JPH10281717A - Light wave interferometer - Google Patents

Light wave interferometer

Info

Publication number
JPH10281717A
JPH10281717A JP9108247A JP10824797A JPH10281717A JP H10281717 A JPH10281717 A JP H10281717A JP 9108247 A JP9108247 A JP 9108247A JP 10824797 A JP10824797 A JP 10824797A JP H10281717 A JPH10281717 A JP H10281717A
Authority
JP
Japan
Prior art keywords
light
frequency
mhz
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9108247A
Other languages
Japanese (ja)
Inventor
Hirochika Shinjiyou
啓慎 新城
Jun Kawakami
潤 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9108247A priority Critical patent/JPH10281717A/en
Publication of JPH10281717A publication Critical patent/JPH10281717A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light wave interferometer wherein the displacement of a moving mirror is measured with higher precision by, relating to the light wave interferometer for measuring object's length, displacement, density, etc., reducing measurement error caused by fluctuation in drive frequency of frequency shifter to measure only a true fluctuation in refraction factor. SOLUTION: In oder to provide a specified drive frequency to acoustic optical elements(AOM) 200, 201, 202, and 203, respectively, one AOM driver 605 is provided. The AOM driver 605 divides a 160 MHz reference drive signal to obtain drive frequency signal of four frequencies 0.1, 2, 4, and 80 MHz. Then the AOM driver 605 combines five frequency signals 0.1, 2, 4, and 80 as well as 160 MHz to provide them as drive frequency to AOMs 200, 201, 202, and 203.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物体の長さ、変
位、密度等の測定を行なうための光波干渉測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical interference measuring apparatus for measuring the length, displacement, density, etc. of an object.

【0002】[0002]

【従来の技術】物体の長さ、変位、密度等を高精度に測
定する代表的な光波干渉測定装置としてヘテロダイン式
干渉測長機がある。この従来のヘテロダイン式干渉測長
機は、周波数がわずかに異なり互いに偏光方位が直交し
た2つの周波数の光を偏光ビームスプリッタで分離し
て、一方の周波数の光を測定光路上を移動する物体に固
定した移動鏡で反射させ、他方の周波数の光を参照光路
上の固定鏡で反射させる。そして、それらの反射光を干
渉させて受光器にて受光し、そのビート周波数を検出す
ることにより物体の変位等を高精度で測定するものであ
る。
2. Description of the Related Art There is a heterodyne type interferometer as a typical light wave interference measuring device for measuring the length, displacement, density and the like of an object with high accuracy. This conventional heterodyne interferometer measures light of two frequencies, which have slightly different frequencies and whose polarization directions are orthogonal to each other, with a polarization beam splitter, and converts the light of one frequency into an object moving on the measurement optical path. The light is reflected by a fixed moving mirror, and the light of the other frequency is reflected by a fixed mirror on the reference optical path. The reflected light is made to interfere with the light and received by a light receiver, and the beat frequency is detected to measure the displacement of the object with high accuracy.

【0003】この光波干渉測定装置には、測定精度をさ
らに向上させるため、測定光路上の空気等気体の屈折率
変動を計測する干渉計が別に設けられている。例えば、
測長用の光と異なる周波数の光とその第二高調波の光と
を前述の測定光路及び参照光路に導いてから両光を干渉
させ、受光器にて受光してそのビート周波数を検出する
ことにより、光路上の空気の屈折率変動に基づく測定変
位量の計測誤差を補正する。
In order to further improve the measurement accuracy, this light wave interference measuring apparatus is provided with an interferometer for measuring a change in the refractive index of a gas such as air on a measuring optical path. For example,
The light of the different frequency from the light for length measurement and the light of the second harmonic thereof are guided to the above-described measurement optical path and the reference optical path, and then interfere with each other. The light is received by the light receiver and the beat frequency is detected. Thereby, the measurement error of the measured displacement amount based on the refractive index fluctuation of the air on the optical path is corrected.

【0004】このようにヘテロダイン方式を用いた光波
干渉測定装置では、異なる周波数の光を複数用いてその
ビート周波数を検出するため、図3に示すような、光源
からの光を周波数変調させて複数の周波数の光を生成す
る周波数シフト部611が用いられている。図3におい
て、図示しない光源を出射した周波数f1の光は波長板
210を透過しPBS121に入射する。この波長板2
10を回転させることでPBS121を透過する光(p
−偏光、紙面に水平)と反射する光(s−偏光、紙面に
垂直)の強度比を適当に変えることができる。PBS1
21を透過したp−偏光の光は、周波数シフタとして、
例えば音響光学素子(以下、AOMという)200に入
射し、PBS121を反射したs−偏光の光はAOM2
01に入射し、それぞれ周波数シフトされて周波数f1
0、f11の光となる。周波数f10及びf11の光は
PBS122でほぼ同軸にされた後、周波数分離素子
(以下、DMという)101を透過する。
As described above, in the lightwave interference measuring apparatus using the heterodyne method, since a beat frequency is detected by using a plurality of lights of different frequencies, as shown in FIG. A frequency shift unit 611 that generates light having a frequency of? In FIG. 3, light having a frequency f <b> 1 emitted from a light source (not shown) passes through a wave plate 210 and enters a PBS 121. This wave plate 2
The light (p) transmitted through the PBS 121 by rotating
The intensity ratio between polarized light, horizontal to the paper surface, and reflected light (s-polarized light, perpendicular to the paper surface) can be changed appropriately. PBS1
The p-polarized light transmitted through 21 is used as a frequency shifter
For example, s-polarized light that is incident on an acousto-optic device (hereinafter, referred to as AOM) 200 and reflected by the PBS 121 is AOM2
01, and are frequency-shifted to frequency f1
0 and f11 light. The lights having the frequencies f10 and f11 are made substantially coaxial by the PBS 122, and then pass through the frequency separation element (hereinafter, referred to as DM) 101.

