JPH1027777A - Detecting method of etching end point - Google Patents

Detecting method of etching end point

Info

Publication number
JPH1027777A
JPH1027777A JP17893696A JP17893696A JPH1027777A JP H1027777 A JPH1027777 A JP H1027777A JP 17893696 A JP17893696 A JP 17893696A JP 17893696 A JP17893696 A JP 17893696A JP H1027777 A JPH1027777 A JP H1027777A
Authority
JP
Japan
Prior art keywords
etching
end point
layer
gas
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17893696A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchiyama
博幸 内山
Yoshinori Imamura
慶憲 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17893696A priority Critical patent/JPH1027777A/en
Publication of JPH1027777A publication Critical patent/JPH1027777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • ing And Chemical Polishing (AREA)
  • Bipolar Transistors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-sensitive etching end point which is enhanced in response speed, sensitivity, and separating rate, by a method wherein an etching rate is controlled by taking advantage of a plasma emission light whose wavelength is close to a specific value and which appears at the reaction of In to Cl. SOLUTION: A window is provided to an etching device reaction chamber 1 to observe enough light emitted from the specimen surface of a wafer 7 by taking advantage of plasma emission light of wavelength 470nm or so which appears at the reaction of In to Cl, and light rays of wavelength 470nm or so are selected out of light rays emitted at etching through a monochromator or a monochromatic filter 3 or the like and sent to a multiplying device such as an photomultiplier 4. An etching rate is controlled on the basis of the output of the photomultiplier 4. By this setup, a thin film can be processed high in response speed, sensitivity, and separation rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はInGaAs,In
P等のInを含有する化合物半導体ヘテロ接合を有する
化合物半導体素子製造に係り、特にそのエッチング終点
の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to InGaAs, In
The present invention relates to the manufacture of a compound semiconductor device having a compound semiconductor heterojunction containing In such as P, and more particularly to a method of detecting an etching end point.

【0002】[0002]

【従来の技術】従来の化合物半導体素子、例えばGaA
s/AlGaAs,InGaAsヘテロ素子の製作にお
いては、ジャーナル オブ エレクトロニック マテリ
アルズ,18巻,5冊,1989,p619〜622
(Journal of Electronic Materials,vol.18,No.
5,1989,p619〜622)などに見られるよう
な化学的停止層による選択エッチングを用いた方法が主
流であった。上記選択ドライエッチングにより、素子製
造工程が大幅に短縮化され、しきい電圧安定などの性能
向上と歩留まり向上が同時に達成されていた。
2. Description of the Related Art Conventional compound semiconductor devices, for example, GaAs
In the manufacture of s / AlGaAs and InGaAs hetero devices, Journal of Electronic Materials, Vol. 18, Vol. 5, 1989, pp. 619-622.
(Journal of Electronic Materials, vol. 18, No.
5, 1989, pp. 619 to 622) and the like, a method using selective etching by a chemical stop layer has been mainly used. By the selective dry etching described above, the element manufacturing process has been significantly shortened, and performance improvement such as threshold voltage stabilization and yield improvement have been simultaneously achieved.

【0003】しかし、近年素子性能の向上に伴い、In
P,InGaAsといったInP系化合物半導体を積極
的に用いた素子が主流となっており、これらのInP系
化合物半導体はその加工自体が困難で、物理的衝撃を利
用したドライエッチングを用いる方法が一般的である。
この場合、化学反応による停止層などの応用は困難で、
エッチング量の制御には他の方法を探索する必要があっ
た。
However, in recent years, with the improvement of element performance, In
Devices that actively use InP-based compound semiconductors such as P and InGaAs have become mainstream, and the processing itself of these InP-based compound semiconductors is difficult, and a method using dry etching utilizing physical impact is generally used. It is.
In this case, it is difficult to apply a stop layer due to a chemical reaction.
It was necessary to search for another method for controlling the etching amount.

