JPH10281929A - Method and device for testing bending fatigue of optical communication cable - Google Patents

Method and device for testing bending fatigue of optical communication cable

Info

Publication number
JPH10281929A
JPH10281929A JP10685697A JP10685697A JPH10281929A JP H10281929 A JPH10281929 A JP H10281929A JP 10685697 A JP10685697 A JP 10685697A JP 10685697 A JP10685697 A JP 10685697A JP H10281929 A JPH10281929 A JP H10281929A
Authority
JP
Japan
Prior art keywords
bending
optical communication
communication cable
test piece
swing arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10685697A
Other languages
Japanese (ja)
Inventor
Tatsuya Omori
達也 大森
Shin Saito
伸 斎藤
Suehiro Miyamoto
末広 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10685697A priority Critical patent/JPH10281929A/en
Publication of JPH10281929A publication Critical patent/JPH10281929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a repeat bending test method and evaluation method capable of precisely measuring the progress of setting of an optical communication cable to be repeatedly bent, or the easiness of curling and easiness of correcting it. SOLUTION: In this method, the rocking angle of a rocking arm A is successively measured by a measuring device, the lower end of a test piece S is engagingly locked from both lateral side through tension gauges L, and the bending force added to the test piece S is successively measured by the tension gauges L. One lateral bending is taken as one cycle, the hysteresis graph every bending cycle is determined with the tension measured value by the tension gauge L as the vertical axis every cycle, and the measured value of rocking angle of the rocking arm as horizontal axis, and the area or cut piece of the hysteresis graph is calculated and measured every bending cycle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は光通信ケーブルの曲げ
疲労試験方法に関するものであり、光通信ケーブルの繰
り返し曲げによるへたりの変遷を正確に測定することが
できるものであり、繰り返し曲げを受ける光通信ケーブ
ルの劣化速度、耐久性を正確に試験することができるも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bending fatigue test method for an optical communication cable, which can accurately measure a change in set due to repeated bending of an optical communication cable, and is subjected to repeated bending. It can accurately test the deterioration speed and durability of an optical communication cable.

【0002】[0002]