【0005】同様に図示しない光源を出射した周波数f
2の光は波長板211を透過しPBS123に入射す
る。この波長板211を回転させることでPBS123
を透過する光(p−偏光、紙面に水平)と反射する光
(s−偏光、紙面に垂直)の強度比を適当に変えること
ができる。PBS123を透過したp−偏光の光はAO
M202に入射し、PBS123を反射したs−偏光の
光はAOM203に入射し、それぞれ周波数シフトされ
て周波数f20、f21の光となる。周波数f20及び
f21の光はPBS124でほぼ同軸にされた後、DM
101で反射され周波数f10、f11の光とほぼ同軸
にされる。
Similarly, a frequency f emitted from a light source (not shown)
The light of No. 2 passes through the wave plate 211 and enters the PBS 123. By rotating the wave plate 211, the PBS 123 is rotated.
The intensity ratio between the light transmitting (p-polarized light, horizontal to the paper surface) and the reflected light (s-polarized light, vertical to the paper surface) can be appropriately changed. The p-polarized light transmitted through the PBS 123 is AO
The s-polarized light incident on M202 and reflected by PBS 123 is incident on AOM 203, and is frequency-shifted to light of frequencies f20 and f21, respectively. The lights of the frequencies f20 and f21 are made substantially coaxial by the PBS 124,
The light is reflected at 101 and is made substantially coaxial with the light of frequencies f10 and f11.

【0006】AOM200、201、202、203に
は、入射した光をそれぞれ所定の周波数の光に変調する
ために所定の駆動周波数が与えられる。各AOM200
〜203に所定の駆動周波数を供給するために、4台の
AOMドライバ601、602、603、604が設け
られている。例えばAOMドライバ601はAOM20
0に82MHzの駆動周波数信号を供給し、AOMドラ
イバ602はAOM201に80MHzの駆動周波数信
号を供給し、AOMドライバ603はAOM202に1
64.1MHzの駆動周波数信号を供給し、AOMドラ
イバ604はAOM203に160.1MHzの駆動周
波数を供給する。このように、別個の駆動周波数ドライ
バ601〜604から各AOM200〜203に対して
所定の駆動周波数が供給されるようになっている。
[0006] AOMs 200, 201, 202, and 203 are provided with a predetermined drive frequency for modulating incident light into light of a predetermined frequency. Each AOM200
There are provided four AOM drivers 601, 602, 603 and 604 in order to supply a predetermined drive frequency to. For example, AOM driver 601 is AOM20
0 supplies a driving frequency signal of 82 MHz, the AOM driver 602 supplies a driving frequency signal of 80 MHz to the AOM 201, and the AOM driver 603 supplies 1 signal to the AOM 202.
A driving frequency signal of 64.1 MHz is supplied, and the AOM driver 604 supplies a driving frequency of 160.1 MHz to the AOM 203. In this way, a predetermined drive frequency is supplied to the AOMs 200 to 203 from the separate drive frequency drivers 601 to 604.

【0007】周波数シフトされた光の周波数は、f10
=f1+82MHz、f11=f1+80MHz、f2
0=f2+164.1MHz、f21=f2+160.
1MHzとなる。なお、DM101を透過した周波数f
10、f11の光は、BS111により分離されて周波
数フィルタ181を通過した後、偏光子付きの検出器4
01に入射する。周波数f10、f11の干渉光は検出
器401で光電変換され、その周波数差f10−f11
(=2MHz)に等しいビート信号を参照信号として図
示しない演算装置に入力する。
The frequency of the frequency-shifted light is f10
= F1 + 82 MHz, f11 = f1 + 80 MHz, f2
0 = f2 + 164.1 MHz, f21 = f2 + 160.
1 MHz. Note that the frequency f transmitted through the DM 101
The lights 10 and f11 are separated by the BS 111 and pass through the frequency filter 181.
01 is incident. The interference light having the frequencies f10 and f11 is photoelectrically converted by the detector 401, and the frequency difference f10-f11
(= 2 MHz) is input to an arithmetic unit (not shown) as a reference signal.

【0008】図3でほぼ同軸に周波数シフト部611か
ら出射した光束は、図示しない所定の光路に沿って進
み、物体の変位計測および光路上の空気屈折率変動の計
測に供される。
The light beam emitted from the frequency shift unit 611 substantially coaxially in FIG. 3 travels along a predetermined optical path (not shown), and is used for measuring the displacement of an object and measuring the fluctuation of the air refractive index on the optical path.

【0009】[0009]

【発明が解決しようとする課題】上述の従来の光波干渉
測定装置では、周波数シフタ200〜203の周波数変
動の影響について全く考慮していない。しかしながら、
周波数シフタ200〜203での駆動周波数の変動がぞ
れぞれ独立して生じると、その変動成分は最終的に屈折
率変動の参照、測長信号間の位相差の変動に重畳して現
れるが、この位相差の変動が測長光路の気体の屈折率変
動によるものか、周波数シフタ200〜203の駆動周
波数変動によるものかを区別することができないという
問題がある。
In the above-mentioned conventional light wave interference measuring apparatus, the influence of the frequency fluctuation of the frequency shifters 200 to 203 is not considered at all. However,
When the fluctuation of the driving frequency in each of the frequency shifters 200 to 203 independently occurs, the fluctuation component finally appears as a reference of the fluctuation of the refractive index and superimposed on the fluctuation of the phase difference between the length measurement signals. However, there is a problem that it cannot be distinguished whether the variation of the phase difference is caused by the variation of the refractive index of the gas in the length measuring optical path or the variation of the driving frequency of the frequency shifters 200 to 203.

【0010】例えば、空気の屈折率変動を計測するため
に、測定光路を戻ってきた周波数f10の光の周波数を
周波数変換して第二高調波f10’に変換し、周波数f
20の光と干渉させてそのビート周波数を検出する場合
において、AOM200に82MHzの駆動周波数を供
給するAOMドライバ601で駆動周波数の変動△fが
生じたとする。ここで、f10’=2×(f1+△f+
82)MHz、f20=f2+164.1MHzであっ
て、2・f1=f2とすると、検出器で検出されるビー
ト周波数は、f20−f10’=0.1MHz−2・Δ
fとなる。一方、参照光路を戻ってきた周波数f11の
光の周波数を周波数変換して第二高調波f11’に変換
し、周波数f21の光と干渉させてそのビート周波数を
検出すると、f11’=2×(f1+80)MHz、f
21=f2+160.1MHzであるから、検出器で検
出されるビート信号は、f21−f11’=0.1MH
zとなる。ここで演算装置は上記2つのビート信号の位
相差を測定するのであるが、周波数f20とf10’の
ビート信号が2・Δfだけずれることによる位相の変動
も含まれた測定をすることになる。つまり演算装置では
この2・ΔfがAOMの周波数変動によるものか空気の
屈折率変動によるものかを区別することができない。
For example, in order to measure the change in the refractive index of air, the frequency of the light having the frequency f10 that has returned in the measurement optical path is converted into a second harmonic f10 ',
In the case where the beat frequency is detected by causing interference with 20 lights, it is assumed that a drive frequency fluctuation Δf occurs in the AOM driver 601 that supplies the AOM 200 with a drive frequency of 82 MHz. Here, f10 ′ = 2 × (f1 + △ f +
82) MHz, f20 = f2 + 164.1 MHz, and 2 · f1 = f2, the beat frequency detected by the detector is f20−f10 ′ = 0.1 MHz−2Δ.
f. On the other hand, when the frequency of the light of the frequency f11 that has returned in the reference optical path is frequency-converted and converted into the second harmonic f11 ′ and interfered with the light of the frequency f21 to detect the beat frequency, f11 ′ = 2 × ( f1 + 80) MHz, f
Since 21 = f2 + 160.1 MHz, the beat signal detected by the detector is f21−f11 ′ = 0.1 MH
z. Here, the arithmetic unit measures the phase difference between the two beat signals, and measures the phase difference caused by the shift of the beat signals of the frequencies f20 and f10 'by 2 · Δf. That is, the arithmetic unit cannot discriminate whether this 2 · Δf is due to variation in the frequency of the AOM or variation in the refractive index of air.

