JPH10280603A - Method of designing overhang length of all-weather berth overhung roof - Google Patents

Method of designing overhang length of all-weather berth overhung roof

Info

Publication number
JPH10280603A
JPH10280603A JP9251997A JP9251997A JPH10280603A JP H10280603 A JPH10280603 A JP H10280603A JP 9251997 A JP9251997 A JP 9251997A JP 9251997 A JP9251997 A JP 9251997A JP H10280603 A JPH10280603 A JP H10280603A
Authority
JP
Japan
Prior art keywords
time
rainfall
raindrop
overhang length
cargo handling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9251997A
Other languages
Japanese (ja)
Inventor
Yuji Yamamoto
祐史 山本
Keiji Ando
慶治 安藤
Mitsunori Kuriyama
実則 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9251997A priority Critical patent/JPH10280603A/en
Publication of JPH10280603A publication Critical patent/JPH10280603A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ship Loading And Unloading (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of designing an overhang length of an all-weather berth overhung roof in accordance with the required operation rate of individual cargo handling facilities. SOLUTION: Actual data for wind speeds S(t0 ) and rainfall intensities W(t0 ) at individual times t0 are used to calculate the amount of rainfall W'(t0 ) entering a working area at the overhang length L of an overhung roof, assuming that it is L0 , from weather data for one or more past year at a planned all-weather berth installation place and compare it with an upper limit value for the amont of rainfall, possible for cargo handling work, so that judgement that it is workable or not at a time t0 is made. If judgement that it is workable is made, judgement that it is workable in a time section including the time t0 is made. Similarly, a workable time in a specified period (t=t0 through tmax ) for at least one year is calculated and the total is divided by all time in the specified period to calculate an operation rate F0 . The L0 is gradually increased from an initial value 0 to calculate the operation rate F0 in sequence and the L0 value at the time when the required operation rate is Freq or more is employed as a value for an overhang length in design.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶・埠頭間の荷
役を行う作業エリアを降雨から保護する全天候バース張
出屋根の張出長さの設計方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for designing the overhang length of an all-weather berth overhanging roof for protecting a work area where cargo is handled between a ship and a quay from rainfall.

【0002】[0002]

【従来の技術】一般に、船舶・埠頭間の荷役を行う作業
エリアへの降雨の侵入を防ぐために全天候バースが設置
されている。全天候バースは、埠頭上と埠頭脇に停泊し
た船舶上とに跨がる作業エリア全体を覆うために、埠頭
上にある建屋部分と、この建屋部分から船舶を覆うよう
に張り出した張出屋根部分とから成る。
2. Description of the Related Art Generally, an all-weather berth is installed to prevent rainfall from entering a work area where cargo is handled between a ship and a wharf. The all-weather berth consists of a building on the wharf and an overhanging roof that extends over the ship to cover the entire work area that spans the wharf and the ship anchored beside the wharf. Consisting of

【0003】特に、濡れに対する制限を受ける濡注製品
の荷役においては、作業エリアの端縁に位置する船倉の
ハッチ口への降雨の侵入を防止することが重要であり、
作業エリア内への降雨量が許容限界を超えた場合には、
荷役作業を停止しなくてはならない。したがって、個々
の設備の所要稼働率を確保するには、降雨侵入防止用の
張出屋根をどの程度の張出長さにすればよいのかは、設
備を計画・設計する上で極めて重要である。
[0003] In particular, in the handling of wet casting products subject to restrictions on wetting, it is important to prevent rainfall from entering the hatch opening of the hold located at the edge of the work area.
If the rainfall in the work area exceeds the allowable limit,
You must stop cargo handling. Therefore, in order to secure the required occupancy rate of each facility, it is extremely important in planning and designing the facilities how long the overhanging roof for preventing rainfall intrusion should be extended. .

【0004】しかし従来は、所要稼働率を確保するため
に必要な張出長さを定量的に設計する方法はなかった。
そのため、全天候バースの張出屋根は、建設コストとの
兼ね合いから許される限り長く張り出すか、あるいは張
出屋根の周囲に沿って壁やシャッター等を設けるかのい
ずれかとする他はなく、結局、建設コストが過剰になる
ことが避けられなかった。
Conventionally, however, there has been no method of quantitatively designing the overhang length necessary to secure the required operation rate.
Therefore, the overhanging roof of the all-weather berth has to be either overhanging as long as allowed by the construction cost or providing a wall or shutter along the periphery of the overhanging roof. Excessive construction costs were inevitable.

【0005】[0005]

【発明が解決しようとする課題】本発明は、個々の荷役
設備の所要稼働率に応じて、全天候バース張出屋根の張
出長さを設計する方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for designing the overhang length of an all-weather berth overhanging roof according to the required operation rate of each cargo handling facility.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、船舶・陸地間の荷役を行う作業
エリアを降雨から保護する全天候バース張出屋根の張出
長さの設計方法であって、(1) L0 =0と仮定し、(2)
作業エリア端縁からの張出屋根端縁までの張出長さL=
0 と仮定し、(3) 時刻 t=t0に設定し、(s1)全天候バ
ース設置予定地についての過去の気象データから、時刻
t0における風速S(t0)および降雨強度W(t0)を採取し、
(s2)上記風速S(t0)において張出屋根端縁から作業エリ
ア端縁まで到達する雨滴の最大落下速度Vmax を、下記
式: Vmax =H/L0 ×S(t0)・・・・・・ (ここで、H:作業エリア端縁高さを基準とした張出屋
根の高さ)により算出し、(s3)雨滴径Rと雨滴落下速度
Vとの間の既知の関係から、上記最大落下速度Vmax に
対応する最大雨滴径Rmax を求め、(s4)上記降雨強度W
(t0)の場合の既知の雨滴径分布を用いて、雨滴径Rが上
記最大雨滴径Rmax 以下である雨滴の比率Gを算出し、
(s5)上記の降雨強度W(t0)および比率Gから、作業エリ
ア内に侵入する雨量W’(t0)を、下記式: W’(t0)=W(t0)×G・・・・・・ により算出し、(s6)上記侵入雨量W’(t0)を荷役作業可
能な雨量上限値Wmax と比較することにより、時刻 t=
t0における荷役作業の可否を判定し、その結果をt0を含
む時間区分Δtについての荷役作業の可否の判定結果と
して該時間区分Δtと共に記録し、(4) 少なくとも1年
間にわたる所定期間(t=t0〜 tmax )内のt0より後の全
ての時刻 tについて上記ステップ(s1)〜(s6)を実行し、
(5) 以上により求めた荷役作業可能な時間区分Δtの総
計Σ tを前記所定期間の全時間( tmax −t0)で除して
稼働率F0 を算出し、(6) 上記稼働率F0 を所要稼働率
Freq と比較し、F0 ≧Freq であれば、張出長さL=
0 と決定し、F0 <Freq であれば、L0 の値を所定
増分ΔLだけ増加して、上記工程(2)〜(6) を行うこと
を特徴とする全天候バースの張出屋根の張出長さの設計
方法が提供される。
According to the present invention, in order to achieve the above object, according to the present invention, the length of overhang of an all-weather berth overhanging roof for protecting a work area for cargo handling between a ship and land from rain is protected. (1) Assuming that L 0 = 0, (2)
Overhang length L from working area edge to overhanging roof edge L =
Assuming that L 0, (3) is set to the time t = t 0, from the past of weather data for the (s1) all-weather berth installation planned site, time
the wind speed S (t 0) and the rainfall intensity W (t 0) were taken in t 0,
(s2) At the wind speed S (t 0 ), the maximum drop velocity Vmax of the raindrop reaching from the edge of the overhanging roof to the edge of the work area is represented by the following equation: Vmax = H / L 0 × S (t 0 ) (Where H is the height of the overhanging roof based on the height of the work area edge), and (s3) From the known relationship between the raindrop diameter R and the raindrop falling velocity V, The maximum raindrop diameter Rmax corresponding to the maximum drop velocity Vmax is determined, and (s4) the rainfall intensity W
Using the known raindrop diameter distribution in the case of (t 0 ), a ratio G of raindrops in which the raindrop diameter R is equal to or less than the maximum raindrop diameter Rmax is calculated,
(s5) From the rainfall intensity W (t 0 ) and the ratio G, the amount of rain W ′ (t 0 ) entering the work area is calculated by the following equation: W ′ (t 0 ) = W (t 0 ) × G · ... (S6) By comparing the intrusion rainfall W ′ (t 0 ) with the rainfall upper limit Wmax at which cargo work can be performed, the time t =
determining whether the loading operation at t 0, the result was recorded along with said time division Δt as a determination result of whether the loading operation for the time segment Δt containing t 0, (4) at least a predetermined period over one year (t = T 0 to t max ), the above steps (s1) to (s6) are executed for all times t after t 0 ,
(5) The operation rate F 0 is calculated by dividing the total Δt of the time division Δt in which the cargo handling work can be performed as described above by the total time (t max −t 0 ) of the predetermined period, and (6) F 0 is compared with the required operation rate Freq, and if F 0 ≧ Freq, the overhang length L =
L 0 is determined, and if F 0 <Freq, the value of L 0 is increased by a predetermined increment ΔL, and the above steps (2) to (6) are performed. An overhang length design method is provided.

【0007】[0007]

【発明の実施の形態】本発明においては、全天候バース
設置予定地についての少なくとも過去1年間の気象デー
タから、その期間内の個々の時刻t0の風速S(t0)と降雨
強度W(t0)の実績データを用いて、張出屋根の張出長さ
Lを仮にL0 としたときの作業エリア内へ降り込む雨量
W’(t0)を算定し、これを荷役作業が可能な雨量上限値
Wmaxと比較して、時刻t0における作業の可否を判定す
る。
In the [embodiment of the present invention, from the weather data of at least the past year for the all-weather berth installation planned site, the individual time t 0 in the period wind speed S (t 0) and the rainfall intensity W (t 0 ), the rainfall W ′ (t 0 ) falling into the work area when the overhang length L of the overhanging roof is temporarily set to L 0 is calculated, and this can be used for cargo handling work. compared to rainfall upper limit Wmax, determines whether the work at time t 0.

【0008】判定結果が作業可能であれば、時刻t0を含
む時間区分Δtについて作業可能と判定する。例えば、
時間区分Δt=1時間とすれば、時刻 t=t0から時刻 t
=t0+1までの1時間を作業可能時間とする。このよう
にして、少なくとも1年間にわたる所定期間( t=t0
tmax )内の作業可能時間ΣΔtを算出し、このΣΔt
を所定期間の全時間( tmax −t0)で除して稼働率F0
を算出する。
If the result of the determination is that work is possible, it is determined that work is possible for the time section Δt including the time t 0 . For example,
Assuming that the time interval Δt = 1 hour, the time t = t 0 to the time t
= One hour up to t 0 +1 is defined as a workable time. In this way, a predetermined period (t = t 0-
t max ), the workable time ΣΔt is calculated, and this ΣΔt
Is divided by the total time (t max −t 0 ) of the predetermined period, and the operation rate F 0
Is calculated.

【0009】例えば、t0=1990年1月1日0時にお
ける作業可否判定結果を1990年1月1日0時〜1時
の1時間についての判定結果とし、t0+1=1990年
1月1日1時における判定結果を1990年1月1日1
時〜2時の1時間についての判定結果とする、というよ
うにして順次1年間にわたって、判定結果と、対応する
時間区分Δt(この例では1時間)とを記録してゆく。
所定期間を1年とすれば、最終時刻 t= tmax は199
0年12月31日24時となる。次に、作業可能と判定
された時間区分Δt(各1時間)を総計して、所定期間
である1年間の全時間(24時間×365日)で除して
稼働率F0 とする。
For example, the work determination result at t 0 = 0: 00 on January 1, 1990 is the determination result for one hour from 0:00 to 1:00 on January 1, 1990, and t 0 + 1 = Jan. 1990 The judgment result at 1:00 a.m. on January 1, 1990, 1
The determination result and the corresponding time section Δt (one hour in this example) are sequentially recorded over one year, such as making the determination result for one hour from hour to two o'clock.
If the predetermined period is one year, the final time t = t max is 199
It will be 24:00 on December 31, 00:00. Next, the time divisions Δt (one hour each) determined to be operable are totaled and divided by the total time (24 hours × 365 days) of one year, which is a predetermined period, to obtain an operation rate F 0 .

【0010】この稼働率F0 が設計対象とする荷役設備
の所要稼働率Freq 以上であれば、最初に仮定した張出
長さL0 を設計値として決定する。実際には、本発明に
おいては張出長さLの仮定値L0 の初期値を0として設
計プロセスを実行開始する。例えば、日本国内であれば
年間を通して降雨がゼロという場所は現実には存在せ
ず、張出長さL0 =0にしたのでは降雨により作業不可
能という判定結果が頻出し、年間を通じての稼働率F0
は非常に低くなって、所要稼働率Freq 未満となるはず
である。その場合、本発明の工程(6) に規定したよう
に、張出長さL=L0 と決定せずに、L0 の値を所定増
分ΔL(例えば1m)だけ増加して、増加後のL0 につ
いて上記の設計プロセスを再実行する。このようにL0
を逐次増加して設計プロセスを繰り返し実行すれば、作
業エリア内への降雨侵入は逐次減少し、それに伴い稼働
率F0 は逐次増加してゆき、所要稼働率Freq 以上とな
ったところで工程(6) によりプロセスの実行は停止し、
そのときに仮定していたL0 の値が張出長さLの設計値
として決定される。上記過程から明らかなように、これ
により決定する張出長さL0 は、所要稼働率Freq を確
保するのに必要な張出長さLの最小値である。
If the operation rate F 0 is equal to or greater than the required operation rate Freq of the cargo handling equipment to be designed, the initially assumed overhang length L 0 is determined as a design value. Actually, in the present invention, the design process is started with the initial value of the assumed value L 0 of the overhang length L set to 0. For example, in Japan, there is no place where there is zero rainfall throughout the year, and if the overhang length L 0 = 0, the result of frequent determination that work is impossible due to rain frequently appears, and operation throughout the year Rate F 0
Should be very low and less than the required operating rate Freq. In that case, as defined in the step (6) of the present invention, the value of L 0 is increased by a predetermined increment ΔL (for example, 1 m) without determining that the overhang length L = L 0, and Re-execute the above design process for L 0 . Thus, L 0
If sequential increases repeatedly executes design processes and the rain from entering the work area decreases successively operating rate F 0 along with it so on are increased sequentially step upon reaching the required operating ratio Freq above (6 ) Stops the execution of the process,
The value of L 0 assumed at that time is determined as the design value of the overhang length L. As is apparent from the above process, the overhang length L 0 determined by this is the minimum value of the overhang length L required to secure the required operation rate Freq.

【0011】本発明の設計方法においては、過去の気
象データから採取した風速および降雨強度、雨滴径R
と雨滴落下速度Vとの間の既知の関係、および降雨強
度W(t0)の場合の既知の雨滴径分布、という公知の知見
を利用する。これら公知の知見としては例えば下記に列
挙するようなものがある。 過去の気象データからの風速および降雨強度につい
ては、日本気象協会からアメダスデータとして公表され
ている日本各地の毎時の風向風速データおよび降雨デー
タが利用できる。全天候バース設置予定地自体について
のデータがあれば最良であるが、一般的には予定地自体
のデータが得られるとは限らないので、予定地の最近接
地についてのデータを用いる。
In the design method of the present invention, the wind speed, rainfall intensity, and raindrop diameter R obtained from past weather data are calculated.
The known knowledge of the known relationship between the rainfall velocity V and the raindrop diameter distribution for rainfall intensity W (t 0 ) is used. These known findings include, for example, those listed below. As the wind speed and rainfall intensity from past weather data, hourly wind direction wind speed data and rainfall data in various parts of Japan published as AMeDAS data by the Japan Meteorological Association can be used. It is best if there is data on the site where the all-weather berth is to be installed, but in general, it is not always possible to obtain data on the site itself.

【0012】 雨滴径と雨滴落下速度については、一
例としては万有百科大辞典18「宇宙・地球」(小学
館、1981年7月発行)の10頁の表1に記載されて
いる「雨滴の大きさと終端落下速度」が利用できる。 降雨強度に応じた雨滴径分布については、明星大学
研究紀要(理工学部)No.17, pp113-125「雨滴粒径分布
式の違いによるミリ波の減衰の比較」(福士清造著)に
記載されたデータが利用できる。
The raindrop diameter and the raindrop falling speed are described, for example, in Table 1 on page 10 of the Universal Encyclopedia 18 “Space and the Earth” (Shogakukan, published in July 1981). And terminal drop speed ”are available. The raindrop size distribution according to rainfall intensity is described in Meiji University Research Bulletin (Faculty of Science and Technology) No. 17, pp113-125, "Comparison of Millimeter Wave Attenuation by Difference in Raindrop Particle Size Distribution Formula" (by Seizuku Fukushi) Data is available.

【0013】上記の具体例は、本発明者が本願出願時点
で入手可能な範囲で最良であると考えて用いたものであ
って、本発明の方法を行うに当たって上記の例に限定す
る必要はないし、より良いデータが利用できれば、それ
を用いる方が望ましいことは勿論である。以下に、添付
図面を参照し実施例により本発明を更に詳細に説明す
る。
The above specific example is used by the inventor of the present invention on the assumption that it is the best available range at the time of filing of the present application, and it is not necessary to limit the present invention to the above example in performing the method of the present invention. Of course, if better data is available, it is desirable to use it. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

【0014】[0014]

【実施例】本発明の設計方法を実施する具体例を、仮想
データを用いて説明する。全天候バースの設置予定地に
ついて、アメダスデータ等から得られた時刻t0における
風速S(t0)=1m/s、降雨強度W(t0)=5mm/hで
あるとする。この時、図1に示した全天候バースにおい
て、埠頭Pと船倉Qとに跨がる作業エリアAの端縁Bを
基準として、張出屋根高さH=13000mm、張出長
さLの仮定値L0 =6200mmとする。高さHは低い
ほど雨が降り込みにくいので、船のマスト高やクレーン
操作等を考慮して作業に支障の無い範囲で極力低く設定
することが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of implementing the design method of the present invention will be described using virtual data. It is assumed that the wind speed S (t 0 ) at time t 0 obtained from AMeDAS data and the like and the rainfall intensity W (t 0 ) are 5 mm / h at the installation site of the all-weather berth. At this time, in the all-weather berth shown in FIG. 1, assuming values of the overhanging roof height H = 13000 mm and the overhanging length L based on the edge B of the work area A straddling the pier P and the hold Q. L 0 = 6200 mm. The lower the height H is, the harder it is for rain to fall. Therefore, it is desirable to set the height H as low as possible without taking into consideration the mast height of the ship and the operation of the crane.

【0015】張出屋根の端縁Cから吹き込まれた雨滴
が、途中で海面に落下せずに、図1の破線で示した軌跡
をとって進行し作業エリアAの端縁Bまで到達するに
は、雨滴落下速度が下記式で求まるVmax 以下でなく
てはならない。 Vmax =H/L0 ×S(t0)・・・・・・・・ これは図1から理解されるように単純に幾何学的な関係
である。すなわち、張出長さL0 (すなわち屋根端縁C
から作業エリア端縁Bまでの水平距離L0 )だけ水平方
向に進行する時間で高さHだけ落下すれば、雨滴は丁度
作業エリア端縁Bに達する。ここで雨滴の水平方向速度
は風速S(t0)に等しいと見なせるから、丁度端縁Bに到
達する雨滴の落下速度(鉛直方向速度)をVmax と置け
ば、この雨滴の〔鉛直方向速度Vmax /水平方向速度S
(t0)〕の比は〔鉛直方向進行距離H/水平方向進行距離
0 〕の比に等しくなければならない。すなわちVmax
/S(t0)=H/L0 の関係が成り立ち、上記式が導か
れる。
The raindrops blown from the edge C of the overhanging roof travel along the trajectory shown by the broken line in FIG. Must be such that the raindrop falling speed is less than or equal to Vmax determined by the following equation. Vmax = H / L 0 × S (t 0) ········ This is simply the geometrical relationships as understood from FIG. That is, the overhang length L 0 (that is, the roof edge C
If it drops by the height H in a time that travels in the horizontal direction by a horizontal distance L 0 ) from the to the working area edge B, the raindrop just reaches the working area edge B. Here, the horizontal speed of the raindrop can be considered to be equal to the wind speed S (t 0 ). Therefore, if the falling speed (vertical speed) of the raindrop reaching the edge B is set as Vmax, the [vertical speed Vmax of the raindrop] / Horizontal speed S
(t 0 )] must be equal to the ratio of [vertical traveling distance H / horizontal traveling distance L 0 ]. That is, Vmax
/ S (t 0 ) = H / L 0 holds, and the above equation is derived.

【0016】上記の風速S(t0)、張出屋根の高さHおよ
び張出長さL0 の各値を式に代入すると、 となり、作業エリアA内に侵入する雨滴の最大落下速度
Vmax =2.1m/sが算出される。
By substituting the wind speed S (t 0 ), the height H of the overhanging roof and the overhang length L 0 into the equation, The maximum drop speed Vmax of raindrops entering the work area A is calculated as Vmax = 2.1 m / s.

【0017】図2は、雨滴径と落下速度との関係を示す
グラフであり、同図に示した曲線は前出の万有百科大辞
典18「宇宙・地球」(小学館、1981年7月発行)
10頁、表1の「雨滴の大きさと終端落下速度」に記載
されているデータに基づく回帰曲線である。この回帰曲
線から、上記のVmax に対応する雨滴径は0.51mm
と求まる。
FIG. 2 is a graph showing the relationship between the diameter of the raindrop and the falling speed. The curve shown in the figure is the aforementioned Encyclopedia of Encyclopedia 18 "Space and Earth" (Shogakukan, published in July 1981). )
10 is a regression curve based on the data described in “Size of raindrop and terminal drop velocity” in Table 1 of Table 10. From this regression curve, the raindrop diameter corresponding to the above Vmax is 0.51 mm
Is obtained.

【0018】図3は、前記降雨強度W(t0)=5mm/h
の場合の雨滴径分布を示すグラフであり、前出の明星大
学研究紀要(理工学部)No.17, pp113-125「雨滴粒径分
布式の違いによるミリ波の減衰の比較」(福士清造著)
に記載された種々の降雨強度についての雨滴径分布の一
部を転記したものである。この分布曲線下の全面積が降
雨強度W(t0)=5mm/hの全雨量に対応し、雨滴径
0.51mm以下のハッチングを施した部分の面積が、
作業エリア内に侵入する雨量W’(t0)に対応する。分布
曲線下の全面積を100%としたときの斜線部分の面積
の比率Gは14%と算定される。
FIG. 3 shows the rain intensity W (t 0 ) = 5 mm / h
This is a graph showing the raindrop size distribution in the case of rainfall, and the previous bulletin of the Meisei University (Faculty of Science and Technology) No.17, pp113-125, "Comparison of Millimeter Wave Attenuation by Difference in Raindrop Particle Size Distribution Formula" (by Fukushi Kiyozo) )
Is a transcript of a part of the raindrop diameter distribution for various rainfall intensities described in the above section. The total area under this distribution curve corresponds to the total rainfall of the rainfall intensity W (t 0 ) = 5 mm / h, and the area of the hatched portion with a raindrop diameter of 0.51 mm or less is
This corresponds to the rainfall W ′ (t 0 ) that enters the work area. When the total area under the distribution curve is 100%, the ratio G of the area of the hatched portion is calculated to be 14%.

【0019】したがって、作業エリア内に侵入する雨量
W’(t0)は下記により求まる。 これを荷役作業可能な雨量上限値Wmax とを比較して、
時刻 t=t0における荷役作業の可否を判定する。本実施
例では、雨量上限値Wmax =1mm/hとし、上記の侵
入雨量W’(t0)=0.7mm/hは作業可能と判定し
た。そして、本実施例で利用したアメダスデータが1時
間毎のデータであったので、時刻t0から時刻t0+1時間
までの時間区分(Δt=1時間)について作業可能と判
定した。
Therefore, the amount of rain W '(t 0 ) that enters the work area is obtained as follows. This is compared with the upper limit of rainfall Wmax for cargo handling,
And determines whether the cargo handling operation at time t = t 0. In the present embodiment, the rainfall upper limit value Wmax = 1 mm / h, and it was determined that work was possible when the intrusion rainfall W ′ (t 0 ) = 0.7 mm / h. Since AMEDAS data utilized in this embodiment is data of every 1 hour was determined to be working for the time segment from time t 0 to time t 0 +1 h (Delta] t = 1 hour).

【0020】雨量上限値Wmax は、作業者が不快と感じ
るか否か、製品に影響を与えるか否か等の濡れ限界とし
て設定される。一般に、雨量1mm/h以下の降雨であ
れば、注意して見ていないと降っていることに気づかな
い程度であり、作業床が濡れるか濡れないかといった程
度の、極めて弱い降雨である。このようにして、少なく
とも1年間の所定期間( t=t0〜 tmax )について、上
記と同様に判定プロセスを繰り返し実行し、作業可能と
判定された時間区分Δtの総計ΣΔtを所定期間の全時
間( tmax −t0)で除して稼働率F0 を算定し、それを
所要稼働率Freq と比較し、張出長さLの仮定値L0
6200mmの是非を判定する。
The rainfall upper limit value Wmax is set as a wetting limit for determining whether or not the worker feels uncomfortable or affecting the product. In general, if the rainfall is 1 mm / h or less, the rainfall is so low that the worker does not notice that it is raining unless he is careful, and the work floor is wet or not wet. In this manner, the determination process is repeatedly executed in the same manner as described above for a predetermined period (t = t 0 to t max ) of at least one year, and the total ΣΔt of the time sections Δt determined to be operable is calculated over the entire predetermined period The operating rate F 0 is calculated by dividing by the time (t max −t 0 ), and it is compared with the required operating rate Freq, and the assumed value L 0 of the overhang length L =
Judge the right or wrong of 6200mm.

【0021】本実施例では説明の便宜上、L0 =620
0mmとしたが、実際の設計プロセスにおいては、L0
=0を初期値として設計プロセスを実行開始し、逐次L
0 値を増加させて実行を繰り返し、F0 とFreq との大
小関係がF0 <Freq からF 0 ≧Freq に転じたときの
Lの仮定値L0 を張出長さLの設計値として採用する。
In this embodiment, for convenience of explanation, L0= 620
0 mm, but in the actual design process, L0
= 0 as an initial value to start the design process,
0Increase the value and repeat the execution, F0And Freq
Small relation is F0<Freq to F 0≧ Freq
Assumption L of L0Is adopted as a design value of the overhang length L.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
個々の荷役設備の所要稼働率に応じて、全天候バース張
出屋根の張出長さを設計することができる。
As described above, according to the present invention,
The overhang length of the all-weather berth overhanging roof can be designed according to the required operation rate of each cargo handling equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による設計対象とする全天候バ
ースを示す断面図である。
FIG. 1 is a sectional view showing an all-weather berth to be designed according to the present invention.

【図2】図2は、雨滴径と雨滴落下速度との関係を示す
グラフである。
FIG. 2 is a graph showing a relationship between a raindrop diameter and a raindrop falling speed.

【図3】図3は、雨滴径の分布を示すグラフである。FIG. 3 is a graph showing the distribution of raindrop diameters.

【符号の説明】[Explanation of symbols]

H…張出屋根の高さ L…張出屋根の張出長さ L0 …Lの仮定値 A…荷役作業エリア B…作業エリアAの端縁 C…張出屋根の端縁H ... edge edge C ... overhanging roof assumptions A ... loading operation area B ... work area A of the overhang length L 0 ... L of the height L ... overhang roof overhang roof

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 船舶・陸地間の荷役を行う作業エリアを
降雨から保護する全天候バース張出屋根の張出長さの設
計方法であって、 (1) L0 =0と仮定し、 (2) 作業エリア端縁からの張出屋根端縁までの張出長さ
L=L0 と仮定し、 (3) 時刻 t=t0に設定し、 (s1)全天候バース設置予定地についての過去の気象デー
タから、時刻t0における風速S(t0)および降雨強度W(t
0)を採取し、 (s2)上記風速S(t0)において張出屋根端縁から作業エリ
ア端縁まで到達する雨滴の最大落下速度Vmax を、下記
式: Vmax =H/L0 ×S(t0)・・・・・・ (ここで、H:作業エリア端縁高さを基準とした張出屋
根の高さ)により算出し、 (s3)雨滴径Rと雨滴落下速度Vとの間の既知の関係か
ら、上記最大落下速度Vmax に対応する最大雨滴径Rma
x を求め、 (s4)上記降雨強度W(t0)の場合の既知の雨滴径分布を用
いて、雨滴径Rが上記最大雨滴径Rmax 以下である雨滴
の比率Gを算出し、 (s5)上記の降雨強度W(t0)および比率Gから、作業エリ
ア内に侵入する雨量W’(t0)を、下記式: W’(t0)=W(t0)×G・・・・・・ により算出し、 (s6)上記侵入雨量W’(t0)を荷役作業可能な雨量上限値
Wmax と比較することにより、時刻 t=t0における荷役
作業の可否を判定し、その結果をt0を含む時間区分Δt
についての荷役作業の可否の判定結果として該時間区分
Δtと共に記録し、 (4) 少なくとも1年間にわたる所定期間(t=t0
tmax )内のt0より後の全ての時刻 tについて上記ステ
ップ(s1)〜(s6)を実行し、 (5) 以上により求めた荷役作業可能な時間区分Δtの総
計Σ tを前記所定期間の全時間( tmax −t0)で除して
稼働率F0 を算出し、 (6) 上記稼働率F0 を所要稼働率Freq と比較し、 F0 ≧Freq であれば、張出長さL=L0 と決定し、 F0 <Freq であれば、L0 の値を所定増分ΔLだけ増
加して、上記工程(2)〜(6) を行うことを特徴とする全
天候バースの張出屋根の張出長さの設計方法。
1. A method for designing an overhang length of an all-weather berth overhanging roof that protects a work area for cargo handling between a ship and land from rainfall, (1) Assuming that L 0 = 0, (2) ) assumes that Zhang Decho of L = L 0 up to the overhanging roof edge from the work area edge, (3) set to the time t = t 0, of the past for the (s1) all-weather berth installation planned site from weather data, wind speed S (t 0) at time t 0 and the rainfall intensity W (t
0) was collected, (s2) the wind speed S (t 0 the maximum falling speed Vmax raindrop arriving from overhanging roof edge to the working area edge in), the following equation: Vmax = H / L 0 × S ( t 0 ) (where H is the height of the overhanging roof based on the height of the working area edge), and (s3) between the raindrop diameter R and the raindrop falling velocity V From the known relationship, the maximum raindrop diameter Rma corresponding to the maximum drop velocity Vmax
seeking x, (s4) using known raindrop size distribution in the case of the rain rate W (t 0), raindrop diameter R calculates the ratio G of raindrops is less than the maximum raindrop diameter Rmax, (s5) From the rainfall intensity W (t 0 ) and the ratio G, the amount of rain W ′ (t 0 ) entering the work area is calculated by the following equation: W ′ (t 0 ) = W (t 0 ) × G calculated by ..., the by comparing the loading operation possible rain upper limit Wmax, it determines whether the cargo handling operation at the time t = t 0, the result (s6) the intrusion rainfall W '(t 0) Time interval Δt including t 0
Is recorded together with the time section Δt as a result of the determination as to whether the cargo handling work is possible or not, and (4) a predetermined period (t = t 0-
t max) for all times t later than t 0 in run the step (s1) ~ (s6), (5) or by the predetermined period totals sigma t of cargo handling possible time division Δt determined Is divided by the total time (t max −t 0 ) to calculate the operating rate F 0. (6) Compare the operating rate F 0 with the required operating rate Freq, and if F 0 ≧ Freq, the overhang length It is determined that L = L 0, and if F 0 <Freq, the value of L 0 is increased by a predetermined increment ΔL, and the above-mentioned steps (2) to (6) are performed. How to design the overhang length of the roof.
JP9251997A 1997-04-10 1997-04-10 Method of designing overhang length of all-weather berth overhung roof Withdrawn JPH10280603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9251997A JPH10280603A (en) 1997-04-10 1997-04-10 Method of designing overhang length of all-weather berth overhung roof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9251997A JPH10280603A (en) 1997-04-10 1997-04-10 Method of designing overhang length of all-weather berth overhung roof

Publications (1)

Publication Number Publication Date
JPH10280603A true JPH10280603A (en) 1998-10-20

Family

ID=14056588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9251997A Withdrawn JPH10280603A (en) 1997-04-10 1997-04-10 Method of designing overhang length of all-weather berth overhung roof

Country Status (1)

Country Link
JP (1) JPH10280603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703072A (en) * 2021-09-17 2021-11-26 温州大学 Real-time rainfall intensity detection device based on video

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703072A (en) * 2021-09-17 2021-11-26 温州大学 Real-time rainfall intensity detection device based on video
CN113703072B (en) * 2021-09-17 2024-02-20 温州大学 Real-time rainfall intensity detection device based on video

Similar Documents

Publication Publication Date Title
EP0257662B1 (en) Method for automatically controlling a vehicle
CN102157062B (en) Method for acquiring traffic capacity of stop on bus lane
US5794386A (en) Roof panel for sloped roofs
FI74683C (en) Complex control unit for elevators with double basket.
Hyden et al. The Swedish traffic-conflicts technique
JP7011252B2 (en) Operation support system applied to the water transportation system that operates battery-powered vessels
JPH10280603A (en) Method of designing overhang length of all-weather berth overhung roof
MY112684A (en) Schedule windows for an elevator dispatcher
JP2840993B2 (en) Train operation management system
Hounsell et al. Using global positioning system for bus priority in London: traffic signals close to bus stops
JPH06321115A (en) Train controller
US6580384B1 (en) Track prediction method in combined radar and ADS surveillance environment
JP4306216B2 (en) Waste treatment plant management system
JPS5930135Y2 (en) protective net
ITMI20122082A1 (en) DEVICE FOR PREVENTING THE SLIP OF THE SNOW ACCUMULATASO ON A ROOF WITH PIT, WITH AN INTEGRATED AN ANCHORAGE POINT FOR INDIVIDUAL PROTECTION DEVICES
Kieffer et al. Concrete placing productivity
EP1200297B1 (en) Driving mode for optimizing energy and time in the manner in which a vehicle or train is driven
JPS6368992A (en) Operation managing apparatus for taxi
CN115310868A (en) Intelligent equipment scheduling and adjusting method and device for surface mine
Patania et al. Air pollution drop by technique of urban traffic integrated control system in Catania city (Italy)
JP2021192995A (en) Train group control device and automatic train operation system
FR1391192A (en) Method for the construction of prestressed concrete bridges from prefabricated elements and bridges or the like constructed by said method
Carey Steel Cladding Profiles: the Ever Changing Scene
CN117542226A (en) Code head and surface mixed operation method for unmanned collection card of port in distributed dual-purpose wharf
JPH059355B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706