【従来の技術】光通信ケーブルについてはその可撓性が
大きすぎると敷設状態において光通信ケーブルが座屈を
起こすなど所定の状態で光通信ケーブルを保全するのに
不都合であり、また可撓性が小さすぎると設計通りに光
通信ケーブルを敷設することができず、実際の敷設作業
において支障を生じるという問題がある。このために光
通信ケーブルについてはその敷設条件等に適合する可撓
性を有することが求められ、特定の光通信ケーブルにつ
いてはスペック(特定の半径で曲げるときに要求される
可撓性の範囲)通りの可撓性を有することを予め確認す
る必要がある。他方、敷設後において繰り返し曲げを受
ける光通信ケーブルについては徐々にへたってその可撓
性が増大していく。このへたりが大きくなると内部の光
ファイバに対する保護能力が低下して、光ファイバの損
傷、断線を生じ、光ファイバの損傷、断線には至らない
としても、光ファイバに蓄積する残留歪みが増大して伝
送損失が大きくなる。このために個々の光通信ケーブル
について繰り返し曲げによるへたりの進行状況や曲がり
くせのつき易さおよび曲がりくせの取り易さを予め測定
することが、光通信ケーブルの伝送特性の劣化速度、耐
久性を正確に予測するために極めて重要である。ところ
で光通信ケーブルの繰り返し曲げについての試験法とし
て米国のIEC794−1−E6の繰返曲試験法がある
(以下、これを従来の「繰返曲試験法」という)。従来
の繰返曲試験装置は図3に示すようなものであり、その
概要は次ぎのとおりである。すなわち、左右一対の断面
円形のマンドレルMと軸Pを中心にして左右に揺動する
揺動アームAとからなるものであり、マンドレルM、M
の間に光通信ケーブルの試験片Sを通し、その上端を揺
動アームAに固定し、試験片Sの下端に所定重量のウエ
イトWを固定して所定の張力をかける。この状態で揺動
アームAを左、右にそれぞれ90度揺動させると試験片
SがマンドレルM、Mに沿って左右に90度曲げられ
る。揺動アームAを所定回数(この繰り返し回数は任意
であり、例えば100回)左右に揺動させて後、試験片
の伝送特性を試験し、また、目視による損傷度合いを検
査する。この従来の繰返曲試験法によって特定の光通信
ケーブルに所定回数の繰り返し曲げを加えた後のその伝
送特性の劣化の程度、光通信ケーブルのへたりの大小、
外観上の損傷度合いを確認することはできるが、伝送特
性の劣化程度の変遷、また光ファイバの損傷の進行状況
を試験することはできない。すなわち、光通信ケーブル
はテンションメンバを中心にして多数の光ファイバ素線
が撚り合わされた状態で被覆されたもの、多数の光ファ
イバ素線をスロットに収納し、多数のスロットをテンシ
ョンメンバを中心にして撚り合わせた状態で被覆したも
の等様々であり、その断面構造は複雑であって一様では
ない。このために繰り返し曲げに伴って内部に生じる残
留歪みも光通信ケーブルの内部構造によって様々であ
る。この残留歪みのために光ファイバの伝送特性が劣化
し、場合によっては光ファイバが局部的に損傷し、極端
な場合は断線することもある。したがって、繰り返し曲
げを受けた後の可撓性(曲げ力)の大きさを測定するこ
とによっては、上記の光ファイバの伝送特性の劣化の進
行状況、光ファイバの損傷の進行状況を確認することは
できない。
2. Description of the Related Art When an optical communication cable is too flexible, it is inconvenient to maintain the optical communication cable in a predetermined state such as buckling of the optical communication cable in a laid state. If the distance is too small, the optical communication cable cannot be laid as designed, and there is a problem in that the actual laying work is hindered. For this reason, it is required that the optical communication cable has flexibility conforming to the laying conditions and the like, and the specific optical communication cable has specifications (a range of flexibility required when bending at a specific radius). It is necessary to confirm in advance that it has the same flexibility. On the other hand, the flexibility of an optical communication cable that is repeatedly bent after being laid gradually increases. If this set-off increases, the protection ability for the internal optical fiber decreases, causing damage or disconnection of the optical fiber. Even if the optical fiber is not damaged or disconnected, the residual strain accumulated in the optical fiber increases. Transmission loss increases. For this reason, it is necessary to measure in advance the progress of sag due to repeated bending, the ease of bending, and the ease of bending for each optical communication cable, and the degradation rate and durability of the transmission characteristics of the optical communication cable. Is extremely important to accurately predict Incidentally, as a test method for the repeated bending of the optical communication cable, there is a repetition bending test method of IEC794-1-E6 in the United States (hereinafter, this is referred to as a conventional "repetition bending test method"). A conventional repetitive bending test apparatus is as shown in FIG. 3, and the outline thereof is as follows. That is, the mandrel M includes a pair of left and right circular mandrels M having a circular cross section and a swing arm A swinging left and right about the axis P.
A test piece S of an optical communication cable is passed between the test pieces, an upper end thereof is fixed to the swing arm A, a weight W having a predetermined weight is fixed to a lower end of the test piece S, and a predetermined tension is applied. When the swing arm A is swung 90 degrees to the left and right in this state, the test piece S is bent 90 degrees left and right along the mandrels M, M. After swinging the swing arm A right and left a predetermined number of times (the number of repetitions is arbitrary, for example, 100 times), the transmission characteristics of the test piece are tested, and the degree of damage is visually inspected. The degree of deterioration of the transmission characteristics after a given optical communication cable is repeatedly bent a predetermined number of times by the conventional repetitive bending test method, the degree of settling of the optical communication cable,
Although it is possible to confirm the degree of damage in appearance, it is not possible to test the transition of the degree of deterioration of transmission characteristics and the progress of damage to the optical fiber. That is, an optical communication cable is a cable in which a large number of optical fibers are twisted and covered around a tension member, a large number of optical fibers are accommodated in a slot, and a large number of slots are centered on the tension member. There are various types such as those coated in a twisted state, and the cross-sectional structure is complicated and not uniform. For this reason, the residual strain that occurs internally due to repeated bending also varies depending on the internal structure of the optical communication cable. Due to the residual distortion, the transmission characteristics of the optical fiber deteriorate, and in some cases, the optical fiber is locally damaged, and in extreme cases, the optical fiber may be disconnected. Therefore, by measuring the magnitude of the flexibility (bending force) after being repeatedly bent, it is possible to confirm the progress of the deterioration of the transmission characteristics of the optical fiber and the progress of the damage of the optical fiber. Can not.