【0011】このように、従来の光波干渉測定装置では
各AOMの駆動周波数が変動すると、本来の屈折率変動
測定成分にAOMの駆動周波数の変動成分が重畳してし
まい、演算装置はこの駆動周波数の変動成分を含めて屈
折率変動の変動量を演算処理してしまうので、ステージ
位置の測定精度が低下してしまうことになる。このAO
M駆動周波数の変動は、電気的なノイズ、あるいはAO
Mドライバの発振素子等の温度の影響により発生するも
ので避けることができず、また、この駆動周波数の変動
成分を演算等により除去することができないという問題
を有している。
As described above, in the conventional light wave interference measuring apparatus, when the driving frequency of each AOM fluctuates, the fluctuation component of the driving frequency of the AOM is superimposed on the original refractive index fluctuation measuring component. Since the fluctuation amount of the fluctuation of the refractive index is calculated including the fluctuation component of the above, the measurement accuracy of the stage position is reduced. This AO
The change in the M drive frequency is caused by electrical noise or AO
There is a problem that it is unavoidable because it is generated by the influence of the temperature of the oscillation element and the like of the M driver, and that the fluctuation component of the driving frequency cannot be removed by calculation or the like.

【0012】本発明の目的は、周波数シフタの駆動周波
数の変動に基づく測定誤差を低減して、真の屈折率変動
のみを計測して移動鏡の変位をより高精度に測定できる
光波干渉測定装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce a measurement error based on a variation in a driving frequency of a frequency shifter, measure only a true refractive index variation, and measure a displacement of a movable mirror with higher accuracy. Is to provide.

【0013】[0013]

【課題を解決するための手段】上記目的は、物体の変位
を測定するための測長用光束と、測長用光束の光路上の
気体の屈折率変動を計測するための屈折率変動計測用光
束とを出射する光源部と、測長用光束と屈折率変動計測
用光束との共通光路上に設けられ、光路を測定光路と参
照光路に分離するビームスプリッタと、参照光路上に設
けられた参照光用反射鏡と、測定光路上を移動可能に設
けられた測定光用反射鏡と、参照光路及び測定光路から
の反射光束の各干渉光をそれぞれ受光する複数の受光手
段とを有する光波干渉測定装置において、光源部は、測
長用光束および屈折率変動計測用光束として複数の異な
る周波数の光をそれぞれ生成する複数の周波数変調素子
と、基準周波数から複数の異なる周波数の駆動信号を生
成して複数の周波数変調素子のそれぞれに供給する周波
数変調素子駆動系とを備えていることを特徴とする光波
干渉測定装置によって達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to measure a light beam for measuring a displacement of an object and a fluctuation of a refractive index of a gas on an optical path of the light beam for measuring a refractive index. A light source unit that emits a light beam, a beam splitter that is provided on a common optical path of a length measuring light beam and a refractive index fluctuation measuring light beam, and that is provided on the reference optical path, and a beam splitter that separates the optical path into a measuring optical path and a reference optical path. Light wave interference comprising a reference light reflecting mirror, a measuring light reflecting mirror movably provided on the measuring light path, and a plurality of light receiving means for receiving respective interference lights of the reflected light beams from the reference light path and the measuring light path. In the measurement device, the light source unit generates a plurality of frequency modulation elements that respectively generate light of a plurality of different frequencies as a length measurement light beam and a refractive index fluctuation measurement light beam, and generates a plurality of different frequency drive signals from a reference frequency. Multiple frequencies It is accomplished by optical interference measuring apparatus according to claim that a frequency modulation element driving system for supplying the respective modulation elements.

【0014】このように本発明によれば、1台の周波数
シフタドライバにより駆動周波数を作り出し、それぞれ
の周波数シフタに供給して、気体の屈折率変動測定に与
える周波数変動の影響を補正する。これにより正確な気
体の屈折率変動を測定することができ、測定光路の気体
の屈折率変動の影響を補正した移動鏡の真の変位を高精
度に測定することができる。
As described above, according to the present invention, a driving frequency is generated by one frequency shifter driver and supplied to each frequency shifter to correct the influence of the frequency fluctuation on the measurement of the refractive index fluctuation of the gas. This makes it possible to accurately measure the change in the refractive index of the gas, and to accurately measure the true displacement of the movable mirror in which the influence of the change in the refractive index of the gas on the measurement optical path is corrected.

【0015】[0015]

【発明の実施の形態】本発明の一実施の形態による光波
干渉測定装置を図1および図2を用いて説明する。図1
は、本実施の形態による光波干渉測定装置の概略の構成
を示している。また、図2は、本実施の形態による光波
干渉測定装置の周波数シフト部610の構成を示してい
る。本実施の形態による光波干渉測定装置は、周波数変
調素子(以下その例としてAOMを用いる)に駆動周波
数を与えるドライバが1台で構成されている点に特徴を
有している。また、本実施の形態による光波干渉測定装
置は、屈折率変動用の測定光を測長用としても用い、ま
た参照光路の気体の屈折率変動も測定する構成になって
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical interference measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG.
1 shows a schematic configuration of the lightwave interference measuring apparatus according to the present embodiment. FIG. 2 shows a configuration of the frequency shift unit 610 of the optical interference measurement apparatus according to the present embodiment. The light wave interference measuring apparatus according to the present embodiment is characterized in that a single driver for providing a driving frequency to a frequency modulation element (hereinafter, an AOM is used as an example) is provided. Further, the light wave interference measurement apparatus according to the present embodiment is configured to use the measurement light for refractive index fluctuation also for length measurement and to measure the refractive index fluctuation of gas in the reference optical path.

