) the thickness of the semiconductor or insulator 2 near the interface is reduced to 0.2 μm or less by ion milling using Ar ions or the like. At this stage, the semiconductor or insulator portion is sufficiently thin, but the TiW alloy portion is not sufficiently thin.

【0014】次いで、(g)試料の端に残っている白金
あるいはステンレス鋼4などの部分を金属製のピンセッ
ト6でつまみ、このピンセット6を直流電源7の+端子
につなぎ、白金やステンレス鋼などの陰極板8を−端子
につなぎ、試料および陰極板を2〜5%NaOH水溶液
などの電解研磨液9に浸し、電解研磨を行う。電解研磨
では半導体または絶縁体部分はほとんど薄膜化されず、
TiW合金部分が優先的に薄膜化する。適当な時間電解
研磨することで半導体または絶縁体部分とTiW合金部
分が一様な厚さになる。透過型電子顕微鏡で観察して厚
さを調べながら、電解研磨の時間を決めることが望まし
い。また、電解研磨は試料表面の突出した部分を優先的
に研磨する特徴があり、イオンミリングなどによって表
面粗度が大きくなった試料を平坦化するので、界面周辺
の広い範囲で一様な薄膜試料を得ることができる。最後
に、(h)必要によっては、再度イオンミリングを行
い、電解研磨の際に試料表面に生成した酸化膜を除去す
ることによって、TiWと半導体または絶縁体の界面観
察が可能な透過型電子顕微鏡観察用薄膜試料を作製する
ことができる。
Next, (g) the portion of the sample such as platinum or stainless steel 4 remaining at the end of the sample is pinched with metal tweezers 6, and the tweezers 6 is connected to the + terminal of the DC power source 7 to form platinum or stainless steel. Is connected to the negative terminal, and the sample and the cathode plate are immersed in an electrolytic polishing liquid 9 such as a 2 to 5% NaOH aqueous solution to perform electrolytic polishing. In electropolishing, the semiconductor or insulator part is hardly thinned,
The TiW alloy portion is preferentially thinned. By performing electropolishing for an appropriate time, the semiconductor or insulator portion and the TiW alloy portion have a uniform thickness. It is desirable to determine the electropolishing time while observing the thickness by observation with a transmission electron microscope. In addition, electrolytic polishing has the feature of preferentially polishing protruding parts of the sample surface, and flattening the sample whose surface roughness has increased by ion milling etc., so that a uniform thin film sample over a wide area around the interface Can be obtained. Finally, (h) if necessary, ion milling is performed again to remove an oxide film formed on the surface of the sample during electrolytic polishing, so that an interface between TiW and a semiconductor or insulator can be observed. An observation thin film sample can be prepared.

【0015】[0015]

【実施例】【Example】

(実施例1)Si基板上に自然酸化によりSiO2
1.5nm〜2nm成長させたものの上にTiW合金を
マグネトロンスパッタリング装置によって約20nm蒸
着した。TiW合金の化学組成を表1に示す。試料を2
mm×2mmの大きさに二枚切り出し、これらをエポキシ樹
脂により接着した。機械研磨により試料厚さを約50μ
mとした後、スパッタリング装置により白金を試料の一
部に蒸着した。蒸着した白金の厚さは約1μmであっ
た。これをディンプラー装置によってディンプリング
し、界面部分の厚さを約7μmまで薄膜化した。次に、
イオンミリングで界面近傍のSiO2 の厚さを約0.2
μmまで薄膜化した。ミリングガスにはArイオンを用
い、加速電圧は3.5kV、イオン電流量は約1.5Aで
あった。SiO2 部分の厚さは次のようにして求めた。
まず、試料を透過型電子顕微鏡で観察し、SiO2 部分
においてEELSスペクトルを測定し、Log-Ratio 法
(R.F.Egerton, Electron Energy Loss Spectroscopy i
n the Electron Microscope, Plenum Press,New York a
nd London, 1986, P.291)を用いて求めた。
(Example 1) A TiW alloy was vapor-deposited to a thickness of about 20 nm by a magnetron sputtering apparatus on a SiO 2 film having a thickness of 1.5 nm to 2 nm grown on a Si substrate by natural oxidation. Table 1 shows the chemical composition of the TiW alloy. Sample 2
Two pieces were cut out into a size of mm × 2 mm, and these were bonded with an epoxy resin. Approximately 50μ sample thickness by mechanical polishing
After that, platinum was deposited on a part of the sample by a sputtering apparatus. The thickness of the deposited platinum was about 1 μm. This was subjected to dimpling by a dimpler apparatus to reduce the thickness of the interface portion to about 7 μm. next,
Reduce the thickness of SiO 2 near the interface to about 0.2 by ion milling.
The thickness was reduced to μm. Ar ions were used as the milling gas, the acceleration voltage was 3.5 kV, and the amount of ion current was about 1.5 A. The thickness of the SiO 2 portion was determined as follows.
First, the sample was observed with a transmission electron microscope, the EELS spectrum was measured at the SiO 2 portion, and the log-ratio method (RFEgerton, Electron Energy Loss Spectroscopy i) was used.
n the Electron Microscope, Plenum Press, New York a
nd London, 1986, P.291).

【0016】次に、この試料を電解研磨し、界面近傍の
TiW部分の厚さを約0.2μmまで薄膜化した。電解
研磨液は3%NaOH水溶液を用い、印加電圧は約38
V、電流量は約100mAであった。TiW部分の厚さ
は、SiO2 部分の厚さ測定と同様にして求めた。次い
で、この試料を再度イオンミリングを行い、電解研磨の
際に生成した表面の酸化膜を除去した。この様にして作
製した試料を加速電圧が200kVの透過型電子顕微鏡に
よって観察した。観察した高分解能像を図2に示す。図
2よりSiO2 とTiW合金の界面が原子レベルで観察
できていることがわかる。
Next, the sample was electrolytically polished to reduce the thickness of the TiW portion near the interface to about 0.2 μm. The electropolishing liquid uses a 3% NaOH aqueous solution, and the applied voltage is about 38
V, the amount of current was about 100 mA. The thickness of the TiW portion was determined in the same manner as the thickness measurement of the SiO 2 portion. Next, the sample was subjected to ion milling again to remove an oxide film on the surface generated during electrolytic polishing. The sample thus prepared was observed with a transmission electron microscope having an acceleration voltage of 200 kV. FIG. 2 shows the observed high-resolution image. FIG. 2 shows that the interface between SiO 2 and the TiW alloy was observed at the atomic level.

【0017】また、前記試料を電解研磨を行わず機械研
磨およびディンプリングおよびイオンミリングのみで薄
膜化した試料、および機械研磨とディンプリングとイオ
ンミリングで試料全体を薄膜化した後、0.5mol/l の
過酸化水素水と1.04mol/l のアンモニア水溶液の混
合液で化学エッチングすることにより、TiW部分の薄
膜化を行った試料を加速電圧が200kVの透過型電子顕
微鏡によって観察した。表2にこれらの観察結果を示
す。機械研磨とディンプリングとイオンミリングで薄膜
化した試料ではTiW部分が薄膜化していないため界面
高分解能観察は不可能であり、機械研磨とディンプリン
グとイオンミリングと化学エッチングで薄膜化した試料
ではTiWがSiO2 から剥離してしまい界面高分解能
観察は不可能であり、本発明の試料作製方法で作製した
試料のみ界面高分解能観察が可能であった。
Further, after the sample is thinned only by mechanical polishing, dimpling and ion milling without electrolytic polishing, and after the entire sample is thinned by mechanical polishing, dimpling and ion milling, 0.5 mol / mol A sample in which the TiW portion was thinned by chemical etching with a mixed solution of 1 l of hydrogen peroxide and 1.04 mol / l of an aqueous ammonia solution was observed with a transmission electron microscope having an acceleration voltage of 200 kV. Table 2 shows the results of these observations. In the sample thinned by mechanical polishing, dimpling and ion milling, high-resolution interface observation is impossible because the TiW portion is not thinned. In the sample thinned by mechanical polishing, dimpling, ion milling and chemical etching, TiW is used. Was separated from SiO 2 and high-resolution interface observation was not possible, and high-resolution interface observation was possible only for the sample prepared by the sample preparation method of the present invention.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】(実施例2)Si基板上に自然酸化により
成長したSiO2 膜をフッ化水素水溶液で洗浄すること
により除去し、ただちにマグネトロンスパッタリング装
置によりTiW合金を約20nm蒸着した試料(試料A
およびB)と、Si基板上にCVDによりSi3 4
10nm蒸着し、ただちにマグネトロンスパッタリング
装置によりTiW合金を約20nm蒸着した試料(試料
CおよびD)を作製した。蒸着したTiW合金の化学組
成を表3に示す。これらの試料を用いて、実施例1と同
様の手法により透過型電子顕微鏡観察用薄膜試料を作製
した。化学エッチングには4種類のエッチング液を用い
た。作製した試料を透過型電子顕微鏡で観察した結果を
表4に示す。本発明の試料作製方法で作製した試料はす
べてTiW合金とSiまたはSi3 4 の界面の高分解
能像観察が可能であったが、本発明の試料作製方法以外
の試料作製方法で作製した試料はすべて界面高分解能観
察が不可能であった。
Example 2 A sample (sample A) in which a SiO 2 film grown on a Si substrate by natural oxidation was removed by washing with a hydrogen fluoride aqueous solution, and a TiW alloy was immediately deposited to a thickness of about 20 nm by a magnetron sputtering apparatus (sample A)
A and B), the Si 3 N 4 and 10nm deposited by CVD on a Si substrate, to produce a sample of about 20nm deposited TiW alloy (Sample C and D) by immediately magnetron sputtering apparatus. Table 3 shows the chemical composition of the deposited TiW alloy. Using these samples, a thin film sample for transmission electron microscope observation was prepared in the same manner as in Example 1. Four types of etchants were used for chemical etching. Table 4 shows the results of observing the prepared sample with a transmission electron microscope. All the samples prepared by the sample preparation method of the present invention were capable of high-resolution image observation of the interface between the TiW alloy and Si or Si 3 N 4 , but the samples prepared by the sample preparation methods other than the sample preparation method of the present invention. Were not able to observe the interface at high resolution.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【発明の効果】以上説明した本発明に係る薄膜試料作製
方法によれば、TiW合金と半導体または絶縁体の界面
部が剥離することなく一様な界面部分が得られ、透過型
電子顕微鏡観察用の試料として最適なものを提供するこ
とができる。
According to the method for preparing a thin film sample according to the present invention described above, a uniform interface can be obtained without separation of the interface between the TiW alloy and the semiconductor or insulator. The most suitable sample can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜化工程を示す模式図。FIG. 1 is a schematic view showing a thinning process of the present invention.