【0003】[0003]

【発明が解決しようとする課題】本発明は、繰り返し曲
げを受ける光通信ケーブルのへたりの進行状況、曲がり
くせのつき易さや取り易さを正確に計測できる繰返曲試
験法および評価法を工夫することをその課題とするもの
である。
SUMMARY OF THE INVENTION The present invention provides a repetitive bending test method and an evaluation method capable of accurately measuring the progress of settling of an optical communication cable subjected to repeated bending, and the ease with which the optical communication cable is bent and easily removed. The idea is to devise it.

【0004】[0004]

【課題を解決するための手段】上記課題解決のために講
じた手段は、上記従来の繰返曲試験法を前提として次ぎ
の要素によって構成されるものである。 (イ)揺動アームの揺動角度を計測装置によって逐次計
測すること、(ロ)試験片の下端を、左右からそれぞれ
張力計を介して係止して、試験片にかかる力を逐次計測
すること、(ハ)1回の左右への曲げを1サイクルとし
て、1サイクル毎に上記張力計による計測値を縦軸と
し、揺動アームの揺動角度の計測値を横軸としてサイク
ル毎にヒステリシスグラフをとること、(ニ)1サイク
ル毎の上記ヒステリシスグラフの面積および切片を演算
して測定すること。なお、左右に曲げられるときに試験
片のマンドレルに巻き付く位置が変わらないように揺動
アームの軸Pを左右のマンドレルの中心を結ぶ線上に配
置するか、試験片を揺動アームに対して上下に移動可能
に保持させる等の試験片にその軸方向の力(圧縮方向の
力)が作用しないような工夫をすることが必要である。
また、揺動アームは試験片を左右のマンドレルM、Mに
繰り返し90度巻き付ける機能を奏するものであるか
ら、この機能を奏するものであれば必ずしも文字通りの
「揺動アーム」である必要はない。
The means taken to solve the above problems are constituted by the following elements on the premise of the above-mentioned conventional repetitive bending test method. (B) Measuring the swing angle of the swing arm sequentially with a measuring device. (B) Locking the lower end of the test piece from the left and right via a tensiometer, and successively measuring the force applied to the test piece. (C) One cycle of bending to the left and right is defined as one cycle, and the value measured by the tension meter is set on the vertical axis for each cycle, and the measured value of the swing angle of the swing arm is set on the horizontal axis. (D) calculating and measuring the area and intercept of the hysteresis graph for each cycle. Note that the axis P of the swing arm is arranged on a line connecting the centers of the left and right mandrels so that the position of the test piece wrapped around the mandrel when it is bent right and left is not changed, or the test piece is moved with respect to the swing arm. It is necessary to take measures to prevent the axial force (force in the compression direction) from acting on the test piece such as holding it vertically movably.
Further, since the swing arm has a function of repeatedly winding the test piece around the right and left mandrels M, 90 degrees, the swing arm is not necessarily a literal "swing arm" as long as it has this function.

【0005】[0005]