【0016】光源300は周波数f1(波長1.064
μm)の光及びその第二高調波である周波数f2(=2
・f1、波長532nm)の光を出射する。光源300
から出射した光は周波数シフト部610に入射する。
The light source 300 has a frequency f1 (wavelength 1.064).
μm) and the frequency f2 (= 2
(F1, wavelength 532 nm). Light source 300
The light emitted from is incident on the frequency shift unit 610.

【0017】図2において、光源300を出射した周波
数f1の光は波長板210を透過しPBS121に入射
する。この波長板210を回転させることでPBS12
1を透過する光(p−偏光、紙面に水平)と反射する光
(s−偏光、紙面に垂直)の強度比を適当に変えること
ができる。PBS121を透過したp−偏光の光は、A
OM200に入射し、PBS121を反射したs−偏光
の光はAOM201に入射し、それぞれ周波数シフトさ
れ周波数f10、f11の光となる。周波数f10及び
f11の光はPBS122でほぼ同軸にされた後、DM
101を透過する。
In FIG. 2, the light of frequency f 1 emitted from the light source 300 passes through the wave plate 210 and enters the PBS 121. By rotating the wave plate 210, the PBS 12 is rotated.
The intensity ratio of the light passing through 1 (p-polarized light, horizontal to the paper) and the light reflected (s-polarized light, perpendicular to the paper) can be changed appropriately. The p-polarized light transmitted through the PBS 121 is A
The s-polarized light that is incident on the OM 200 and reflected by the PBS 121 is incident on the AOM 201 and is frequency-shifted to light of frequencies f10 and f11. The lights of the frequencies f10 and f11 are made substantially coaxial by the PBS 122,
101.

【0018】同様に光源300を出射した周波数f2の
光は波長板211を透過しPBS123に入射する。こ
の波長板211を回転させることでPBS123を透過
する光(p−偏光、紙面に水平)と反射する光(s−偏
光、紙面に垂直)の強度比を適当に変えることができ
る。PBS123を透過したp−偏光の光はAOM20
2に入射し、PBS123を反射したs−偏光の光はA
OM203に入射し、それぞれ周波数シフトされ周波数
f20、f21の光となる。周波数f20及びf21の
光はPBS124でほぼ同軸にされた後、DM101で
反射され周波数f10、f11の光とほぼ同軸にされ
る。
Similarly, the light of frequency f2 emitted from the light source 300 passes through the wave plate 211 and enters the PBS 123. By rotating the wave plate 211, the intensity ratio of the light (p-polarized light, horizontal to the paper surface) transmitted through the PBS 123 and the reflected light (s-polarized light, perpendicular to the paper surface) can be appropriately changed. The p-polarized light transmitted through the PBS 123 is AOM20
The s-polarized light that has entered A.2 and reflected from the PBS 123 is A
The light enters the OM 203 and is frequency-shifted to become light of frequencies f20 and f21. The lights of the frequencies f20 and f21 are made substantially coaxial by the PBS 124, then reflected by the DM 101, and made substantially coaxial with the lights of the frequencies f10 and f11.

【0019】AOM200、201、202、203に
それぞれ所定の駆動周波数を与えるために1台のAOM
ドライバ605が設けられている。AOMドライバ60
5は、160MHzの基準駆動信号を分周して4つの周
波数、0.1MHz、2MHz、4MHz、80MHz
の駆動周波数信号を作り出す。そして、AOMドライバ
605は、生成した0.1MHz、2MHz、4MH
z、80MHz、及び160MHzの5つの周波数信号
を組み合わせて各AOM200、201、202、20
3に駆動周波数として供給する。具体的にはAOM20
0には82MHz、AOM201には80MHz、AO
M202には164.1MHz、AOM203には16
0.1MHzの駆動周波数を供給する。このように1台
のAOMドライバで各AOMに対して所定の駆動周波数
を供給するようにしているので、基準周波数である16
0MHzの駆動周波数信号に周波数変動が生じた場合に
は、その変動成分が各AOMにそれぞれ供給されること
になる。
In order to give a predetermined drive frequency to each of the AOMs 200, 201, 202, and 203, one AOM
A driver 605 is provided. AOM driver 60
5 is a frequency dividing frequency of the reference driving signal of 160 MHz, four frequencies, 0.1 MHz, 2 MHz, 4 MHz, and 80 MHz.
To generate a driving frequency signal. The AOM driver 605 generates the generated 0.1 MHz, 2 MHz, and 4 MHz.
Each of the AOMs 200, 201, 202, 20 is constructed by combining five frequency signals of z, 80 MHz, and 160 MHz.
3 as the driving frequency. Specifically, AOM20
82 MHz for 0, 80 MHz for AOM201, AO
164.1 MHz for M202 and 16 for AOM203
Provides a drive frequency of 0.1 MHz. As described above, since one AOM driver supplies a predetermined drive frequency to each AOM, the reference frequency 16
When a frequency fluctuation occurs in the driving frequency signal of 0 MHz, the fluctuation component is supplied to each AOM.

【0020】周波数シフトされた光の周波数は、f10
=f1+82MHz、f11=f1+80MHz、f2
0=f2+164.1MHz、f21=f2+160.
1MHzとなる。なお、PBS122で同軸にされた周
波数f10、f11の光は、BS111により分離され
て周波数フィルタ181を通過した後、偏光子付きの検
出器401に入射する。周波数f10、f11の干渉光
は検出器401で光電変換され、その周波数差f10−
f11(=2MHz)に等しいビート信号を参照信号と
して演算装置500に入力する。
The frequency of the frequency-shifted light is f10
= F1 + 82 MHz, f11 = f1 + 80 MHz, f2
0 = f2 + 164.1 MHz, f21 = f2 + 160.
1 MHz. The lights of frequencies f10 and f11 coaxial with the PBS 122 are separated by the BS 111, pass through the frequency filter 181, and then enter the detector 401 with a polarizer. The interference light having the frequencies f10 and f11 is photoelectrically converted by the detector 401, and the frequency difference f10−
A beat signal equal to f11 (= 2 MHz) is input to the arithmetic unit 500 as a reference signal.