【図2】本発明の薄膜試料作製方法で作製した薄膜試料
を用いて観察したSiO2 とTiW合金の界面高分解能
像。
FIG. 2 is a high-resolution interface image of SiO 2 and a TiW alloy observed using a thin film sample manufactured by the thin film sample manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 TiW合金 2 半導体または絶縁体 3 接着剤 4 白金やステンレス鋼 5 ディンプラー 6 ピンセット 7 直流電源 8 陰極版 9 電解研磨液 DESCRIPTION OF SYMBOLS 1 TiW alloy 2 Semiconductor or insulator 3 Adhesive 4 Platinum or stainless steel 5 Dimples 6 Tweezers 7 DC power supply 8 Cathode plate 9 Electropolishing liquid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 1/28 F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G01N 1/28 F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Ti:0〜70%、 O :0〜15%、 を含有し残部がW及び不可避的不純物からなるTiW合
金と半導体または絶縁体との界面を有する複合材料を薄
膜化するに際し、機械研磨およびイオンミリングのいず
れかあるいは両方を用いて試料全体を薄膜化し、かつ、
前記試料を電解研磨することによりTiW合金部分を優
先的に薄膜化することを特徴とする透過型電子顕微鏡観
察用薄膜試料の作製方法。
1. A composite material having an interface between a semiconductor or an insulator and a TiW alloy containing 0 to 70% by weight of Ti and 0 to 15% of O and the balance being W and unavoidable impurities. When thinning, the entire sample is thinned using one or both of mechanical polishing and ion milling, and
A method for preparing a thin film sample for transmission electron microscope observation, characterized in that the TiW alloy portion is preferentially thinned by electropolishing the sample.
【請求項2】 電解研磨の際にTiW合金部に白金ある
いはステンレス鋼を試料表面に付着させ電解研磨するこ
とを特徴とする請求項1記載の透過型電子顕微鏡観察用
薄膜試料の作製方法。
2. The method for producing a thin film sample for transmission electron microscopy observation according to claim 1, wherein platinum or stainless steel is adhered to the TiW alloy portion on the surface of the sample during the electropolishing, and the sample is electropolished.
JP8364497A 1997-04-02 1997-04-02 Preparation of membrane sample for electron microscope observation Withdrawn JPH10281951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8364497A JPH10281951A (en) 1997-04-02 1997-04-02 Preparation of membrane sample for electron microscope observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8364497A JPH10281951A (en) 1997-04-02 1997-04-02 Preparation of membrane sample for electron microscope observation

Publications (1)

Publication Number Publication Date
JPH10281951A true JPH10281951A (en) 1998-10-23

Family

ID=13808167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8364497A Withdrawn JPH10281951A (en) 1997-04-02 1997-04-02 Preparation of membrane sample for electron microscope observation

Country Status (1)