【0004】例えば、特開平2−109329 号では質量分析
器を用いてエッチングに関与する特定質量数のピーク強
度を監視する方法を取り上げている。その他にも、化合
物半導体エッチング時のプラズマ発光による終点検出も
検討されているが、事実上プラズマ内には様々な発光が
混在しており、終点検出に応用できる分離度の高い発光
波長は限定され、SiO2 加工などいくつかに応用され
ているのみである。
For example, Japanese Patent Application Laid-Open No. 2-109329 discloses a method of monitoring the peak intensity of a specific mass number involved in etching using a mass analyzer. In addition, end-point detection by plasma emission during compound semiconductor etching is also being studied.However, various types of light emission are actually mixed in the plasma, and the emission wavelength with a high degree of separation that can be applied to end-point detection is limited. , SiO 2 processing, etc.

【0005】[0005]

【発明が解決しようとする課題】GaAs/AlGaA
s,GaAs/InGaAs,GaAs/InAs,G
aAs/InAlAsのような組み合わせの化合物半導
体ヘテロ構造においては、揮発性の極めて小さいInや
Alの反応物質を化学的停止層に応用した選択エッチン
グは可能である。しかしながら、Inを含有する層自体
や双方にInを含有するヘテロ接合の一方を選択的に加
工する場合には、上述したような他の方法が必要であ
る。しかし、上の質量分析による方法では、目的とする
ピークを得るまでの応答速度が0.1 〜数秒と遅いこと
や使用前には必ず特定質量数によるチューニングが必要
なこと、ヘテロ界面におけるイオン化率変動による所謂
界面効果の影響等から正確な終点検出は困難であった。
特に薄層化する半導体素子への対応は極めて困難で、応
答速度が速く、感度も良好でなお且つ簡便なエッチング
制御方法が望まれていた。
SUMMARY OF THE INVENTION GaAs / AlGaAs
s, GaAs / InGaAs, GaAs / InAs, G
In a compound semiconductor heterostructure of a combination such as aAs / InAlAs, selective etching in which a reactant such as In or Al having extremely low volatility is applied to a chemical stop layer is possible. However, in the case of selectively processing one of the In-containing layer itself and the heterojunction containing In both of them, another method as described above is required. However, in the method using mass spectrometry described above, the response speed until obtaining the target peak is as low as 0.1 to several seconds, tuning using a specific mass number is always required before use, and the ionization rate at the hetero interface is low. It is difficult to accurately detect the end point due to the influence of the so-called interface effect due to the fluctuation.
In particular, it is extremely difficult to cope with a semiconductor element having a reduced thickness, and a simple etching control method which has a high response speed, good sensitivity, and is desired.

【0006】本発明が解決しようとする課題は、ドライ
エッチングによりInP系化合物半導体ヘテロ構造の選
択的加工やその他のInを含有する薄膜を加工する際、
応答速度・感度・分離度とも良好で簡便なエッチング終
点検出方法を提供することにあり、これにより加工精
度,製造工程短縮,歩留まり向上等を達成することにあ
る。
The problem to be solved by the present invention is to selectively process an InP-based compound semiconductor heterostructure by dry etching or to process other In-containing thin films.
An object of the present invention is to provide a simple and easy method for detecting an etching end point with good response speed, sensitivity, and degree of separation, thereby achieving processing accuracy, shortening a manufacturing process, improving yield, and the like.

【0007】[0007]

【課題を解決するための手段】上記問題を解決するた
め、InP系化合物半導体加工時に発生するその他のプ
ラズマ発光波長と極めて分離度が高く、高感度なInと
Clとの反応に際して出現する470nm付近のプラズ
マ発光波長を利用した。使用するドライエッチング装置
反応室内の試料面からの発光を十分に捕らえられる位置
に窓を設置し、エッチング時に発生する光をモノクロメ
ータや単色フィルタなどを通して470nm付近の波長
のみを光電子増倍管などの増倍装置に送る。これにより
得られる出力をもとにエッチング量の制御を行う。
In order to solve the above-mentioned problems, the degree of separation from other plasma emission wavelengths generated during the processing of InP-based compound semiconductors is extremely high, and around 470 nm which appears when a highly sensitive reaction between In and Cl occurs. Was used. Dry etching equipment to be used A window is installed at a position where the light emission from the sample surface in the reaction chamber can be captured sufficiently, and the light generated at the time of etching can be passed through a monochromator or a monochromatic filter, etc., and only the wavelength around 470 nm can be used as a photomultiplier tube. Send to multiplier. The amount of etching is controlled based on the output thus obtained.

【0008】本発明によれば、比較的に簡易な装置を用
いてInP系化合物半導体の選択ドライエッチングが可
能となる。
According to the present invention, selective dry etching of an InP-based compound semiconductor can be performed using a relatively simple apparatus.

【0009】図1はGaAsとIn0.5Ga0.5AsをC
2 を用いて、エッチング圧力0.23mTorr,マイクロ波
出力700w,RF放電密度13kw/m2 の条件でE
CRエッチング加工した際のプラズマ発光の様子を示し
たものである。GaAs加工時にはほとんど見られなかっ
た470nm付近の位置に強力なピークが観察されてい
る。この発光はAlGaAsやInAlAs,InP等
においてもバックグラウンドに隠れることなく、感度・
分離度とも良好であることが確認されている。なお、当
470nm付近の発光はCl2 以外のエッチングガスを
用いてエッチングした際には全く観察されないため、I
nとClの反応時に現れる特有な発光であることも確認
済みである。
FIG. 1 shows that GaAs and In 0.5 Ga 0.5 As
with l 2, etching pressure 0.23MTorr, microwave output 700w, E under the conditions of RF discharge density 13 kW / m 2
FIG. 4 shows a state of plasma emission when a CR etching process is performed. A strong peak is observed at a position near 470 nm, which was hardly observed at the time of GaAs processing. This light emission does not hide in the background even in AlGaAs, InAlAs, InP, etc.
It has been confirmed that the degree of separation is good. Since the emission around 470 nm is not observed at all when the etching is performed using an etching gas other than Cl 2 ,
It has also been confirmed that the light emission is peculiar light emission that appears during the reaction between n and Cl.

【0010】図2は本発明のシステム構成を説明した図
である。エッチング反応室内から捕らえられた発光を光
ファイバーケーブル等を通し、モノクロメータやフィル
タにより470nm付近の発光波長のみを光電子増倍管
に送り、InとClの反応に伴う出力として検出する。
この出力をドライエッチング装置のシーケンスに戻し、
エッチング量の制御を行う。この際、エッチングの停止
を判定する470nm付近の発光波長出力設定値は任意
とすることで、様々な組み合わせの化合物半導体ヘテロ
構造に対応可能である。
FIG. 2 is a diagram illustrating the system configuration of the present invention. The emitted light captured from the etching reaction chamber is passed through an optical fiber cable or the like, and only the emission wavelength near 470 nm is sent to the photomultiplier using a monochromator or a filter, and detected as an output accompanying the reaction between In and Cl.
Return this output to the dry etching equipment sequence,
The amount of etching is controlled. At this time, by setting the emission wavelength output set value around 470 nm for judging the stop of the etching to be arbitrary, it is possible to cope with various combinations of compound semiconductor heterostructures.

【0011】図3はGaAs基板上にIn0.6Ga0.4
s(30nm)層とIn0.3Ga0.7As(20nm)層を成
長させたサンプルをCl2 ガスを用いたECRエッチン
グ、エッチング条件:エッチング圧力0.23mTorr,
マイクロ波出力700w,RF放電密度13kw/m2
により加工した際の470nm発光波長強度の変化を示
したものである。In組成の変化や20〜30nmとい
った薄層構造でも比較的良好に発光強度による分離が可
能である。また、本発明はプラズマ発光を応用した方法
であるため、ほぼリアルタイムでのエッチングモニタが
可能である。
FIG. 3 shows In 0.6 Ga 0.4 A on a GaAs substrate.
A sample on which an s (30 nm) layer and an In 0.3 Ga 0.7 As (20 nm) layer were grown was subjected to ECR etching using Cl 2 gas. Etching conditions: an etching pressure of 0.23 mTorr,
Microwave output 700w, RF discharge density 13kw / m 2
5 shows the change in the emission wavelength intensity at 470 nm when processing is performed by the method shown in FIG. Even with a thin layer structure such as a change in the In composition or a thickness of 20 to 30 nm, it is possible to relatively satisfactorily separate by light emission intensity. Further, since the present invention is a method using plasma emission, it is possible to monitor etching in almost real time.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〈実施例1〉図4は本発明をHBT(Heterojunction Bi
polar Transistor)素子製造に応用した一例である。本
HBT素子は同図(a)のように、エミッタキャップ層
12,エミッタ層13,ベース層14,コレクタ層1
5,サブコレクタ層16,基板17からなる。この化合
物半導体ヘテロ構造をエミッタ電極11であるタングス
テンシリサイドをマスクとして自己整合的に製作する。
<Embodiment 1> FIG. 4 shows an embodiment of the present invention in which an HBT (Heterojunction Bi
Polar Transistor) This is an example of application to element manufacturing. This HBT element has an emitter cap layer 12, an emitter layer 13, a base layer 14, and a collector layer 1 as shown in FIG.
5, a sub-collector layer 16 and a substrate 17. This compound semiconductor heterostructure is manufactured in a self-aligned manner using tungsten silicide as the emitter electrode 11 as a mask.