【0021】図1において、ほぼ同軸で周波数シフト部
610から出射した光束は、偏光ビームスプリッタ(以
下、PBSという)120に入射する。PBS120に
入射した光束はそれぞれの偏光方位に応じて分離され
る。周波数f11及びf21のs−偏光の光はPBS1
20で反射され、波長板212で円偏光にされたあと固
定鏡150で同軸に反射される。そして再び波長板21
2により偏光面が90度回転されp−偏光の光となる。
その後PBS120を透過し、コーナーキューブ220
で光路をずらされたあとPBS120を透過し再び参照
光路に入射する。参照光路に入射した周波数f11及び
f21の光は、波長板212、固定鏡150で偏光面が
再び90度回転し、s−偏光の光となりPBS120で
DM110の方へ反射する。
In FIG. 1, a light beam emitted from the frequency shift unit 610 substantially coaxially enters a polarizing beam splitter (hereinafter referred to as PBS) 120. The light beams incident on the PBS 120 are separated according to the respective polarization directions. The s-polarized light of frequencies f11 and f21 is PBS1
The light is reflected at 20, is circularly polarized by the wave plate 212, and is then coaxially reflected by the fixed mirror 150. And again the wave plate 21
2, the plane of polarization is rotated 90 degrees to be p-polarized light.
After passing through the PBS 120, the corner cube 220
After the optical path is displaced, the light passes through the PBS 120 and again enters the reference optical path. The light having the frequencies f11 and f21 incident on the reference optical path is again rotated by 90 degrees by the wave plate 212 and the fixed mirror 150, becomes s-polarized light, and is reflected by the PBS 120 toward the DM 110.

【0022】一方周波数f10、f20のp−偏光の光
はPBS120を透過し、波長板213及び移動鏡14
1で偏光面を90度回転させられs−偏光の光となって
PBS120に同軸で戻ってくる。そしてPBS120
で反射し、コーナーキューブ220で光路をずらされ、
PBS120で反射し再び測長光路に入射する。その
後、波長板213及び移動鏡140で偏光面が90度回
転し、PBS120を透過し、周波数f11、f21の
光とほぼ同軸にDM110へ入射する。
On the other hand, the p-polarized light having the frequencies f10 and f20 is transmitted through the PBS 120, and the wave plate 213 and the movable mirror 14 are moved.
At 1, the polarization plane is rotated by 90 degrees and becomes s-polarized light and returns coaxially to the PBS 120. And PBS120
The light path is shifted by the corner cube 220,
The light is reflected by the PBS 120 and reenters the length measuring optical path. Thereafter, the polarization plane is rotated by 90 degrees by the wave plate 213 and the moving mirror 140, passes through the PBS 120, and enters the DM 110 almost coaxially with the light of the frequencies f11 and f21.

【0023】PBS120を同軸で出射した光束はDM
110により周波数f10、f11の光の一部が透過
し、周波数f10、f11の光の残りと周波数f20、
f21の光が反射する。DM110を透過した周波数f
10、f11の光は周波数フィルタ180を透過し検出
器400に入射する。このときDM110を透過した周
波数f20、f21の光は周波数フィルタ180でカッ
トされる。特に図示していないが、検出器400には偏
光子が設けられており、その偏光面は周波数f10、f
11の偏光方位と45度傾いている。このため周波数f
10、f11の干渉光は検出器400で光電変換され、
その周波数差f10−f11(基準となる周波数は2M
Hzである)に等しいビート信号が測長信号として演算
装置500に入力される。
The light beam emitted coaxially from the PBS 120 is DM
Part of the light of frequencies f10 and f11 is transmitted by 110, and the rest of the light of frequencies f10 and f11 is
The light of f21 is reflected. Frequency f transmitted through DM110
The lights of 10 and f11 pass through the frequency filter 180 and enter the detector 400. At this time, the light having the frequencies f20 and f21 transmitted through the DM 110 is cut by the frequency filter 180. Although not particularly shown, the detector 400 is provided with a polarizer, and its polarization plane has frequencies f10 and f10.
It is inclined 45 degrees with the polarization direction of No. 11. Therefore, the frequency f
The interference light of 10, f11 is photoelectrically converted by the detector 400,
The frequency difference f10-f11 (the reference frequency is 2M
(E.g., Hz) is input to the arithmetic unit 500 as a length measurement signal.

【0024】DM110を反射した光束はPBS125
によりそれぞれの偏光方位に応じて分離され、p−偏光
の周波数f10、f20の光は透過し、s−偏光の周波
数f11、f21の光は反射する。s−偏光の光はSH
G変換素子170に入射し周波数f11の光の一部が第
二高調波に変換されて周波数f11’の光となり周波数
f21の光はそのまま透過する。それぞれの光は周波数
フィルタ182を透過した後、偏光子付きの検出器40
2に入射する。このとき周波数フィルタ182は周波数
f11’、f21の光のみを透過させる。周波数f1
1’、f21の光は偏光子を透過した後干渉し、周波数
差f21−f11’(基準となる周波数は0.1MHz
である)に等しいビート信号が参照光路の気体の屈折率
変動の測定信号として演算装置500に入力される。
The luminous flux reflected by the DM 110 is a PBS 125
, The p-polarized light at frequencies f10 and f20 is transmitted, and the s-polarized light at frequencies f11 and f21 is reflected. s-polarized light is SH
A part of the light having the frequency f11 which is incident on the G conversion element 170 is converted into the second harmonic, and becomes the light having the frequency f11 ′, and the light having the frequency f21 is transmitted as it is. After each light passes through the frequency filter 182, the detector 40 with a polarizer
2 is incident. At this time, the frequency filter 182 transmits only light of frequencies f11 ′ and f21. Frequency f1
The lights 1 ′ and f21 interfere after transmitting through the polarizer, and have a frequency difference f21−f11 ′ (the reference frequency is 0.1 MHz).
Is input to the arithmetic unit 500 as a measurement signal of the change in the refractive index of the gas in the reference optical path.

【0025】同様にp−偏光の光はSHG変換素子17
1に入射して周波数f10の光の一部が第二高調波に変
換されて周波数f10’の光となり、周波数f20の光
はそのまま透過する。それぞれの光は周波数フィルタ1
83を透過した後、偏光子付きの検出器403に入射す
る。このとき周波数フィルタ183は周波数f10’、
f20の光のみを透過させる。周波数f10’、f20
の光は偏光子を透過した後干渉し、周波数差f20−f
10’(基準となる周波数は0.1MHzである)に等
しいビート信号が測長光路の気体の屈折率変動の測定信
号として演算装置500に入力される。
Similarly, the p-polarized light is supplied to the SHG conversion element 17.
1 and a part of the light having the frequency f10 is converted into the second harmonic to become light having the frequency f10 ', and the light having the frequency f20 is transmitted as it is. Each light is a frequency filter 1
After passing through 83, the light enters a detector 403 with a polarizer. At this time, the frequency filter 183 outputs the frequency f10 ′,
Only the light of f20 is transmitted. Frequency f10 ', f20
Light interferes after passing through the polarizer, and the frequency difference f20−f
A beat signal equal to 10 ′ (the reference frequency is 0.1 MHz) is input to the arithmetic unit 500 as a measurement signal of the change in the refractive index of the gas in the length measurement optical path.