【作 用】作用を図1、図2を参照しつつ説明する。左
右のマンドレルMの半径は光通信ケーブルの線径6倍〜
10倍(例えば250mm)である。光通信ケーブルの
試験片SをマンドレルMに巻き付けると試験片Sの下端
の張力計(ロードセル)Lに曲げ方向と反対方向に力が
作用し、これが張力計によって逐次測定される(これが
光通信ケーブルをマンドレルMに沿って90度曲げたと
きの曲げ力に相当する)。このとき揺動アームAの揺動
角度も逐次測定されているので、曲げの1サイクル毎に
上記両測定値によって描かれる図2に示すヒステリシス
グラフGの面積が演算され、これが計測データとしてと
られる。なお、このヒステリシスグラフGに示されるヒ
ステリシスは、一方に曲げられたときに生じる残留歪み
によるものであり、残留歪みが小さくなるにつれて光通
信ケーブルのへたりが進む。曲げが繰り返されるにつれ
て試験片がへたり、可撓性が大きくなる(曲り易くな
る)ので張力計Lの最大測定値が小さくなり、また、曲
げが繰り返されるにつれて残留歪みが小さくなるので、
上記ヒステリシスグラフの面積は小さくなる。したがっ
て、このヒステリシスグラフGの面積の変化がへたりの
進行度合の変遷を表すことになる。他方、各種の仕様の
光通信ケーブル毎に、そのへたりの進行とその光ファイ
バの伝送特性の劣化速度との相関、へたりの進行状況と
光ファイバの損傷度合との相関、へたりの進行状況と光
通信ケーブルの外観上の損傷度合との相関を予め求めて
おく。そして、試験片のヒステリシスグラフGの面積の
演算結果の変遷と上記の相関関係とによって、個々の光
通信ケーブルの繰り返し曲げによる伝送効率の劣化状
況、光ファイバの損傷度合、光通信ケーブルの外観上の
損傷度合を正確に予測することができる。また、曲げの
1サイクル毎の最大張力の変化を追跡することによって
試験片の可撓性の変化を確認することができる。さら
に、図2において、曲線がθ軸と交わる点(θ切片)
は、曲げ力が開放されている時の曲がり量を意味してい
る。すなわち、ケーブルを所定角度まで曲げた後に残留
する曲がり量そのものであり、この値からケーブルの曲
がりくせのつき易さを定量的に知ることができる。また
一方、曲線がF軸と交わる点(f切片)は、ケーブルを
直線状態に保持する際に必要な曲げ力であり、所定の角
度まで曲げたケーブルについた曲がりくせの度合を示し
ている。これらの量から、ケーブルの曲がりくせを取る
工程における曲がりくせの取り易さや、曲がりくせを持
ったケーブルを直線状に固定する際に固定具に加わる力
を定量的に知ることができる。
[Operation] The operation will be described with reference to FIGS. The radius of the left and right mandrels M is 6 times the wire diameter of the optical communication cable
It is 10 times (for example, 250 mm). When the test piece S of the optical communication cable is wound around the mandrel M, a force acts on the tension meter (load cell) L at the lower end of the test piece S in the direction opposite to the bending direction, and this is sequentially measured by the tension meter (this is the optical communication cable). Is equivalent to a bending force when bent at 90 degrees along the mandrel M). At this time, since the swing angle of the swing arm A is also sequentially measured, the area of the hysteresis graph G shown in FIG. 2 drawn by the two measured values is calculated every cycle of bending, and this is taken as measurement data. . Note that the hysteresis shown in the hysteresis graph G is due to the residual strain generated when the optical communication cable is bent to one side, and the sag of the optical communication cable proceeds as the residual strain decreases. As the bending is repeated, the test piece is sagged and the flexibility is increased (easy to bend), so that the maximum measured value of the tensiometer L is reduced. In addition, the residual strain is reduced as the bending is repeated.
The area of the hysteresis graph becomes smaller. Therefore, a change in the area of the hysteresis graph G indicates a change in the degree of progress of the set. On the other hand, for each optical communication cable of various specifications, the correlation between the progress of sag and the rate of deterioration of the transmission characteristics of the optical fiber, the correlation between the progress of sag and the degree of damage to the optical fiber, the progress of sag The correlation between the situation and the degree of damage in appearance of the optical communication cable is obtained in advance. Then, the change of the calculation result of the area of the hysteresis graph G of the test piece and the above-mentioned correlation show the deterioration of the transmission efficiency due to the repeated bending of each optical communication cable, the degree of damage to the optical fiber, and the appearance of the optical communication cable. Can be accurately predicted. Also, by tracking the change in the maximum tension for each cycle of bending, the change in the flexibility of the test piece can be confirmed. Further, in FIG. 2, the point at which the curve intersects the θ axis (θ intercept)
Means the amount of bending when the bending force is released. That is, it is the amount of bending remaining after bending the cable to a predetermined angle, and from this value, it is possible to quantitatively know how easily the cable is bent. On the other hand, the point where the curve intersects the F-axis (f-intercept) is the bending force required to hold the cable in a straight line, and indicates the degree of bending of the cable bent to a predetermined angle. From these amounts, it is possible to quantitatively know the ease of taking the curve in the step of taking the curve of the cable and the force applied to the fixture when fixing the cable having the curve in a straight line.

