JPH10281641A - Method and equipment for separating air - Google Patents

Method and equipment for separating air

Info

Publication number
JPH10281641A
JPH10281641A JP8311597A JP8311597A JPH10281641A JP H10281641 A JPH10281641 A JP H10281641A JP 8311597 A JP8311597 A JP 8311597A JP 8311597 A JP8311597 A JP 8311597A JP H10281641 A JPH10281641 A JP H10281641A
Authority
JP
Japan
Prior art keywords
air
liquefied
heat exchanger
expansion
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8311597A
Other languages
Japanese (ja)
Other versions
JP3563557B2 (en
Inventor
Masayuki Tanaka
正幸 田中
Hitoshi Asaoka
斉 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP08311597A priority Critical patent/JP3563557B2/en
Priority to TW087105340A priority patent/TW355734B/en
Publication of JPH10281641A publication Critical patent/JPH10281641A/en
Application granted granted Critical
Publication of JP3563557B2 publication Critical patent/JP3563557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce loss caused by the vaporization of liquefied air by introducing the liquefied air decompressed by adiabatic expansion through an expansion turbine in the limit of not vaporizing to the lower tower of a refining tower, in air separation using air separating equipment having a main heat exchanger and an air refrigerating cycle. SOLUTION: The air being compressed by a circulating air compressor 31 from the air pressure of 0.1-1.0 MPa at a previous stage to 3.0-6.0 MPa is chilled to -170 deg.C passing through a first circulating heat exchanger 32, a refrigerator 33, a second circulating heat exchanger 34 and a third circulating heat exchanger 35 and liquefied. Thereafter, the air is introduced into the lower tower of the refining tower decompressed by a Joule-Thomson expansion valve decompressing the liquefied air by the adiabatic expansion through an expansion turbine 39 in advance. Therefore, as the expansion of the liquefied air is accompanied by the work of driving the turbine, further drop of the temperature is enabled and the loss caused by the partial vaporization of the liquefied air can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気分離方法および
空気分離設備に関し、特に、主熱交換器とは別に空気冷
凍サイクルを使用して空気の一部を液化するタイプの空
気分離方法および設備において、該空気冷凍サイクル中
で液化された空気を精留塔下塔に導入する際の該液体空
気の気化による損失を低減する方法および設備に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation method and an air separation equipment, and more particularly to an air separation method and equipment in which a part of air is liquefied by using an air refrigeration cycle separately from a main heat exchanger. The present invention relates to a method and equipment for reducing loss due to vaporization of liquid air when introducing air liquefied in the air refrigeration cycle to a lower column of a rectification column.

【0002】[0002]

【従来の技術】空気から液体窒素や液体酸素を製造す
る、換言すれば、空気を窒素と酸素に分離する空気分離
方法は、製鉄、化学、電子工業等の広範な分野における
自家用若しくは製品用酸素や窒素の製造手段として広く
使用されている。この様な空気分離方法については、分
離効率の向上、ランニングコストの低下、操業安定性の
向上等を目的として様々な研究・開発が進められ、技術
としての改善余地が見出し難い程に高度の発展を見せ、
ほぼ完成・成熟の域に達しているが、実操業上の観点か
らは未だ改良の余地が残されている。
2. Description of the Related Art An air separation method for producing liquid nitrogen or liquid oxygen from air, in other words, an air separation method for separating air into nitrogen and oxygen is a method for producing oxygen for private use or for products in a wide range of fields such as steelmaking, chemical and electronic industries. Widely used as a means for producing nitrogen and nitrogen. Various researches and developments have been conducted on such air separation methods with the aim of improving separation efficiency, lowering running costs, and improving operational stability. Show
Although it is almost completed and matured, there is still room for improvement from a practical viewpoint.