【0026】演算装置500は周波数シフト部610の
検出器401からの移動鏡変位計測の参照信号と、検出
器400からの測長信号を比較し、その位相変化量から
移動鏡の変位ΔDを計算する。また検出器402及び4
03からの測定信号を比較し、その位相変化量から空気
の屈折率変動量を求める。
The arithmetic unit 500 compares the reference signal for measuring the displacement of the moving mirror from the detector 401 of the frequency shift unit 610 with the length measurement signal from the detector 400, and calculates the displacement ΔD of the moving mirror from the phase change. I do. Also, detectors 402 and 4
The measurement signals from the sensors 03 are compared, and the amount of change in the refractive index of air is obtained from the amount of phase change.

【0027】ここで簡単に空気の屈折率変動を補正する
方法について説明する。周波数fa、fbの光で測定し
た光路長をD(fa)、D(fb)とする。このときそ
れぞれの光路長は、
Here, a method of simply correcting the refractive index fluctuation of air will be described. The optical path lengths measured with the light having the frequencies fa and fb are defined as D (fa) and D (fb). At this time, each optical path length is

【0028】 D(fa)={1+N・F(fa)}D ・・・(1) D(fb)={1+N・F(fb)}D ・・・(2)D (fa) = {1 + NF (fa)} D (1) D (fb) = {1 + NF (fb)} D (2)

【0029】と表せる。ここで、Dは幾何学的な距離、
Nは空気の密度、F(f)は空気の構成比が変わらなけ
れば空気の密度によらず光の周波数fにより決まる関数
である。上式より幾何学的距離Dは、
## EQU2 ## Where D is the geometric distance,
N is the density of the air, and F (f) is a function determined by the frequency f of the light regardless of the density of the air unless the composition ratio of the air changes. From the above equation, the geometric distance D is

【0030】 D=D(fa)−A{D(fb)−D(fa)} ・・・(3) ただし、A=F(fa)/{F(fb)−F(fa)}D = D (fa) −A {D (fb) −D (fa)} (3) where A = F (fa) / {F (fb) −F (fa)}

【0031】となる。これより、この干渉計で求めたい
幾何学的距離の変位、即ち真の変位△Dは、
## EQU1 ## From this, the displacement of the geometric distance desired by this interferometer, that is, the true displacement ΔD is

【0032】 △D=△D(fa)−A{△D(fb)−△D(fa)}・・・(4) ただし、A=F(fa)/{F(fb)−F(fa)}ΔD = △ D (fa) −A {△ D (fb) − △ D (fa)} (4) where A = F (fa) / {F (fb) -F (fa) )}

【0033】となる。上式は、周波数faの光で測定し
た移動鏡の変位から、周波数fa、fbの光で求めた屈
折率の変動による影響を補正し、真の変位を求めること
を意味する。この場合、周波数f10及びf11の光が
上記周波数faの光に対応し、周波数f20及びf21
の光が上記周波数fbの光に対応している。周波数f1
0、f11の光により作られる参照信号及び測長信号の
ビートシグナルの位相の変化から移動鏡の変位ΔD(f
a)を測定し、参照光路を通過した周波数f11、f2
1により作り出されるビートシグナルと測長光路を通過
した周波数f10、f20により作り出されるビートシ
グナルの位相変化から屈折率の変動量{ΔD(fb)−
ΔD(fa)}を測定する。それを(4)式により演算
し、真の変位ΔDを求める。
## EQU1 ## The above equation means that, based on the displacement of the movable mirror measured with the light of the frequency fa, the influence of the change in the refractive index determined with the light of the frequencies fa and fb is corrected, and the true displacement is determined. In this case, the light having the frequencies f10 and f11 corresponds to the light having the frequency fa, and the lights having the frequencies f20 and f21.
Corresponds to the light of the frequency fb. Frequency f1
The displacement ΔD of the movable mirror (f (f)
a) are measured, and the frequencies f11 and f2 passing through the reference optical path are measured.
1 from the phase change of the beat signal produced by the beat signal produced by the frequency signal f10 and f20 produced by the frequencies f10 and f20 passing through the length measuring optical path.
ΔD (fa)} is measured. This is calculated by equation (4) to find the true displacement ΔD.

【0034】さて、AOMドライバ605で、具体的に
160MHzの基準周波数に周波数変動△fが生じた場
合を考えてみる。この周波数変動の影響を受けて各AO
Mで生成された各光の周波数は、f10=f1+△f/
2+82MHz、f11=f1+△f/2+80MH
z、f20=f2+△f+164.1MHz、f21=
f2+△f+160.1MHz、となる。但し、0.1
MHz〜4MHzでのΔfの影響は無視している。
Now, consider the case where the AOM driver 605 has a frequency variation Δf at a reference frequency of 160 MHz. Under the influence of this frequency fluctuation, each AO
The frequency of each light generated at M is f10 = f1 + △ f /
2 + 82 MHz, f11 = f1 + △ f / 2 + 80 MH
z, f20 = f2 + Δf + 164.1 MHz, f21 =
f2 + Δf + 160.1 MHz. However, 0.1
The effect of Δf at MHz to 4 MHz is ignored.

【0035】それぞれの光は所定の光路を通った後PB
S125によりそれぞれの偏光方位に応じて分離され、
f11、f21の光がSHG変換素子170に入射し、
f10、f20の光がSHG変換素子171に入射す
る。SHG変換素子ではf10、f11の光の一部がS
HG変換され、f10’(=2・f10)、f11’
(=2・f11)の光となる。それぞれの光は周波数フ
ィルタ182、183を透過した後、偏光子付きのレシ
ーバ402、403に入射する。偏光子を透過した光は
干渉し、レシーバ402、403はそれぞれの光の周波
数差に等しい信号を演算装置500に入力する。
After each light passes through a predetermined optical path,
Separated according to each polarization direction by S125,
The light of f11 and f21 enters the SHG conversion element 170,
Lights of f10 and f20 enter the SHG conversion element 171. In the SHG conversion element, a part of the light of f10 and f11
HG conversion, f10 ′ (= 2 · f10), f11 ′
(= 2 · f11). The respective lights pass through the frequency filters 182 and 183 and then enter the receivers 402 and 403 with polarizers. The light transmitted through the polarizer interferes, and the receivers 402 and 403 input a signal equal to the frequency difference between the respective lights to the arithmetic unit 500.