【0013】まず同図(b)のように、エミッタ電極1
1をマスクとしてn−In0.5Ga0.5As/n−GaAsエミ
ッタキャップ層12からn−AlxGa1-xAsエミッタ
層13までをエッチング加工する。この工程では、Cl
2 /CH4 ガスを用いたECRエッチング、エッチング
条件:Cl2/CH4ガス流量=7sccm/3sccm,エッチ
ング圧力0.25mTorr,RF放電密度25kw/m2
マイクロ波放電電力100wが用いられている。
First, as shown in FIG.
1 is used as a mask to etch from the n-In 0.5 Ga 0.5 As / n-GaAs emitter cap layer 12 to the n-Al x Ga 1 -x As emitter layer 13. In this step, Cl
ECR etching using 2 / CH 4 gas, etching conditions: Cl 2 / CH 4 gas flow rate = 7 sccm / 3 sccm, etching pressure 0.25 mTorr, RF discharge density 25 kw / m 2 ,
A microwave discharge power of 100 w is used.

【0014】この際に、470nmの発光波長をモニタ
リングしたものが図5である。InGaAs層からGa
As層へエッチングが進行し、470nmのピークが急
激に減少しているのがわかる。この工程では、次のベー
ス電極形成時のプロセスマージンから数十nmのエミッ
タ層を残存させねばならない。したがって、470nmの
波長をモニタリングすることでエッチングの進行状況を
正確に把握することができ、再現性の良いエミッタ形成
が可能となった。
FIG. 5 shows the result of monitoring the emission wavelength of 470 nm. From InGaAs layer to Ga
It can be seen that the etching progresses to the As layer and the peak at 470 nm sharply decreases. In this step, an emitter layer of several tens nm must be left from a process margin at the time of forming the next base electrode. Therefore, the progress of the etching can be accurately grasped by monitoring the wavelength of 470 nm, and the emitter formation with good reproducibility has become possible.

【0015】また、上記エッチング条件と異方性のAl
GaAs/GaAs選択エッチング、例えばエッチング
条件:SiCl4/SF6ガス流量=6sccm/3sccm,エ
ッチング圧力13.5mTorr,RF放電密度1.2kw/
2 の反応性イオンエッチングとを組み合わせること
で、より高精度で再現性の良いエミッタ加工が可能であ
る。
The above etching conditions and anisotropic Al
GaAs / GaAs selective etching, for example, etching conditions: SiCl 4 / SF 6 gas flow rate = 6 sccm / 3 sccm, etching pressure 13.5 mTorr, RF discharge density 1.2 kw /
By combining with the reactive ion etching of m 2 , emitter processing with higher accuracy and good reproducibility is possible.

【0016】その後、同図(c)のように、SiO2
18を被着させ、ベース電極20,コレクタ電極21を
形成し、目的のHBT素子を得た。本発明により、プロ
セス上ではエッチングおよびSiO2 側壁長の制御が容
易になり、また、デバイス上ではエミッタ抵抗の低減,
素子劣化の抑制,製作歩留まりの向上が達成された。
Thereafter, as shown in FIG. 1C, an SiO 2 film 18 was applied, and a base electrode 20 and a collector electrode 21 were formed, thereby obtaining a target HBT element. According to the present invention, the etching and the control of the SiO 2 side wall length can be easily performed on the process, and the emitter resistance can be reduced on the device.
Suppression of element deterioration and improvement in production yield were achieved.