【0006】[0006]

【効 果】敷設された光通信ケーブルが繰り返して曲げ
られるときの当該ケーブルのへたりの進行状況、このへ
たりの進行に伴う光ファイバの伝送特性の劣化の進行状
況、さらに曲がりくせのつき易さや曲がりくせの取り易
さを本発明の試験方法によって正確に評価できるので、
使用状況に適合するものかどうかを敷設前に検査するこ
とができる。また、この試験法による試験結果に基づい
て光通信ケーブルの敷設設計、保守管理のための重要な
データを提供することもできる。さらにまた、本試験方
法による評価結果を利用して、敷設作業や敷設場所に適
したケーブルを得ることもできる。
[Effect] When the laid optical communication cable is repeatedly bent, the progress of the sag of the cable, the progress of the deterioration of the transmission characteristics of the optical fiber due to the progress of the sag, and the tendency of the cable to bend easily Since the ease of taking a sloping bend can be accurately evaluated by the test method of the present invention,
It can be inspected before installation to see if it is suitable for use. It is also possible to provide important data for the laying design and maintenance management of the optical communication cable based on the test result by this test method. Furthermore, by using the evaluation result by this test method, it is possible to obtain a cable suitable for the laying work and the laying place.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の説明図である。FIG. 1 is an explanatory diagram of the present invention.

【図2】本発明の試験法によるヒステリシスグラフであ
る。
FIG. 2 is a hysteresis graph according to the test method of the present invention.

【図3】従来の繰り返し曲げ試験法の概念図である。FIG. 3 is a conceptual diagram of a conventional repeated bending test method.

【符号の説明】[Explanation of symbols]

A・・・揺動アーム M・・・マンドレル P・・・揺動軸 L・・・張力計(ロードセル) S・・・光通信ケーブルの試験片 G・・・ヒステリシスグラフ W・・・ウエイト A: swing arm M: mandrel P: swing axis L: tension meter (load cell) S: test piece of optical communication cable G: hysteresis graph W: weight

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】左右のマンドレルの間に光通信ケーブルの
試験片を通し、その下端を固定し、上部を揺動アームに
保持させ、この揺動アームによってマンドレルの外周面
に沿って左右にそれぞれ90度屈曲させる光通信ケーブ
ルの曲げ疲労試験方法であって、 上記揺動アームの揺動角度を計測装置によって逐次計測
し、 上記試験片の下端を、左右からそれぞれ張力計を介して
係止して、この張力計によって試験片にかかる曲げ力を
逐次計測し、 1回の左右への曲げを1サイクルとして、各サイクル毎
に上記張力計による張力計測値を縦軸とし、揺動アーム
の揺動角度の計測値を横軸として各曲げサイクル毎にヒ
ステリシスグラフをとり、 各曲げサイクル毎の上記ヒステリシスグラフの面積およ
び切片を演算して測定する光通信ケーブルの曲げ疲労試
験方法。
1. A test piece of an optical communication cable is passed between left and right mandrels, its lower end is fixed, and its upper part is held by a swing arm, and the swing arm moves left and right along the outer peripheral surface of the mandrel. A bending fatigue test method for an optical communication cable that is bent by 90 degrees, wherein a swing angle of the swing arm is sequentially measured by a measuring device, and a lower end of the test piece is locked from right and left via a tension meter. The bending force applied to the test piece is sequentially measured by the tensiometer. One bending to the left and right is defined as one cycle, and the tension measured by the tensiometer is set as the vertical axis for each cycle, and the swing arm swings. Take the hysteresis graph for each bending cycle with the measured value of the dynamic angle as the horizontal axis, calculate the area and intercept of the hysteresis graph for each bending cycle and measure the bending of the optical communication cable. Fatigue test method.
【請求項2】マンドレルの半径を光通信ケーブルの直径
の6倍〜10倍とした請求項1記載の光通信ケーブルの
曲げ疲労試験方法。
2. The method according to claim 1, wherein the radius of the mandrel is 6 to 10 times the diameter of the optical communication cable.
【請求項3】左右のマンドレルの間に光通信ケーブルの
試験片を通し、その下端を固定し、上部を揺動アームに
保持させ、この揺動アームによってマンドレルの外周面
に沿って左右にそれぞれ90度屈曲させる光通信ケーブ
ルの曲げ疲労試験装置であって、 上記揺動アームの揺動角度を計測装置によって逐次計測
し、 上記試験片の下端を、左右からそれぞれ張力計を介して
係止して、この張力計によって試験片にかかる曲げ力を
逐次計測する光通信ケーブルの曲げ疲労試験装置。
3. A test piece of an optical communication cable is passed between the left and right mandrels, the lower end thereof is fixed, and the upper portion is held by a swing arm. The swing arm allows the test piece to move right and left along the outer peripheral surface of the mandrel. A bending fatigue testing device for an optical communication cable that bends by 90 degrees, wherein the swing angle of the swing arm is sequentially measured by a measuring device, and the lower ends of the test pieces are locked from right and left via a tensiometer, respectively. An optical communication cable bending fatigue tester for sequentially measuring a bending force applied to a test piece by the tensiometer.
JP10685697A 1997-04-10 1997-04-10 Method and device for testing bending fatigue of optical communication cable Pending JPH10281929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10685697A JPH10281929A (en) 1997-04-10 1997-04-10 Method and device for testing bending fatigue of optical communication cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10685697A JPH10281929A (en) 1997-04-10 1997-04-10 Method and device for testing bending fatigue of optical communication cable