【0003】図1は、その様な状況の下で開発されたモ
レキュラーシーブ型の空気分離方法を示すフロー図であ
る。原料空気は、エアフィルター1、原料空気圧縮機
2、冷却器3等を経て、所望圧力・温度の空気(以下、
圧縮空気ということがある)とされ、モレキュラーシー
ブ吸着器(不純成分吸着部)6へ導かれる。図のモレキ
ュラーシーブ吸着器6は2基1対の切り換え方式であ
り、該吸着器6内では、ゼオライト等の吸着作用によっ
て上記圧縮空気中の水分、炭酸ガス、炭化水素ガス等が
ほぼ完全に除去される。上記吸着器6から管路6aを通
して導出された圧縮空気は、主熱交換器7へ導かれ、後
述する戻りガスとの熱交換によって液化点付近まで冷却
され、精留塔8の下塔8a下部へ導入される。
FIG. 1 is a flow chart showing a molecular sieve type air separation method developed under such a situation. The raw material air passes through an air filter 1, a raw material air compressor 2, a cooler 3, etc., and is supplied with air at a desired pressure and temperature (hereinafter, referred to as air).
Compressed air) and is led to a molecular sieve adsorber (impurity component adsorption unit) 6. The molecular sieve adsorber 6 shown in the figure is a two-pair one-switching type. In the adsorber 6, the moisture, carbon dioxide gas, hydrocarbon gas and the like in the compressed air are almost completely removed by the adsorption action of zeolite or the like. Is done. The compressed air led out of the adsorber 6 through the pipe 6a is led to the main heat exchanger 7 where it is cooled to near the liquefaction point by heat exchange with return gas to be described later. Is introduced to

【0004】下塔8aに導入された圧縮空気は、下塔8
a内を上昇していく過程で冷却されつつ蒸留分離が進行
していき、下塔8a上部からは低沸点の窒素リッチ液
(液体窒素)9或いは窒素リッチガスが取り出され、一
方下部においては高沸点の酸素リッチ液10が貯留され
る(以下粗留工程ということがある)。上部窒素リッチ
ガスは管路13を通って主凝縮器8bへ導かれ、ここで
液化され管路14を下降して下塔8a上部に戻る。下塔
8a上部の窒素リッチ液の一部は、管路15を通り過冷
却器12を経て上塔8cの頂部へ導かれる。
The compressed air introduced into the lower tower 8a is
The distillation separation proceeds while being cooled in the process of ascending in the column a. A low-boiling nitrogen-rich liquid (liquid nitrogen) 9 or a nitrogen-rich gas is taken out from the upper portion of the lower column 8a, while the high-boiling point is obtained in the lower portion. Is stored (hereinafter sometimes referred to as a coarse distillation step). The upper nitrogen-rich gas is led through line 13 to the main condenser 8b, where it is liquefied and descends along line 14 to return to the upper part of the lower column 8a. A part of the nitrogen-rich liquid in the upper part of the lower tower 8a is led to the top of the upper tower 8c through the line 15 through the supercooler 12.

【0005】一方、上記酸素リッチ液10は、管路25
を通り過冷却器12を経て上塔8cの中段へ導かれる。
また下塔8aの中段からは、粗留工程中期の液体窒素が
管路11を通り過冷却器12を経て上塔8cの上段へ導
かれる。この様に上塔8cの中段、上段および頂部から
導入されて上塔8c内を降下する低温の液体窒素および
酸素リッチ液は、上塔8c内を上昇するガスとの間で物
質移動が行われることによって精留が進行する。
On the other hand, the oxygen-rich liquid 10 is supplied to a pipe 25
Through the supercooler 12 to the middle stage of the upper tower 8c.
From the middle stage of the lower tower 8a, liquid nitrogen in the middle stage of the rough distillation step is led to the upper stage of the upper tower 8c through the pipe 11 through the supercooler 12. As described above, the low-temperature liquid nitrogen and oxygen-rich liquid introduced from the middle, upper, and top portions of the upper tower 8c and descending in the upper tower 8c undergo mass transfer with the gas rising in the upper tower 8c. As a result, rectification proceeds.

【0006】こうした各工程が繰り返されることによっ
て、上塔8cの頂部においては高純度窒素ガスが精製さ
れ、一方上塔8cの下部には高純度液体酸素が貯留さ
れ、これらは、管路16および17を経由し前記戻りガ
スとなって主熱交換器7へ導かれ、吸着器6から導出さ
れる圧縮空気との間で熱交換を行って寒冷を利用した
後、高純度窒素および高純度酸素として製品化される。
或いは、主凝縮器8bで液化され、下塔8a上部に導か
れた液体窒素や上塔8cの下部に貯留された液体酸素
を、それぞれ液体のまま取り出して製品化することもあ
る。
By repeating these steps, high-purity nitrogen gas is purified at the top of the upper tower 8c, while high-purity liquid oxygen is stored at the lower part of the upper tower 8c. 17, is returned to the main heat exchanger 7 as the above-mentioned return gas, and exchanges heat with the compressed air derived from the adsorber 6 to utilize the cold. Be commercialized as.
Alternatively, liquid nitrogen which is liquefied in the main condenser 8b and led to the upper part of the lower tower 8a or liquid oxygen stored in the lower part of the upper tower 8c may be taken out as liquids and commercialized.