【0017】〈実施例2〉本発明をEA(Electron-Abso
rption)変調素子などの光素子製作に応用した一例を示
す。図6は、その製造工程を説明したものである。
<Embodiment 2> The present invention is applied to an EA (Electron-Abso
An example in which the present invention is applied to the fabrication of an optical device such as a modulation device will be described. FIG. 6 illustrates the manufacturing process.

【0018】まず図6(a)のように、キャップ層3
2,上部クラッド層33,歪み多重量子井戸層34,下
部クラッド層35から構成される化合物半導体構造を、
同図(b)のようにSiO2 膜31をマスクとして加工
し、その後同図(c)のように平坦化37,電極形成3
8を行い目的の素子を得た。
First, as shown in FIG.
2, a compound semiconductor structure composed of an upper cladding layer 33, a strained multiple quantum well layer 34, and a lower cladding layer 35,
Processing is performed using the SiO 2 film 31 as a mask as shown in FIG. 3B, and then flattening 37 and electrode formation 3 as shown in FIG.
8 was performed to obtain a target device.

【0019】エッチング条件:Cl2/CH4ガス流量=
7sccm/3sccm,エッチング圧力0.25mTorr,RF
放電密度35kw/m2,マイクロ波放電電力100w
によるECRエッチングを利用すれば、キャップ層32
から下部クラッド層35までを等速に異方性加工が可能
である。本発明の方法を応用し、下部クラッド層InA
lAsとInP基板のIn組成の大幅な変化をモニタリ
ングすることにより、エッチング速度による予測とも合
わせてより精度の良い加工が可能となった。その他にも
製作工程の大幅な短縮,歩留まり向上などにも貢献し
た。
Etching conditions: Cl 2 / CH 4 gas flow rate =
7 sccm / 3 sccm, etching pressure 0.25 mTorr, RF
Discharge density 35 kw / m 2 , microwave discharge power 100 w
By using the ECR etching by the
To the lower cladding layer 35 can be anisotropically processed at a constant speed. Applying the method of the present invention, the lower cladding layer InA
By monitoring a large change in the In composition of the lAs and the InP substrate, more accurate processing can be performed together with the prediction based on the etching rate. In addition, it greatly contributed to shortening the manufacturing process and improving yield.

【0020】なお、当該素子の加工については、深さ2
μm以上の加工が行われるため、エッチング時に検出窓
が汚れ、検出レベルが低下する問題があったが、ウエハ
加工終了ごとに、酸素によるクリーニング処理(例え
ば、O2 ガス流量10sccm,圧力1.0mTorr,マイク
ロ波放電電力700w,RF放電密度14kw/m2
処理)を施すことで、処理なしの場合に比較して80%
以上、検出レベルが向上した。
The processing of the element is performed at a depth of 2
Since μm or more processing is performed, the detection window contamination during etching, but the detection level was a problem to decrease, for each wafer processing ends, the cleaning treatment with oxygen (e.g., O 2 gas flow rate 10 sccm, pressure 1.0mTorr , A microwave discharge power of 700 W and an RF discharge density of 14 kW / m 2 ), which is 80%
As described above, the detection level has been improved.

【0021】[0021]

【発明の効果】以上、本発明によれば、これまで選択加
工の困難であったInP,InGaAs,InAlAsな
どInP系化合物半導体多層膜やInを含有する電極材
料等の選択ドライエッチングが可能となった。したがっ
て、本発明によりこれまで実現の困難であった半導体素
子の製造が容易になった。また、エッチング状況をほぼ
リアルタイムにモニタリングできるため、高精度のエッ
チング制御が可能となり、半導体素子の製作歩留まりを
飛躍的に向上するとともに、これらの素子の高性能化に
も大きく貢献した。
As described above, according to the present invention, selective dry etching of an InP-based compound semiconductor multilayer film such as InP, InGaAs, InAlAs or an electrode material containing In, which has been difficult to selectively process, can be performed. Was. Therefore, the present invention has facilitated the manufacture of a semiconductor device which has been difficult to realize until now. In addition, since the etching state can be monitored almost in real time, high-precision etching control can be performed, and the production yield of semiconductor devices has been dramatically improved, and the performance of these devices has been greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】InGaAsエッチング時の発光波長のスペク
トル図。
FIG. 1 is a spectrum diagram of an emission wavelength at the time of etching InGaAs.

【図2】470nm発光波長を利用したエッチング制御
システムのブロック図。
FIG. 2 is a block diagram of an etching control system using an emission wavelength of 470 nm.

【図3】470nm発光波長の観察による加工制御の説
明図。
FIG. 3 is an explanatory diagram of processing control by observing an emission wavelength of 470 nm.

【図4】本発明の一実施例でのHBT素子製造工程を示
す断面図。
FIG. 4 is a sectional view showing an HBT element manufacturing process according to one embodiment of the present invention.

【図5】本発明の一実施例のHBT結晶加工時470n
m発光のモニタリングの説明図。
FIG. 5 is a diagram illustrating an example of 470n during HBT crystal processing according to an embodiment of the present invention.
Explanatory drawing of monitoring of m emission.

【図6】本発明の一実施例でのEA変調素子製造工程を
示す断面図。
FIG. 6 is a sectional view showing a step of manufacturing an EA modulation element according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…エッチング反応室、2…受光部、3…モノクロメー
タまたは単色フィルタ、4…光電子増倍装置、5…終点
制御装置、6…エッチング制御装置、7…ウエハ、11
…タングステンシリサイドエミッタ電極、12…n−I
0.5Ga0.5As/n−GaAsエミッタキャップ層、1
3…n−AlxGa1-xAsエミッタ層(x=0⇒0.
3)、14…p−AlxGa1-xAsベース層(0.1⇒
0)、15…un−GaAsコレクタ層、16…n−G
aAsサブコレクタ層、17…半絶縁性GaAs基板、
18…側壁SiO2 膜、19…SiO2 膜、20…ベー
ス電極、21…コレクタ電極、31…SiO2 マスク、
32…p−InGaAsキャップ層、33…p−InA
lAs上部クラッド層、34…歪み多重量子井戸層、3
5…n−InAlAs下部クラッド層、36…n−In
P基板、37…平坦化膜、38…電極。
DESCRIPTION OF SYMBOLS 1 ... Etching reaction chamber, 2 ... Light receiving part, 3 ... Monochromator or monochromatic filter, 4 ... Photomultiplier, 5 ... End point controller, 6 ... Etching controller, 7 ... Wafer, 11
... Tungsten silicide emitter electrode, 12 ... nI
n 0.5 Ga 0.5 As / n-GaAs emitter cap layer, 1
3... N-Al x Ga 1 -x As emitter layer (x = 0 → 0.
3), 14... P-Al x Ga 1 -x As base layer (0.1 ⇒
0), 15 ... un-GaAs collector layer, 16 ... n-G
aAs subcollector layer, 17: semi-insulating GaAs substrate,
18 ... side wall SiO 2 film, 19 ... SiO 2 film, 20 ... base electrode 21 ... collector electrode, 31 ... SiO 2 mask,
32 ... p-InGaAs cap layer, 33 ... p-InA
lAs upper cladding layer, 34... strained multiple quantum well layer, 3
5 ... n-InAlAs lower cladding layer, 36 ... n-In
P substrate, 37: planarization film, 38: electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/331 H01L 29/72 29/73 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location H01L 21/331 H01L 29/72 29/73

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Inを含有する材料を、塩素(Cl)を元
素または化合物として含むガス(以下塩素系ガスとい
う)を用いてドライエッチングする工程において、In
とClの反応に基づいて出現する470nm付近の発光
波長を用い、エッチングを制御することを特徴としたエ
ッチング終点検出方法。
In a step of dry-etching a material containing In using a gas containing chlorine (Cl) as an element or a compound (hereinafter referred to as a chlorine-based gas),
An etching end point detection method, characterized in that etching is controlled by using an emission wavelength around 470 nm that appears based on a reaction between Cl and Cl.
【請求項2】請求項1記載のドライエッチング方法は、
塩素系ガスおよび塩素系ガスとメタン系炭化水素ガスと
の混合ガスやハロゲン化アルキルガスをエッチャントと
して用いるドライエッチング方法であるエッチング終点
検出方法。
2. The dry etching method according to claim 1,
An etching end point detection method which is a dry etching method using a chlorine-based gas, a mixed gas of a chlorine-based gas and a methane-based hydrocarbon gas, or an alkyl halide gas as an etchant.
【請求項3】請求項1または2において、エッチングさ
れる材料は、Inを含む化合物半導体層とInを含有し
ない層またはIn含有組成の異なる層とからなる化合物
半導体ヘテロ構造を有してなる材料であるエッチング終
点検出方法。
3. The material according to claim 1, wherein the material to be etched has a compound semiconductor heterostructure including a compound semiconductor layer containing In and a layer not containing In or a layer having a different composition containing In. An etching end point detection method.
【請求項4】エッチング直前に酸素プラズマによる発光
波長検出窓表面のクリーニングを施し、470nm付近
の発光波長検出を容易にする工程を含む請求項1〜3記
載のエッチング終点検出方法。
4. The etching end point detecting method according to claim 1, further comprising the step of cleaning the surface of the emission wavelength detection window with oxygen plasma immediately before etching to facilitate the detection of the emission wavelength near 470 nm.
JP17893696A 1996-07-09 1996-07-09 Detecting method of etching end point Pending JPH1027777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17893696A JPH1027777A (en) 1996-07-09 1996-07-09 Detecting method of etching end point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17893696A JPH1027777A (en) 1996-07-09 1996-07-09 Detecting method of etching end point

Publications (1)

Publication Number Publication Date
JPH1027777A true JPH1027777A (en) 1998-01-27

Family

ID=16057241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17893696A Pending JPH1027777A (en) 1996-07-09 1996-07-09 Detecting method of etching end point

Country Status (1)

Country Link
JP (1) JPH1027777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413476B1 (en) * 2000-10-27 2003-12-31 주식회사 하이닉스반도체 method for detection etch end point

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413476B1 (en) * 2000-10-27 2003-12-31 주식회사 하이닉스반도체 method for detection etch end point

Similar Documents

Publication Publication Date Title
Pearton Reactive ion etching of III–V semiconductors
US8105890B2 (en) Method of forming a semiconductor structure
Thomas III et al. Monitoring InP and GaAs etched in Cl2/Ar using optical emission spectroscopy and mass spectrometry
JPH03114226A (en) Manufacture of fine structure device by the use of plasma etching of silicon
US20080070328A1 (en) Method of fabricating semiconductor device
US5942447A (en) Method of selectively etching compound semiconductor and method of manufacturing compound semiconductor device using the selective etching method
US7242998B2 (en) Etching operation management systems and methods
US4855015A (en) Dry etch process for selectively etching non-homogeneous material bilayers
US20040229389A1 (en) Manufacturing method of semiconductor device
JPH0582560A (en) Manufacture of field effect transistor
Vatus et al. Highly selective reactive ion etching applied to the fabrication of low-noise AlGaAs GaAs FET's
JPH1027777A (en) Detecting method of etching end point
US5527425A (en) Method of making in-containing III/V semiconductor devices
US5370767A (en) Selective dry etching method for compound semiconductor and production method of semiconductor device
Hirobe et al. End point detection in plasma etching by optical emission spectroscopy
US5436205A (en) Method of forming electrode in semiconductor device
JP3036452B2 (en) Method for manufacturing semiconductor device
JPS6354228B2 (en)
US5478437A (en) Selective processing using a hydrocarbon and hydrogen
JP2690900B2 (en) Dry etching method
JPH0410414A (en) Manufacture of semiconductor,etching, surface film protection method
JPH10261616A (en) Method of dry etching silicon nitride film
US5380398A (en) Method for selectively etching AlGaAs
JPH07263645A (en) Heterojunction semiconductor device and its manufacturing method
JP2626494B2 (en) Evaluation method of etching damage