Publications (1)

Publication Number Publication Date
JPH10281929A true JPH10281929A (en) 1998-10-23

Family

ID=14444241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10685697A Pending JPH10281929A (en) 1997-04-10 1997-04-10 Method and device for testing bending fatigue of optical communication cable

Country Status (1)

Country Link
JP (1) JPH10281929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203092A (en) * 2007-02-20 2008-09-04 Kobe Steel Ltd Bending fatigue testing device
KR101046945B1 (en) 2008-12-26 2011-07-06 엔엔사이언스주식회사 Cord flexure tester
CN112414875A (en) * 2020-11-10 2021-02-26 天津富通光缆技术有限公司滨海新区分公司 Test method and device for evaluating L-direction bending performance of long axis of butterfly-shaped optical cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203092A (en) * 2007-02-20 2008-09-04 Kobe Steel Ltd Bending fatigue testing device
KR101046945B1 (en) 2008-12-26 2011-07-06 엔엔사이언스주식회사 Cord flexure tester
CN112414875A (en) * 2020-11-10 2021-02-26 天津富通光缆技术有限公司滨海新区分公司 Test method and device for evaluating L-direction bending performance of long axis of butterfly-shaped optical cable

Similar Documents

Publication Publication Date Title
US5818982A (en) Fiber optic sensor based upon buckling of a freely suspended length of fiber
CN101387571A (en) Dynamic mechanical test method and device for submarine optical fiber cable
EP0393878A3 (en) Helical bend proof testing of optical fibers
JP3223446B2 (en) Composite mechanical test equipment for optical connectors
JP7376052B2 (en) Shape measurement system and shape measurement method
JPH10281929A (en) Method and device for testing bending fatigue of optical communication cable
US7333697B2 (en) Dielectric optical fiber cable having improved installation features
JPH10267813A (en) Test method for flexibility of telecommunication cable
CN113108985B (en) Core wire embedded grating intelligent steel strand tension value correction calculation method
US4555175A (en) Measuring compression of cabled optical fibers
Westbrook et al. Performance characteristics of continuously grated multicore sensor fiber
US20170138829A1 (en) Method for determining elastic properties of a motor vehicle cable harness
US9140623B2 (en) Media cross-sectional and axial bend uniformity tester
JPS60120228A (en) Twisting-moment measuring method in twist applying test
JP3939081B2 (en) Fiber optic cable
EP0681175B1 (en) Method for the measurement of the viscoelastic properties of polymeric coatings of optical fibers
KR100339978B1 (en) Optical sensor for measuring deformation of institution
JPH04134204A (en) Optical fiber cable for strain sensor
JP7523071B2 (en) Optical fiber twisting period calculation system, optical fiber twisting period calculation method, optical fiber twisting period calculation device, and optical fiber twisting period calculation program
CN108917568B (en) Convergence monitoring device and monitoring method for supporting structure
CN210923343U (en) Torsion testing machine for fireproof cable
SU911130A1 (en) Method of measuring bending rigidity of steel ropes
SU1495677A1 (en) Method for bending strength test of cable articles
Máté et al. Measurement of the Tension Loss in a Cable Traveling Over a Pulley, for Low-Speed Applications
CN113804564A (en) Method for analyzing cumulative plastic deformation of ultra-duplex stainless steel pipe of umbilical cable