【0007】また上塔8cの上段部よりやや下側の位置
からは、管路20を経て粗窒素ガスが抜き出され、過冷
却器12から主熱交換器7を経て戻りガスとして熱交換
により寒冷を利用した後、熱交換後の引き抜きガスは再
生用加熱器29を経て吸着器6へ送られ、その再生に利
用される。
Further, from a position slightly lower than the upper part of the upper tower 8c, crude nitrogen gas is extracted through a pipe line 20, and is returned from the subcooler 12 through the main heat exchanger 7 as a return gas by heat exchange. After utilizing the cold, the extracted gas after the heat exchange is sent to the adsorber 6 through the heater 29 for regeneration, and is used for the regeneration.

【0008】このとき、前記吸着器6で浄化された圧縮
空気の一部は、主熱交換器7へ導入される前に分岐さ
れ、管路30を経て別途設けられる空気冷凍サイクル4
に導入される。該空気冷凍サイクル4に導入された圧縮
空気は、空気循環圧縮機31によって圧縮され、第1循
環熱交換器32、冷凍機33、第2循環熱交換器34で
冷却され、一部は膨張タービン36で断熱膨張された
後、第3循環熱交換器35、前記第2循環熱交換器3
4、前記第1循環熱交換器32を経て前記空気循環圧縮
機31に戻り、空気の冷凍サイクルを形成している。前
記第2循環熱交換器34を出た残りの空気(膨張タービ
ン36へ送られなかった残りの空気)は、前記第3循環
熱交換器35で膨張タービン36からの低温の空気と熱
交換して冷却され、液化する。該液化された空気は、そ
の後、ジュール・トムソン膨張弁37によって精留塔下
塔8aの操作圧力まで減圧され、下塔8aに導入され
る。
At this time, a part of the compressed air purified by the adsorber 6 is branched before being introduced into the main heat exchanger 7, and is separated via a pipe 30 into an air refrigeration cycle 4.
Will be introduced. The compressed air introduced into the air refrigeration cycle 4 is compressed by an air circulation compressor 31, cooled by a first circulation heat exchanger 32, a refrigerator 33, and a second circulation heat exchanger 34, and partially expanded by an expansion turbine. After adiabatic expansion at 36, the third circulating heat exchanger 35, the second circulating heat exchanger 3
4. Returning to the air circulating compressor 31 via the first circulating heat exchanger 32, forming an air refrigeration cycle. The remaining air leaving the second circulation heat exchanger 34 (the remaining air not sent to the expansion turbine 36) exchanges heat with the low-temperature air from the expansion turbine 36 in the third circulation heat exchanger 35. To cool and liquefy. The liquefied air is then reduced to the operating pressure of the lower tower 8a by the Joule-Thomson expansion valve 37 and introduced into the lower tower 8a.

【0009】[0009]

【発明が解決しようとする課題】本発明者らの検討の結
果、上記の様な空気分離設備においては、前記第3循環
熱交換器35で液化された空気をジュール・トムソン膨
張弁37によって減圧しているが、この減圧に際して5
〜10%の液化空気が気化してしまっていることが分か
った。即ち、空気冷凍サイクル4において製造した液の
5〜10%は一度液化されていながら、精留塔下塔8a
に導入される前に再び気化し、上述の精留塔内での工程
中で再び冷却されて液化することになる。この様な状況
は分離効率、ランニングコスト等の観点からすれば非効
率的である。本発明は、この様な事情に着目してなされ
たものであって、その目的は、ジュール・トムソン膨張
弁37の使用によって生じる液化空気の気化による損失
を低減した空気分離方法および空気分離設備を提供しよ
うとするものである。
As a result of the study by the present inventors, in the above-described air separation equipment, the air liquefied in the third circulating heat exchanger 35 is decompressed by the Joule-Thomson expansion valve 37. However, at the time of this decompression, 5
It was found that 10% to 10% of the liquefied air had been vaporized. That is, while 5 to 10% of the liquid produced in the air refrigeration cycle 4 is once liquefied, the lower rectification tower 8a
Before being introduced into the rectification column, it is again cooled and liquefied during the above-mentioned process in the rectification column. Such a situation is inefficient from the viewpoint of separation efficiency, running cost and the like. The present invention has been made in view of such circumstances, and an object of the present invention is to provide an air separation method and an air separation facility that reduce loss due to vaporization of liquefied air caused by use of a Joule-Thomson expansion valve 37. It is something to offer.