【0036】ここでレシーバ402はf11’とf21
の周波数差0.1MHz(=f21−f11’)を基準
とするビート信号を、レシーバ403はf10’とf2
0の周波数差0.1MHz(=f20−f10’)を基
準とするビート信号を発生する。上記過程でAOMドラ
イバ605で生じた周波数変動△fは、周波数f21と
f11’の光にそれぞれ含まれているが、両光が干渉し
て検出器402で検出されるビート信号f21−f1
1’では周波数変動Δfは相殺されて除去されている。
同様にして、ビート信号f20−f10’でも周波数変
動Δfは相殺されて除去される。従って、レシーバ40
2、403は駆動周波数変動の影響を除去、低減した信
号を演算装置500に出力することができる。演算装置
500はそれぞれの信号の位相変動を測定し、駆動周波
数変動の影響を除去、低減した屈折率変動量を演算する
ことができ、最終的にステージ160の幾何学的変位を
高精度に演算することができる。
Here, the receiver 402 has f11 'and f21
The receiver 403 outputs a beat signal based on a frequency difference of 0.1 MHz (= f21−f11 ′).
A beat signal based on a frequency difference of 0.1 MHz (= f20-f10 ') is generated. The frequency fluctuation Δf generated by the AOM driver 605 in the above process is included in the lights of the frequencies f21 and f11 ′, respectively, and the beat signals f21−f1 detected by the detector 402 due to the interference of the two lights.
At 1 ′, the frequency fluctuation Δf is canceled and removed.
Similarly, in the beat signals f20-f10 ′, the frequency fluctuation Δf is canceled and removed. Therefore, the receiver 40
Reference numerals 2 and 403 can output to the arithmetic device 500 a signal in which the influence of the drive frequency fluctuation is removed and reduced. The arithmetic unit 500 can measure the phase variation of each signal, remove the influence of the drive frequency variation, calculate the reduced refractive index variation, and finally calculate the geometric displacement of the stage 160 with high accuracy. can do.

【0037】このように、AOM200、201、20
2、203はAOMドライバ605内の基準周波数に基
づいて生成された駆動周波数で駆動されるので、AOM
ドライバ605の基準駆動周波数に変動が生じても、A
OM200、201、202、203にはその周波数変
動が等しく反映される。このため本実施の形態による光
波干渉測定装置によれば、屈折率変動測定の参照、測定
信号間の位相の変動の影響を格段に小さくすることがで
きる。これによりAOMドライバの周波数変動による測
定信号の位相の変動を低減することができ、参照、測長
光路の気体の屈折率変動をより正確に測定することがで
きるようになる。従って、移動鏡の変位をより精密に測
定することができるようになる。
As described above, the AOMs 200, 201, 20
2 and 203 are driven at the drive frequency generated based on the reference frequency in the AOM driver 605,
Even if the reference driving frequency of the driver 605 fluctuates, A
The OMs 200, 201, 202, and 203 reflect the frequency fluctuations equally. For this reason, according to the optical interference measuring apparatus of the present embodiment, the influence of the phase fluctuation between the measurement signals can be remarkably reduced by referring to the refractive index fluctuation measurement. This makes it possible to reduce the variation in the phase of the measurement signal due to the variation in the frequency of the AOM driver, and to more accurately measure the variation in the refractive index of the gas in the reference and length measuring optical paths. Therefore, the displacement of the movable mirror can be measured more precisely.

【0038】なお、本実施の形態では移動鏡140の変
位計測を光源300からの周波数f1の光を用いて行な
っているが、原理的には他の周波数f2で行なってもよ
い。ここで、周波数f1の光を用いて測長を行なってい
るのは次のような理由によるものである。この種の干渉
計の測長精度低下の原因の1つに、PBSの消光比にお
ける問題がある。本来透過すべき光が反射してしまった
り、また逆に反射すべき光が透過してしまい、これら誤
差光により測定精度が低下してしまうのである。この誤
差光は最終的にSHG変換素子170、171に入射す
る。光源の出射光強度は周波数f1の光が200mW、
周波数f2の光が200mWであるとすると、本来検出
すべき周波数f1の光のSHG変換素子による変換効率
はたかだか1%ぐらいである(変換されるSHG光の強
度は入射光強度の2乗に比例するため)。このため、検
出器に到達する誤差光はそれよりも弱く屈折率測定の測
定精度に重大な影響を及ぼすことはない。これに対し変
位計測に周波数f2の光を用いると、誤差光である周波
数f2の光は、SHG変換素子170、171ではSH
G変換されず、そのまま検出器402、403に入射す
る。このためこの誤差光により測定精度に影響を及ぼす
おそれがある。これが周波数f1の光を変位計測に用い
る理由である。
In the present embodiment, the displacement of the movable mirror 140 is measured using the light of the frequency f1 from the light source 300, but may be measured at another frequency f2 in principle. Here, the reason why the length measurement is performed using the light having the frequency f1 is as follows. One of the causes of a decrease in the measurement accuracy of this type of interferometer is a problem in the extinction ratio of the PBS. The light that should be transmitted is reflected, or the light that should be reflected is transmitted, and the measurement accuracy is reduced due to the error light. This error light finally enters the SHG conversion elements 170 and 171. The intensity of the emitted light from the light source is 200 mW for the light of frequency f1,
Assuming that the light of the frequency f2 is 200 mW, the conversion efficiency of the light of the frequency f1 to be originally detected by the SHG conversion element is at most about 1% (the intensity of the converted SHG light is proportional to the square of the incident light intensity. To do). Therefore, the error light reaching the detector is weaker and does not significantly affect the measurement accuracy of the refractive index measurement. On the other hand, if light of frequency f2 is used for displacement measurement, light of frequency f2, which is error light,
The light is directly incident on the detectors 402 and 403 without being G-converted. For this reason, there is a possibility that the measurement accuracy may be affected by the error light. This is the reason why light having the frequency f1 is used for displacement measurement.