Country Link
JP (1) JPH10281951A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040022803A (en) * 2002-09-09 2004-03-18 삼성전자주식회사 Transmission Electron Microscope of Specimen for Analyzing and method of manufacturing thereof
CN107121316A (en) * 2017-03-22 2017-09-01 华南理工大学 A kind of preparation method of micron order Ni-base Superalloy Powder transmission electron microscope film sample
CN108387417A (en) * 2018-02-01 2018-08-10 北京工业大学 A method of avoid inlay from influencing Example Test Data
CN108918211A (en) * 2018-05-08 2018-11-30 西京学院 A kind of metallic film/amorphous alloy cross-sectional Transmission sample preparation methods
CN109490347A (en) * 2018-10-12 2019-03-19 中国航发北京航空材料研究院 A kind of preparation method of titanium-aluminium alloy powder transmission sample
CN110108731A (en) * 2019-05-21 2019-08-09 北京科技大学 A kind of method of half home position observation point corrosion pit germinating position
CN110359048A (en) * 2018-04-11 2019-10-22 天津大学 A kind of titanium-carbon steel composite board etchant and application method
CN111982643A (en) * 2020-07-10 2020-11-24 安徽工程大学 Preparation method of transmission electron microscope sample of metal material surface deformation layer
CN113419085A (en) * 2021-07-19 2021-09-21 广东省科学院工业分析检测中心 Preparation method of tungsten alloy transmission electron microscope sample

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040022803A (en) * 2002-09-09 2004-03-18 삼성전자주식회사 Transmission Electron Microscope of Specimen for Analyzing and method of manufacturing thereof
CN107121316A (en) * 2017-03-22 2017-09-01 华南理工大学 A kind of preparation method of micron order Ni-base Superalloy Powder transmission electron microscope film sample
CN108387417A (en) * 2018-02-01 2018-08-10 北京工业大学 A method of avoid inlay from influencing Example Test Data
CN110359048A (en) * 2018-04-11 2019-10-22 天津大学 A kind of titanium-carbon steel composite board etchant and application method
CN108918211A (en) * 2018-05-08 2018-11-30 西京学院 A kind of metallic film/amorphous alloy cross-sectional Transmission sample preparation methods
CN109490347A (en) * 2018-10-12 2019-03-19 中国航发北京航空材料研究院 A kind of preparation method of titanium-aluminium alloy powder transmission sample
CN110108731A (en) * 2019-05-21 2019-08-09 北京科技大学 A kind of method of half home position observation point corrosion pit germinating position
CN110108731B (en) * 2019-05-21 2020-10-13 北京科技大学 Method for observing sprouting position of pitting in semi-situ manner
CN111982643A (en) * 2020-07-10 2020-11-24 安徽工程大学 Preparation method of transmission electron microscope sample of metal material surface deformation layer
CN113419085A (en) * 2021-07-19 2021-09-21 广东省科学院工业分析检测中心 Preparation method of tungsten alloy transmission electron microscope sample
CN113419085B (en) * 2021-07-19 2022-12-13 广东省科学院工业分析检测中心 Preparation method of tungsten alloy transmission electron microscope sample

Similar Documents

Publication Publication Date Title
Iwami et al. Preparation of silver tips for scanning tunneling microscopy imaging
US7525087B2 (en) Method for creating observational sample
US20020088714A1 (en) Channel plate and manufacturing method thereof
JPH10281951A (en) Preparation of membrane sample for electron microscope observation
JP2016201300A (en) Manufacturing method of fuel cell separator and fuel cell separator
Wengelnik et al. Oxygen‐induced sharpening process of W (111) tips for scanning tunneling microscope use
JP3768197B2 (en) Preparation method of transmission electron microscope specimen
Schiller et al. Decapitation of tungsten field emitter tips during sputter sharpening
Malpass et al. A study of the adhesion of polyethylene to porous alumina films using the scanning electron microscope
CN111413395A (en) Application of porous silicon nanowire combined with MA L DI-TOF MS in metabolic small molecule detection
JPS61101946A (en) Mesh manufacturing system
Williams et al. Microanalysis of precipitates in aluminum-lithium alloys with a scanning ion microprobe
JPH09217197A (en) Formation of alumina film and aluminum product
Pantel et al. Focused ion beam sample preparation, transmission electron microscopy and electron energy loss spectroscopy analysis of advanced CMOS silicon technology interconnections
More et al. TEM specimen preparation of oxidized Ni-base alloys using the focused ion beam (FIB) technique
US20030132191A1 (en) Method for fabricating a scanning probe microscope probe
Dremov et al. Sharp and clean tungsten tips for STM investigations
JPH11160209A (en) Preparation of sample for transmission electron microscope
RU2690534C1 (en) Method of producing a silicon porous membrane
JP2000310585A (en) Formation for thin film sample for transmission type electron microscopic observation
JP2001242051A (en) Specimen table for focused ion beam machining unit and specimen fixing method
Hunter et al. Techniques Used in Electron Microscopy of Aluminum Alloys
JP2907117B2 (en) Structure observation method of insulating polycrystalline sintered body
de Arellano Lopez et al. Comparison of Focused Ion Beam and Conventional Techniques on Tem Specimen Preparation of Metal-Ceramic Interfaces
Hays et al. Electron microscopy of small iron wires

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706