【0010】[0010]

【課題を解決するための手段】上記課題を解決すること
ができた本発明に係る空気分離方法は、主熱交換器と空
気冷凍サイクルを有する空気分離設備を用いて空気分離
を行うに当たり、前記空気冷凍サイクル中で液化した空
気を膨張タービンを介する断熱膨張によって気化しない
限度で減圧して精留塔下塔へ導入することを特徴とする
ものである。
SUMMARY OF THE INVENTION The air separation method according to the present invention, which can solve the above-mentioned problems, is characterized in that the air separation is performed using an air separation facility having a main heat exchanger and an air refrigeration cycle. It is characterized in that air liquefied in the air refrigeration cycle is decompressed to the extent that it is not vaporized by adiabatic expansion through an expansion turbine and introduced into the lower column of the rectification column.

【0011】また本発明に係る空気分離設備は、主熱交
換器と空気冷凍サイクルを有する空気分離設備におい
て、前記空気冷凍サイクル中で液化した空気の精留塔下
塔への導入部に膨張タービンを設けたことを特徴とする
ものである。
Further, the air separation equipment according to the present invention is an air separation equipment having a main heat exchanger and an air refrigeration cycle, wherein an expansion turbine is provided at a portion where the air liquefied in the air refrigeration cycle is introduced into the lower tower of the rectification tower. It is characterized by having been provided.

【0012】[0012]

【発明の実施の形態】前記空気冷凍サイクル4におい
て、循環空気圧縮機31に入る前の圧縮空気は0.5〜
1.0MPa程度の圧力であるが、圧縮機31により
3.0〜6.0MPa程度まで圧縮される。その後、前
記第3循環熱交換器35等を経ることによって−170
℃程度まで冷却され液化し、ジュール・トムソン膨張弁
により再び0.5〜1.0MPa程度の圧力にまで減圧
されて、精留塔下塔8a内に導入される。このジュール
・トムソン膨張弁を介する断熱膨張により、前記液化空
気の温度は若干低下するが、本発明者らの検討によれ
ば、該断熱膨張に際して低下する温度幅は3〜4℃程度
であり、この温度低下分を上回る程の気化要因(圧力低
下)によって、液化空気の一部(5〜10%程度)が気
化することが分かった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the air refrigeration cycle 4, the compressed air before entering the circulating air compressor 31 is 0.5 to 0.5.
Although the pressure is about 1.0 MPa, it is compressed by the compressor 31 to about 3.0 to 6.0 MPa. Thereafter, through the third circulating heat exchanger 35 and the like, -170
The liquid is cooled to about ℃ and liquefied, and the pressure is reduced again to about 0.5 to 1.0 MPa by a Joule-Thomson expansion valve and introduced into the lower tower 8a of the rectification column. Although the temperature of the liquefied air slightly decreases due to the adiabatic expansion through the Joule-Thomson expansion valve, according to studies by the present inventors, the temperature range that decreases during the adiabatic expansion is about 3 to 4 ° C. It was found that a part (about 5 to 10%) of the liquefied air was vaporized due to a vaporization factor (pressure reduction) that exceeded the temperature reduction.

【0013】上述の通り該液化空気の一部気化は非効率
的であり、該液化空気の精留塔下塔への導入時に、該液
化空気の温度を更に低下させることができれば、前記気
化による損失は低減可能である。本発明者らは、前記液
化空気の精留塔下塔内への導入時に必要な減圧をジュー
ル・トムソン膨張弁を介する断熱膨張によらず、膨張タ
ービンを介して行う断熱膨張によって行えば、液化空気
の温度を更に低下できることを見出し、本発明を完成し
たものである。
As described above, partial vaporization of the liquefied air is inefficient, and if the temperature of the liquefied air can be further reduced when the liquefied air is introduced into the lower column of the rectification column, the loss due to the vaporization Can be reduced. The present inventors have proposed that the liquefied air is not reduced by adiabatic expansion through a Joule-Thomson expansion valve, but by adiabatic expansion performed through an expansion turbine, when the liquefied air is introduced into the lower column of the rectification tower by adiabatic expansion. Have been found that the temperature can be further reduced, and the present invention has been completed.