【0039】[0039]

【発明の効果】以上の通り、本発明によれば、周波数シ
フタでの駆動周波数の変動による測定誤差を低減させた
光波干渉測定装置を実現することができる。
As described above, according to the present invention, it is possible to realize an optical interference measuring apparatus in which a measurement error due to a variation in a driving frequency of a frequency shifter is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による光波干渉測定装置
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a light wave interference measurement device according to an embodiment of the present invention.

【図2】本発明の一実施の形態による光波干渉測定装置
の周波数シフト部の構成を示す図である。
FIG. 2 is a diagram illustrating a configuration of a frequency shift unit of the optical interference measurement apparatus according to one embodiment of the present invention.

【図3】従来の光波干渉測定装置の周波数シフト部の構
成を示す図である。
FIG. 3 is a diagram illustrating a configuration of a frequency shift unit of a conventional light wave interference measurement device.

【符号の説明】[Explanation of symbols]

100、101、110 周波数分離素子(ダイクロイ
ックミラー:DM) 111 ビームスプリッタ(BS) 120、121、123、124 偏光ビームスプリッ
タ(PBS) 140 移動鏡 150 固定鏡 160 ステージ 170、171 SHG変換素子 180、181、182、183 周波数フィルタ 200、201、202、203 周波数シフタ(AO
M) 210、211、212、213 波長板 220 コーナーキューブプリズム(CCP) 300 光源 400、401、402、403 検出器 500 演算装置 601、602、603、604、605 周波数シフ
タ(AOM)ドライバ 610、611 周波数シフト部
100, 101, 110 Frequency separation element (dichroic mirror: DM) 111 Beam splitter (BS) 120, 121, 123, 124 Polarization beam splitter (PBS) 140 Moving mirror 150 Fixed mirror 160 Stage 170, 171 SHG conversion element 180, 181 , 182, 183 Frequency filters 200, 201, 202, 203 Frequency shifters (AO
M) 210, 211, 212, 213 Wave plate 220 Corner cube prism (CCP) 300 Light source 400, 401, 402, 403 Detector 500 Arithmetic unit 601, 602, 603, 604, 605 Frequency shifter (AOM) driver 610, 611 Frequency shift section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体の変位を測定するための測長用光束
と、前記測長用光束の光路上の気体の屈折率変動を計測
するための屈折率変動計測用光束とを出射する光源部
と、 前記測長用光束と前記屈折率変動計測用光束との共通光
路上に設けられ、光路を測定光路と参照光路に分離する
ビームスプリッタと、 前記参照光路上に設けられた参照光用反射鏡と、 前記測定光路上を移動可能に設けられた測定光用反射鏡
と、 前記参照光路及び前記測定光路からの反射光束の各干渉
光をそれぞれ受光する複数の受光手段とを有する光波干
渉測定装置において、 前記光源部は、前記測長用光束および前記屈折率変動計
測用光束として複数の異なる周波数の光をそれぞれ生成
する複数の周波数変調素子と、 基準周波数から前記複数の異なる周波数の駆動信号を生
成して前記複数の周波数変調素子のそれぞれに供給する
周波数変調素子駆動系とを備えていることを特徴とする
光波干渉測定装置。
1. A light source section for emitting a length measuring light beam for measuring a displacement of an object and a refractive index fluctuation measuring light beam for measuring a refractive index fluctuation of a gas on an optical path of the length measuring light beam. A beam splitter provided on a common optical path of the length measuring light beam and the refractive index fluctuation measuring light beam, and separating a light path into a measuring light path and a reference light path; and a reference light reflection provided on the reference light path. A light wave interference measurement comprising: a mirror; a measurement light reflecting mirror movably provided on the measurement light path; and a plurality of light receiving means for receiving respective interference lights of reflected light beams from the reference light path and the measurement light path. In the apparatus, the light source unit may include a plurality of frequency modulation elements that respectively generate light of a plurality of different frequencies as the length measurement light beam and the refractive index fluctuation measurement light beam, and a drive signal of the plurality of different frequencies from a reference frequency. Generating and optical interference measuring apparatus characterized by comprising a frequency modulation element driving system for supplying to each of the plurality of frequency modulation element.
JP9108247A 1997-04-10 1997-04-10 Light wave interferometer Withdrawn JPH10281717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9108247A JPH10281717A (en) 1997-04-10 1997-04-10 Light wave interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9108247A JPH10281717A (en) 1997-04-10 1997-04-10 Light wave interferometer

Publications (1)

Publication Number Publication Date
JPH10281717A true JPH10281717A (en) 1998-10-23

Family

ID=14479826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9108247A Withdrawn JPH10281717A (en) 1997-04-10 1997-04-10 Light wave interferometer

Country Status (1)

Country Link
JP (1) JPH10281717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042326A (en) * 2010-08-19 2012-03-01 Canon Inc Light wave interference measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042326A (en) * 2010-08-19 2012-03-01 Canon Inc Light wave interference measurement device
US8576404B2 (en) 2010-08-19 2013-11-05 Canon Kabushiki Kaisha Optical interferometer

Similar Documents

Publication Publication Date Title
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US5493395A (en) Wavelength variation measuring apparatus
JP2520855B2 (en) Three-frequency heterodyne laser interferometer and length measuring method using the same
JPH09178415A (en) Light wave interference measuring device
JPH08320206A (en) Optical interference measuring apparatus and optical interference measuring method
JPH03504768A (en) Interferometer system for measuring distance and shift movements, especially of moving components
JPH11183116A (en) Method and device for light wave interference measurement
JPH10281717A (en) Light wave interferometer
JPH09280822A (en) Light wave interference measuring device
JP2572111B2 (en) Laser interferometer
JPH0961109A (en) Light wave interference measuring device
JPH1144503A (en) Light wave interference measuring device
JPH10281718A (en) Polarizing optical element, method for adjusting polarizing azimuth, and light wave interferometer using the same
JPH1144504A (en) Light wave interference measuring device
JPH1114544A (en) Light wave interfrerence measuring instrument
JPH1096601A (en) Light wave interference measuring device
JPH11211418A (en) Light wave modulating device, light wave interference measuring device and exposing device
JPH10221008A (en) Polarization optical element and optical wave interference measuring device using the same
JPH11108612A (en) Light-wave interference measuring instrument
SU1384949A1 (en) Heterodyne-type device for measuring thickness of etched and spray-coated layers
JPH10170218A (en) Light wave interference measuring device
JPH09250902A (en) Light wave interference measurement device
CN115560680A (en) Measuring system with fusion of absolute distance and relative displacement of space optical assembly
JPH0894317A (en) Displacement sensor
JPH11211417A (en) Method and device for measuring light wave interference

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706