【0014】即ち、前記液化空気の減圧を膨張タービン
を介する断熱膨張によって行えば、ジュール・トムソン
膨張弁を介する断熱膨張と異なり、膨張に際して液化空
気がタービンを動かすという仕事を伴うため、更に温度
の低下が可能となり、従って、上述の液化空気の一部気
化による損失が低減できるのである。
That is, if the decompression of the liquefied air is performed by adiabatic expansion through an expansion turbine, unlike the adiabatic expansion through a Joule-Thomson expansion valve, the liquefied air involves the work of moving the turbine during expansion, so that the temperature is further increased. Therefore, the loss due to the partial vaporization of the liquefied air can be reduced.

【0015】[0015]

【実施例】図2に概略を示す様な空気冷凍サイクルを用
いて実験を行った。実験に当たっては、窒素(純度9
9.9%)を用い、図2中のA〜Kの各点における窒素
の流量・温度・圧力を表1に示す様に調整し、精留塔下
塔への導入経路に膨張タービン39を使用したときのL
点における液体窒素の状況を調べた。比較のため、膨張
タービン39に変えてジュール・トムソン膨張弁を設け
た場合の状況も調べた。両者のL点における結果を表2
に示す。
EXAMPLE An experiment was performed using an air refrigeration cycle as schematically shown in FIG. In the experiment, nitrogen (purity 9
9.9%), the flow rate, temperature and pressure of nitrogen at each of the points A to K in FIG. 2 were adjusted as shown in Table 1, and the expansion turbine 39 was used in the introduction path to the lower tower of the rectification tower. L when done
The situation of liquid nitrogen at the point was investigated. For comparison, the situation where a Joule-Thomson expansion valve was provided instead of the expansion turbine 39 was also examined. Table 2 shows the results at both L points.
Shown in

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】ジュール・トムソン膨張弁を採用した場
合、L点での液体窒素の温度は−176.3℃であり、
このときには約6%の液体窒素が気化していた。これに
対し、膨張タービンを採用した場合には、L点での温度
は−178.2℃であり、このときには液体窒素は気化
していなかった。この様に膨張タービンの採用により、
液体窒素の一部が気化する損失を低減することができ
た。液体窒素は液体酸素より低沸点であるから、液体窒
素を用いたときに得られた上記実験の効果(気化の抑
制)は、液体窒素と液体酸素が混合する液化空気を用い
た場合に、より確実に発揮されるはずである。
When a Joule-Thomson expansion valve is employed, the temperature of liquid nitrogen at point L is -176.3 ° C.,
At this time, about 6% of liquid nitrogen had been vaporized. On the other hand, when the expansion turbine was employed, the temperature at the point L was -178.2 ° C., and at this time, the liquid nitrogen was not vaporized. By adopting the expansion turbine in this way,
It was possible to reduce the loss of a part of liquid nitrogen vaporizing. Since liquid nitrogen has a lower boiling point than liquid oxygen, the effect of the above experiment (suppression of vaporization) obtained when using liquid nitrogen is more pronounced when using liquefied air in which liquid nitrogen and liquid oxygen are mixed. It should surely be demonstrated.

【0019】[0019]

【発明の効果】以上説明した様に、本発明では、液化さ
れた空気の空気冷凍サイクルから精留塔下塔への導入に
際して、該導入部に膨張タービンを設けて、該膨張ター
ビンを介する断熱膨張を利用しているので、液化した空
気が一部気化する損失が低減できる。
As described above, according to the present invention, when introducing liquefied air from the air refrigeration cycle to the lower tower of the rectification tower, an expansion turbine is provided at the introduction portion, and adiabatic expansion through the expansion turbine is performed. The loss of liquefied air being partially vaporized can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の空気分離方法および空気分離設備を説明
するための全体フロー図である。
FIG. 1 is an overall flowchart for explaining a conventional air separation method and air separation equipment.

【図2】実施例に使用した空気冷凍サイクルの概略図で
ある。
FIG. 2 is a schematic diagram of an air refrigeration cycle used in Examples.

【符号の説明】 1 エアフィルタ 2 原料空気圧縮機 3 冷却器 4 空気冷凍サイクル 6 モレキュラシーブ吸着器 7 主熱交換器 8 精留塔 8a 下塔 8b 主凝縮器 8c 上塔 9 窒素リッチ液 10 酸素リッチ液 12 過冷却器 29 再生用加熱器 31 空気循環圧縮機 32 第1循環熱交換器 33 冷凍機 34 第2循環熱交換器 35 第3循環熱交換器 36 膨張タービン 37 ジュール・トムソン膨張弁[Description of Signs] 1 air filter 2 raw material air compressor 3 cooler 4 air refrigeration cycle 6 molecular sieve adsorber 7 main heat exchanger 8 rectification tower 8a lower tower 8b main condenser 8c upper tower 9 nitrogen rich liquid 10 oxygen rich Liquid 12 Subcooler 29 Regeneration heater 31 Air circulation compressor 32 First circulation heat exchanger 33 Refrigerator 34 Second circulation heat exchanger 35 Third circulation heat exchanger 36 Expansion turbine 37 Joule-Thomson expansion valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主熱交換器と空気冷凍サイクルを有する
空気分離設備を用いて空気分離を行うに当たり、前記空
気冷凍サイクル中で液化した空気を膨張タービンを介す
る断熱膨張によって減圧して精留塔下塔へ導入すること
を特徴とする空気分離方法。
When air is separated using an air separation facility having a main heat exchanger and an air refrigeration cycle, the air liquefied in the air refrigeration cycle is decompressed by adiabatic expansion through an expansion turbine and is then discharged to the rectification column. An air separation method characterized by being introduced into a tower.
【請求項2】 主熱交換器と空気冷凍サイクルを有する
空気分離設備において、前記空気冷凍サイクル中で液化
した空気の精留塔下塔への導入部に膨張タービンを設け
たことを特徴とする空気分離設備。
2. An air separation facility having a main heat exchanger and an air refrigeration cycle, wherein an expansion turbine is provided at a portion where the air liquefied in the air refrigeration cycle is introduced into a lower tower of the rectification tower. Separation equipment.
JP08311597A 1997-04-01 1997-04-01 Air separation method and air separation equipment Expired - Fee Related JP3563557B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08311597A JP3563557B2 (en) 1997-04-01 1997-04-01 Air separation method and air separation equipment
TW087105340A TW355734B (en) 1997-04-01 1998-04-09 Method and apparatus for air separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08311597A JP3563557B2 (en) 1997-04-01 1997-04-01 Air separation method and air separation equipment

Publications (2)

Publication Number Publication Date
JPH10281641A true JPH10281641A (en) 1998-10-23
JP3563557B2 JP3563557B2 (en) 2004-09-08

Family

ID=13793215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08311597A Expired - Fee Related JP3563557B2 (en) 1997-04-01 1997-04-01 Air separation method and air separation equipment

Country Status (2)

Country Link
JP (1) JP3563557B2 (en)
TW (1) TW355734B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621252B2 (en) 2005-12-14 2011-01-26 大陽日酸株式会社 Method and apparatus for purifying raw material air in air liquefaction separation

Also Published As

Publication number Publication date
TW355734B (en) 1999-04-11
JP3563557B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US4704148A (en) Cycle to produce low purity oxygen
US4702757A (en) Dual air pressure cycle to produce low purity oxygen
JPH07270066A (en) Cryogenic rectifying system for manufacturing pressure-elevated nitrogen
JPH0140271B2 (en)
US4872893A (en) Process for the production of high pressure nitrogen
CN1820163A (en) Power cycle with liquefied natural gas regasification
WO2003042614A1 (en) Cryogenic industrial gas refrigeration system
FR2675890B1 (en) METHOD FOR TRANSFERRING REFRIGERATION OF LIQUEFIED NATURAL GAS TO A CRYOGENIC AIR SEPARATION UNIT USING THE HIGH PRESSURE NITROGEN CURRENT.
JPH07174461A (en) Manufacture of gaseous oxygen product at supply pressure by separating air
KR20030036029A (en) Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
JPS63279085A (en) Separation of air
JPH0447234B2 (en)
US4704147A (en) Dual air pressure cycle to produce low purity oxygen
JPH05157448A (en) Cryogenic method separating supply air flow into component
JPH0611258A (en) Cryogenic rectification system with argon heat pump
US6425266B1 (en) Low temperature hydrocarbon gas separation process
JPH07198249A (en) Method and equipment for separating air
EP1156291A1 (en) Cryogenic air separation system with split kettle recycle
JPH08178520A (en) Method and equipment for liquefying hydrogen
CN1116293A (en) Air boiling cryogenic rectification system for producing elecated pressure oxygen
EP1999422B1 (en) Cryogenic air separation system
US6499312B1 (en) Cryogenic rectification system for producing high purity nitrogen
JPH07151458A (en) Method and equipment for preparing gaseous oxygen and/or nitrogen under pressure
CN1423108A (en) Technology and apparatus producing high-purity nitrogen through low-temp. air fraction distilation
JP3563557B2 (en) Air separation method and air separation equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees