JPH102767A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JPH102767A
JPH102767A JP8175793A JP17579396A JPH102767A JP H102767 A JPH102767 A JP H102767A JP 8175793 A JP8175793 A JP 8175793A JP 17579396 A JP17579396 A JP 17579396A JP H102767 A JPH102767 A JP H102767A
Authority
JP
Japan
Prior art keywords
housing
passage
flow rate
measurement
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8175793A
Other languages
Japanese (ja)
Other versions
JP3582933B2 (en
Inventor
Yoshihiro Kogure
吉宏 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP17579396A priority Critical patent/JP3582933B2/en
Publication of JPH102767A publication Critical patent/JPH102767A/en
Application granted granted Critical
Publication of JP3582933B2 publication Critical patent/JP3582933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve higher measuring accuracy by reducing measuring error in a transient state and preventing the measurement of the flow rate of a reversed gas. SOLUTION: A housing 3 is mounted in a tube body 1, and a path 4 for measurement is formed between the upstream side end face 3A and the downstream side end face 3B is the housing 3. A thermosensitive resistor 5 is disposed in the path 4 for measurement and connected to a flow rate detection circuit in a circuit casing 7. Moreover, a bypass path 8 is formed in the housing 3, to be branched off in the course of path 4 for measurement and a branch inflow port 8C thereof, is opened in the path 4 for measurement on the downstream side from the thermosensitive resistor 5. A branch outflow part 8D of a bypass path 8 is opened on the downstream side end face 3B of the housing 3 near an internal wall 1A of a pipe body 1. When a reverse flow is generated in the pipe body 1, a reverse flow flowing into the path 4 for measurement from the outflow port 4B is made to flow out to the downstream side of the housing 3, through the bypass path 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管体内を流れる気
体の流速または流量(以下、流量という)を計測する流
量計測装置に関し、例えば自動車等のエンジンにおいて
吸入空気量を計測するのに用いて好適な流量計測装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate or a flow rate (hereinafter referred to as a flow rate) of a gas flowing through a pipe, and is used, for example, for measuring an intake air amount in an engine of an automobile or the like. The present invention relates to a suitable flow measurement device.

【0002】[0002]

【従来の技術】一般に、自動車等のエンジンでは、エン
ジンの各気筒に吸入される吸入空気の流量を吸気管の途
中に設けた流量計測装置によって計測し、この計測結果
に応じて噴射弁等により燃料を吸入空気に混合させるこ
とで、燃焼に適切な濃度(混合比)の混合気を各気筒に
供給するようにしている。
2. Description of the Related Art In general, in an engine of an automobile or the like, the flow rate of intake air taken into each cylinder of the engine is measured by a flow rate measuring device provided in the middle of an intake pipe. By mixing the fuel with the intake air, a mixture having a concentration (mixing ratio) suitable for combustion is supplied to each cylinder.

【0003】この種の従来技術による流量計測装置で
は、流量計測装置のハウジングが吸気管内に取付けられ
ると共に、このハウジングには吸入空気量を計測するた
めの計測用通路が主通路として形成され、この計測用通
路は吸気管の軸方向に延びる貫通穴となっている。そし
て、吸気管内を流通する吸入空気は、大部分が吸気管の
内壁とハウジングとの間に形成された隙間を介してハウ
ジングの下流側に流れ、一部が計測用通路内を介してハ
ウジングの下流側に流れる。
In this type of conventional flow rate measuring device, a housing of the flow rate measuring device is mounted in an intake pipe, and a measurement passage for measuring an intake air amount is formed in the housing as a main passage. The measurement passage is a through hole extending in the axial direction of the intake pipe. Most of the intake air flowing through the intake pipe flows downstream of the housing through a gap formed between the inner wall of the intake pipe and the housing, and a part of the intake air flows through the measurement passage. It flows downstream.

【0004】また、計測用通路内には、例えば白金線等
の感熱抵抗体により形成され被測気体の流速に応じて発
熱量を変化する流量検出素子が露出した状態で設けら
れ、この流量検出素子は吸気管の外部に配設された流量
検出回路等に接続されている。
In the measurement passage, a flow rate detecting element formed of a heat-sensitive resistor such as a platinum wire and changing the calorific value in accordance with the flow rate of the gas to be measured is provided in an exposed state. The element is connected to a flow detection circuit or the like provided outside the intake pipe.

【0005】このように構成される従来技術の流量計測
装置では、吸気管内を流れる吸入空気の一部が計測用通
路内を流通し、その流量に応じて流量検出素子を冷却す
る。この結果、流量検出素子の抵抗値が減少するから、
この抵抗値の減少量を流量検出回路によって検出し、こ
の検出結果に基づいて吸気管内の吸入空気量を計測す
る。
[0005] In the conventional flow rate measuring device configured as described above, a part of the intake air flowing through the intake pipe flows through the measurement passage, and cools the flow rate detecting element according to the flow rate. As a result, the resistance value of the flow detection element decreases,
The amount of decrease in the resistance is detected by a flow rate detection circuit, and the amount of intake air in the intake pipe is measured based on the detection result.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述した従
来技術では、流量検出素子が吸入空気によって冷却され
るときの抵抗値の変化に基づいて流量を検出しているた
め、流量検出素子は吸気管の吸気口からエンジンの各気
筒に向けて順方向に流れる空気流によって冷却されると
共に、この逆方向に流れる空気流によっても冷却されて
しまい、この逆方向の空気流により吸入空気量を誤って
計測するという問題がある。
In the above-mentioned prior art, the flow rate detecting element detects the flow rate based on a change in resistance value when the flow rate detecting element is cooled by the intake air. Is cooled by the airflow flowing in the forward direction from the intake port of the engine to each cylinder of the engine, and also cooled by the airflow flowing in the reverse direction. There is a problem of measurement.

【0007】即ち、吸気管内を流通する吸入空気は、各
気筒内でピストンが往復動するのに応じて吸気弁が開弁
したときに気筒内へと吸込まれるから、吸入空気は吸気
管内で脈動するようになる。そして、この状態で吸気弁
と排気弁とのオーバーラップによって排気が吸気管内に
吹返したり、吸気弁が開,閉弁動作等によって吸入空気
を押圧したりすると、吸入空気が一時的に逆流すること
がある。
That is, the intake air flowing through the intake pipe is sucked into the cylinder when the intake valve is opened in accordance with the reciprocation of the piston in each cylinder. Becomes pulsating. Then, in this state, if the exhaust gas blows back into the intake pipe due to the overlap between the intake valve and the exhaust valve, or if the intake valve presses the intake air by opening or closing the valve, the intake air temporarily flows backward. Sometimes.

【0008】このため、従来技術では、吸入空気が逆流
したときに流量の検出値が実際よりも大きくなることが
あるから、この検出値に基づいた吸入空気量の計測精度
が低下するという問題がある。
For this reason, in the prior art, when the intake air flows backward, the detected value of the flow rate may become larger than the actual value, and the measurement accuracy of the intake air amount based on the detected value decreases. is there.

【0009】また、吸入空気量が急激に変化した場合に
は、計測用通路内に生じた空気流の乱れにより流量検出
素子が不安定な状態で冷却されるため、吸入空気量を緩
やかに変化させた場合とは異なった検出値が得られるこ
とがあり、吸入空気量を正確に計測できないという問題
がある。
If the amount of intake air changes suddenly, the flow rate detecting element is cooled in an unstable state due to the turbulence of the air flow generated in the measurement passage, so that the amount of intake air changes gradually. In some cases, a detection value different from that in the case where the detection is performed is obtained, and there is a problem that the intake air amount cannot be accurately measured.

【0010】本発明は上述した従来技術の問題に鑑みな
されたもので、逆流した気体の流量が計測されるのを防
止でき、気体の流れを安定化し過渡状態での計測誤差を
小さくできると共に、計測精度を向上できるようにした
流量計測装置を提供することを目的としている。
The present invention has been made in view of the above-described problems of the prior art, and can prevent the flow rate of a gas flowing backward from being measured, stabilize the gas flow, and reduce the measurement error in a transient state. It is an object of the present invention to provide a flow measurement device capable of improving measurement accuracy.

【0011】[0011]

【課題を解決するための手段】上述した課題を解決する
ために請求項1に記載の発明は、内部が被測気体を流通
させる通気路となった管体と、該管体内を直径方向に横
切るように設けられたハウジングと、該ハウジングの直
径方向中央部に位置して軸方向に貫通して設けられ、流
入口が該ハウジングの上流側端面に開口し流出口が該ハ
ウジングの下流側端面に開口する主通路と、該主通路の
途中に設けられ該主通路を流れる気体の流量を検出する
流量検出素子と、上流側が該流量検出素子よりも下流側
に位置して前記主通路の途中から分岐し下流側が前記管
体の内壁近傍に位置して前記ハウジングの下流側端面ま
たは側面に開口するバイパス通路とからなる構成を採用
している。
Means for Solving the Problems In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a pipe having an air passage through which a gas to be measured flows is provided, and the pipe is diametrically arranged in the pipe. A transversely extending housing, and a diametrically central portion of the housing, axially penetrating the housing, an inlet opening at an upstream end surface of the housing, and an outlet opening at a downstream end surface of the housing. A main passage opening in the main passage, a flow detection element provided in the middle of the main passage for detecting a flow rate of gas flowing through the main passage, and an upstream side located in the downstream of the flow detection element in the middle of the main passage. And a bypass passage whose downstream side is located near the inner wall of the pipe body and is opened at the downstream end face or side face of the housing.

【0012】このように構成することにより、気体の圧
力が管体の中央部よりも内壁近傍で小さくなって安定す
ることを利用し、管体内を逆流する気体が管体中央部の
主通路内に侵入したときには、この逆流をバイパス通路
を介して管体の内壁近傍へと速やかに流出でき、逆流が
流量検出素子に達するのを防止できる。また、主通路が
その途中でバイパス通路を介して管体の内壁近傍に連通
されているから、管体内の気体流量が急激に変化したと
きでも、主通路内の圧力変動を内壁近傍での安定した圧
力によって緩衝できる。
[0012] With this configuration, the gas that flows backward in the pipe is utilized in the main passage at the center of the pipe, utilizing the fact that the pressure of the gas becomes smaller near the inner wall than the center of the pipe and becomes stable. When the gas flows into the pipe, the backflow can be quickly discharged to the vicinity of the inner wall of the pipe via the bypass passage, and the backflow can be prevented from reaching the flow rate detecting element. In addition, since the main passage is communicated with the vicinity of the inner wall of the tube via the bypass passage on the way, even when the gas flow rate in the tube rapidly changes, the pressure fluctuation in the main passage can be stabilized near the inner wall. Can be buffered by the applied pressure.

【0013】また、請求項2に記載の発明では、前記主
通路の流入口には、その開口端に全周拡開部を形成して
いる。
Further, in the invention according to claim 2, the inflow port of the main passage is formed with a full-circle expanding portion at an opening end thereof.

【0014】これにより、主通路の上流側開口端では、
管体内の気体が全周拡開部により絞られつつ主通路内に
流入するから、流入口から主通路内に流入する気体の速
度を大きくでき、ハウジングの下流側で発生した圧力変
動等が流出口から主通路内に伝わったときでも、この圧
力変動が流量検出素子まで伝播するのを流入口から流入
した気体によって防ぐことができる。
Accordingly, at the upstream open end of the main passage,
Since the gas in the pipe flows into the main passage while being throttled by the entire circumference expanding portion, the velocity of the gas flowing into the main passage from the inflow port can be increased, and pressure fluctuations generated on the downstream side of the housing from the outflow port. Even when transmitted to the main passage, the pressure fluctuation can be prevented from propagating to the flow rate detecting element by the gas flowing from the inlet.

【0015】さらに、請求項3に記載の発明では、前記
バイパス通路には、前記主通路から分岐する分岐流入口
に面取り部を形成している。
Further, in the invention according to the third aspect, a chamfered portion is formed in the bypass passage at a branch inlet which branches off from the main passage.

【0016】これにより、主通路内に侵入した逆流を面
取り部によって分岐流入口からバイパス通路内へと円滑
に導くことができ、バイパス通路を介して管体の内壁近
傍へと流出させることができる。
Thus, the backflow that has entered the main passage can be smoothly guided from the branch inlet into the bypass passage by the chamfered portion, and can be discharged to the vicinity of the inner wall of the pipe via the bypass passage. .

【0017】また、請求項4に記載の発明では、前記バ
イパス通路を、前記ハウジングに対してL字状に形成し
ている。
Further, in the invention described in claim 4, the bypass passage is formed in an L shape with respect to the housing.

【0018】これにより、バイパス通路内に流出側から
逆流が侵入した場合に、この逆流が主通路内に流入する
のを抑制できると共に、バイパス通路の通路寸法を長く
形成でき、圧力変動等に対するバイパス通路の緩衝作用
を大きくできる。
[0018] Accordingly, when a backflow enters the bypass passage from the outflow side, the backflow can be prevented from flowing into the main passage, and the length of the bypass passage can be made longer. The buffer effect of the passage can be increased.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に従い、自動車等のエンジンの吸入空気量を計測す
るのに用いた場合を例に挙げて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the accompanying drawings, taking as an example the case where the present invention is used to measure the intake air amount of an engine such as an automobile.

【0020】ここで、図1ないし図5は本発明による第
1の実施例を示している。
FIGS. 1 to 5 show a first embodiment according to the present invention.

【0021】図中、1は本実施例による流量計測装置を
構成するために、例えば両側端部がフランジ等の接続部
となった管体を示し、該管体1は例えば金属材料,樹脂
材料等によって内径Dを有する長尺な円筒体として形成
されている。そして、管体1は上流側端部が外気を吸込
むエアクーナ等に接続され、下流側端部がエンジンの各
気筒に向けて延びるインテークマニホールド等に接続さ
れている。そして、管体1の内部は上流側から下流側に
向けて吸入空気が流通する通気路2となり、その内壁1
Aには後述のハウジング3が取付けられている。
In FIG. 1, reference numeral 1 denotes a pipe having a connection portion such as a flange at both ends to constitute the flow rate measuring apparatus according to the present embodiment. The pipe 1 is made of, for example, a metal material or a resin material. It is formed as a long cylindrical body having an inner diameter D by the above method. The pipe 1 has an upstream end connected to an air cooler or the like that sucks outside air, and a downstream end connected to an intake manifold extending toward each cylinder of the engine. The inside of the tube 1 is a ventilation passage 2 through which intake air flows from the upstream side to the downstream side, and the inner wall 1
A is provided with a housing 3 described later.

【0022】3は管体1内に設けられたハウジングを示
し、該ハウジング3は例えば金属材料,樹脂材料により
略直方体状に形成されている。そして、ハウジング3は
その上端側および下端側が管体1の内壁1Aに固定さ
れ、通気路2を直径方向に横切るように配設された状態
で管体1内を軸方向に延びている。また、ハウジング3
の上流側端面3Aと下流側端面3Bとの間には後述の計
測用通路4が形成されている。
Reference numeral 3 denotes a housing provided in the tube 1, and the housing 3 is formed in a substantially rectangular parallelepiped shape by, for example, a metal material or a resin material. The housing 3 has its upper end and lower end fixed to the inner wall 1 </ b> A of the tube 1, and extends in the tube 1 in the axial direction with the housing 3 disposed so as to cross the ventilation path 2 in the diametrical direction. Also, housing 3
A measurement passage 4 to be described later is formed between the upstream end face 3A and the downstream end face 3B.

【0023】4は通気路2内の吸入空量を計測する主通
路としての計測用通路を示し、該計測用通路4は図2に
示す如く管体1の軸方向に延びる断面積Sの貫通穴とし
てハウジング3内に形成され、一端側がハウジング3の
直径方向中央部に位置して上流側端面3Aに開口する流
入口4Aとなり、他端側が下流側端面3Bに開口する流
出口4Bとなっている。
Reference numeral 4 denotes a measurement passage as a main passage for measuring the amount of suction air in the ventilation passage 2. The measurement passage 4 has a cross-sectional area S extending in the axial direction of the tubular body 1 as shown in FIG. One end is formed in the housing 3 as a hole, and one end is located at the center in the diameter direction of the housing 3 and is an inflow opening 4A opening to the upstream end face 3A, and the other end is an outflow opening 4B opening to the downstream end face 3B. I have.

【0024】5は計測用通路4内を流れる流量または流
速を検出する流量検出素子としての感熱抵抗体5を示
し、該感熱抵抗体5は例えば白金線等の感熱材料により
形成され、吸気温度測定用の抵抗体(図示せず)等と共
に支持部6の先端側に取付けられた状態で計測用通路4
内に露出されている。また、感熱抵抗体5と前記抵抗体
とは、後述する回路ケーシング7内の流量検出回路に支
持部6内の配線等(いずれも図示せず)を介して接続さ
れている。
Reference numeral 5 denotes a heat-sensitive resistor 5 as a flow rate detecting element for detecting a flow rate or a flow rate flowing in the measurement passage 4. The heat-sensitive resistor 5 is formed of a heat-sensitive material such as a platinum wire, and measures the intake air temperature. The measurement passage 4 is attached to the distal end side of the support 6 together with a resistor (not shown) for use in measurement.
Is exposed within. Further, the heat-sensitive resistor 5 and the resistor are connected to a flow rate detection circuit in a circuit casing 7 to be described later via wiring or the like (neither is shown) in the support portion 6.

【0025】そして、感熱抵抗体5は、前記流量検出回
路から通電されることにより所定の抵抗値を有するよう
に発熱した状態で、計測用通路4内を流通する空気流に
よって冷却され、この空気流の流速(流量)に応じて抵
抗値を変化させる。
The heat-sensitive resistor 5 is cooled by the airflow flowing through the measurement passage 4 while being heated so as to have a predetermined resistance value by being supplied with electricity from the flow rate detection circuit. The resistance value is changed according to the flow velocity (flow rate) of the flow.

【0026】7は管体1の外壁に取付けられた回路ケー
シングで、該回路ケーシング7内には前記流量検出回路
が収容され、この流量検出回路は感熱抵抗体5と前記抵
抗体と共に例えばブリッジ回路等を構成し、感熱抵抗体
5等の抵抗値の変化を電圧信号として検出するようにな
っている。
Reference numeral 7 denotes a circuit casing mounted on the outer wall of the tubular body 1. The circuit casing 7 accommodates the flow rate detection circuit. The flow rate detection circuit includes a heat sensitive resistor 5 and a bridge circuit together with the resistor. Are configured to detect a change in the resistance value of the thermal resistor 5 or the like as a voltage signal.

【0027】8,8は本実施例によるバイパス通路を示
し、該各バイパス通路8は図1および図2に示す如く全
体としてL字状をなし、管体1の直径方向で計測用通路
4を挟むようにハウジング3内に形成されている。そし
て、バイパス通路8は、計測用通路4の途中から管体1
の内壁1Aに向けて径方向に延びる径方向通路8A,8
Aと、該各径方向通路8Aの先端側から管体1の下流側
に向けて軸方向に延びる軸方向通路8B,8Bとから構
成されている。
Reference numerals 8 denote bypass passages according to the present embodiment. Each of the bypass passages 8 has an L-shape as a whole as shown in FIGS. It is formed in the housing 3 so as to sandwich it. The bypass passage 8 is connected to the pipe 1 from the middle of the measurement passage 4.
Radial passages 8A, 8 extending radially toward inner wall 1A
A, and axial passages 8B, 8B extending in the axial direction from the distal end side of each radial passage 8A toward the downstream side of the tubular body 1.

【0028】また、各径方向通路8Aの基端側は感熱抵
抗体5よりも下流側に位置して計測用通路4内に開口
し、各バイパス通路8が計測用通路4から分岐する分岐
流入口8C,8Cとなっている。そして、各分岐流入口
8Cは互いに等しい軸方向位置で計測用通路4内に開口
している。
The base end of each of the radial passages 8A is located downstream of the thermal resistor 5 and opens into the measuring passage 4, and each of the bypass passages 8 branches off from the measuring passage 4. The entrances 8C, 8C are provided. Each branch inlet 8C is opened in the measurement passage 4 at the same axial position.

【0029】一方、各軸方向通路8Bの先端側は管体1
の内壁1A近傍に位置してハウジング3の下流側端面3
Bに開口し、分岐流入口8Cから各バイパス通路8内に
流入した気体の一部をハウジング3の下流側に流出させ
る分岐流出口8D,8Dとなっている。
On the other hand, the distal end of each axial passage 8B
The downstream end face 3 of the housing 3 is located near the inner wall 1A of the housing 3.
B are formed as branch outlets 8D, 8D for allowing a part of the gas flowing into each bypass passage 8 from the branch inlet 8C to flow out to the downstream side of the housing 3.

【0030】ここで、各分岐流出口8Dは、その開口面
積S1 が計測用通路4の断面積Sに対して、
Here, each branch outlet 8D has an opening area S 1 corresponding to the sectional area S of the measurement passage 4.

【0031】[0031]

【数1】 となるように形成され、また管体1の内壁1Aから径方
向内側に向けて最も離間した位置での離間距離dが管体
1の内径Dに対して、
(Equation 1) The distance d at the position farthest radially inward from the inner wall 1A of the tube 1 is smaller than the inner diameter D of the tube 1.

【0032】[0032]

【数2】 となるように形成されている。(Equation 2) It is formed so that it becomes.

【0033】本実施例による流量計測装置は上述の如き
構成を有するもので、次に図3および図4に基づきその
作動について説明する。
The flow rate measuring apparatus according to the present embodiment has the above-described configuration, and its operation will be described with reference to FIGS.

【0034】まず、吸入空気が図3中の左側に示す如く
管体1内を順方向に流通すると、この吸入空気の一部は
流入口4Aから計測用通路4内に矢示Aの如く流入し、
感熱抵抗体5の周囲を通過する。これにより、感熱抵抗
体5の抵抗値が通過した空気の流速(流量)に応じて減
少するから、この抵抗値の変化を前述した流量検出回路
によって検出し、検出結果に基づいて管体1内の吸入空
気量を計測する。
First, when the intake air flows through the pipe 1 in the forward direction as shown on the left side in FIG. 3, a part of the intake air flows into the measurement passage 4 from the inflow port 4A as shown by the arrow A. And
It passes around the thermal resistor 5. As a result, the resistance value of the heat-sensitive resistor 5 decreases in accordance with the flow velocity (flow rate) of the passed air. Therefore, a change in the resistance value is detected by the above-described flow rate detection circuit, and the inside of the tube 1 is detected based on the detection result. Measure the amount of intake air.

【0035】そして、感熱抵抗体5を通過した空気流は
3方向に分流し、一部が計測用通路4の流出口4Bから
流出すると共に、残りが分岐流入口8Cから各バイパス
通路8内に如く流入し、各分岐流出口8Dからハウジン
グ3の下流側にそれぞれ流出する。
The air flow passing through the heat-sensitive resistor 5 is divided into three directions, a part of which flows out of the outlet 4B of the measurement passage 4, and the remaining part flows into each bypass passage 8 from the branch inlet 8C. And flows out of each branch outlet 8D to the downstream side of the housing 3.

【0036】また、管体1内の吸入空気量が急激に変化
し、計測用通路4内に空気流の乱れや圧力変動等が生じ
た場合には、管体1の内壁1A近傍の空気流が各バイパ
ス通路8を介してこれらの乱れや圧力変動等を抑制し、
計測用通路4内の空気流を速やかに定常状態に復帰させ
る。
If the amount of intake air in the tube 1 changes suddenly and turbulence or pressure fluctuation occurs in the measurement passage 4, the air flow near the inner wall 1A of the tube 1 Suppresses these turbulences and pressure fluctuations through each bypass passage 8,
The air flow in the measurement passage 4 is promptly returned to a steady state.

【0037】即ち、管体1内の圧力は図3中の右側に示
す如く、管体1の内壁1Aから内径Dの1/5以内の範
囲(内壁1Aの近傍)において、特性線Pのように中央
部よりも小さくなって安定する。このため、計測用通路
4を各バイパス通路8を介してこの位置に連通させるこ
とにより、計測用通路4内の空気流や圧力変動が緩衝さ
れる。
That is, as shown on the right side in FIG. 3, the pressure in the tube 1 is within a range of 1/5 of the inner diameter D from the inner wall 1A of the tube 1 (in the vicinity of the inner wall 1A) as shown by a characteristic line P. It becomes smaller than the central part and becomes stable. For this reason, by connecting the measurement passage 4 to this position via each bypass passage 8, airflow and pressure fluctuation in the measurement passage 4 are buffered.

【0038】次に、吸入空気が図4に示すように、脈動
等によって管体1内の下流側から逆流した場合には、こ
の逆流の一部が流出口4Bから計測用通路4内に矢示B
の如く侵入し、感熱抵抗体5に達する前に分岐流入口8
Cから各バイパス通路8内に流れ込み、分岐流出口8D
からハウジング3の下流側にそれぞれ流出する。
Next, as shown in FIG. 4, when the intake air flows backward from the downstream side in the tubular body 1 due to pulsation or the like, a part of this backward flow flows into the measurement passage 4 from the outlet 4B. Show B
And before reaching the thermal resistor 5, the branch inlet 8
C flows into each of the bypass passages 8 and the branch outlet 8D
From the housing 3 to the downstream side.

【0039】この場合、各バイパス通路8では、前述し
たように分岐流出口8D側の圧力が分岐流入口8C側よ
りも小さくなって安定している上、計測用通路4内に侵
入した逆流は前述した矢示A方向の空気流によって押圧
されるから、この逆流は前記矢示A方向の流れと共に低
圧側となった分岐流出口8Dに向けて各バイパス通路8
内に流れ込み、感熱抵抗体5には到達しない。
In this case, in each bypass passage 8, as described above, the pressure at the branch outlet 8D side is smaller than that at the branch inlet 8C side, which is stable. The backflow is pressed by the above-described airflow in the direction of arrow A, and the backflow flows together with the flow in the direction of arrow A toward the branch outlet 8D on the low pressure side.
And does not reach the thermal resistor 5.

【0040】かくして、本実施例では、各バイパス通路
8を感熱抵抗体5よりも下流側に位置して計測用通路4
から分岐させ、該各バイパス通路8の分岐流出口8Dを
管体1の内壁1A近傍に開口させる構成としたから、管
体1内に逆流が発生した場合には、この逆流を図4中の
矢示Bに示す如くバイパス通路8を介してハウジング3
の下流側に円滑に流出させることができ、この逆流が感
熱抵抗体5に達するのを確実に防止することができる。
Thus, in the present embodiment, each of the bypass passages 8 is located downstream of the thermal resistor 5 so that
And the branch outlet 8D of each of the bypass passages 8 is opened near the inner wall 1A of the tubular body 1. Therefore, when a backward flow occurs in the tubular body 1, this backward flow is generated in FIG. As shown by arrow B, the housing 3 is connected via the bypass passage 8.
Can smoothly flow out to the downstream side, and the backflow can reliably be prevented from reaching the thermal resistor 5.

【0041】また、管体1内の吸入空気量が急激に変化
した場合でも、これに伴う計測用通路4内の空気流の乱
れや圧力変動等を各バイパス通路8を介して管体1の内
壁1A近傍の圧力により確実に緩衝でき、計測用通路4
内の空気の流れを速やかに安定した状態に戻すことがで
きる。
Even if the amount of intake air in the tube 1 changes suddenly, the turbulence and pressure fluctuation in the air flow in the measurement passage 4 due to the sudden change in the amount of air in the tube 1 can be reduced via the bypass passages 8. The pressure can be reliably buffered by the pressure near the inner wall 1A.
The flow of air inside can be quickly returned to a stable state.

【0042】従って、本実施例によれば、感熱抵抗体5
により管体1内を逆流する空気の流量が検出されるのを
確実に防止でき、過渡状態での空気流量の検出誤差を確
実に減少できると共に、吸入空気が脈動している場合や
過渡状態にある場合の計測精度を大幅に向上させること
ができる。
Therefore, according to the present embodiment, the thermal resistor 5
Thus, it is possible to reliably prevent the flow rate of the air flowing backward in the pipe 1 from being detected, to reliably reduce the error in the detection of the air flow rate in the transient state, and to reduce the case where the intake air is pulsating or in the transient state. Measurement accuracy in certain cases can be greatly improved.

【0043】また、管体1内の逆流が感熱抵抗体5まで
到達しないから、例えば逆流分の補正が可能な感熱抵抗
等を用いたりすることなく、従来技術と同様の感熱抵抗
体5を用いて逆流に対応可能な流量計測装置を構成で
き、コストアップ等を招くことなく流量計測装置の性能
を向上させることができる。
Since the backflow in the tubular body 1 does not reach the thermal resistor 5, the same thermal resistor 5 as in the prior art is used without using, for example, a thermal resistor capable of correcting the reverse flow. Thus, the flow measurement device capable of coping with the backflow can be configured, and the performance of the flow measurement device can be improved without increasing the cost.

【0044】さらに、各バイパス通路8により計測用通
路4内の空気流の一部を低圧となった管体1の内壁1A
近傍に流出させるから、計測用通路4内での空気流の圧
力損失を小さくすることができる。
Further, the inner wall 1A of the tube 1 in which a part of the air flow in the measurement passage 4 is reduced in pressure by each bypass passage 8
Since the air flows out to the vicinity, the pressure loss of the air flow in the measurement passage 4 can be reduced.

【0045】また、各バイパス通路8をL字状に形成し
たから、各バイパス通路8の分岐流出口8Dから逆流が
侵入した場合に、この逆流が計測用通路4内に流入する
のを抑制できると共に、該各バイパス通路8の通路寸法
を長く形成でき、圧力変動等に対する各バイパス通路8
の緩衝作用を確実に大きくすることができる。
Further, since each bypass passage 8 is formed in an L-shape, when a backflow enters from the branch outlet 8D of each bypass passage 8, the backflow can be suppressed from flowing into the measurement passage 4. At the same time, the length of each of the bypass passages 8 can be made longer, and each of the bypass passages 8 against pressure fluctuations and the like can be formed.
Can reliably increase the buffering action.

【0046】さらに、分岐流入口8Cを計測用通路4の
等しい軸方向位置で互いに対向させたから、例えば各バ
イパス通路8の分岐流出口8D側から圧力の脈動等が伝
播した場合には、各バイパス通路8間でこの脈動を互い
に干渉させ、減衰させることができる。
Further, since the branch inlets 8C are opposed to each other at the same axial position of the measurement passage 4, for example, when pulsation of pressure or the like propagates from the branch outlet 8D side of each bypass passage 8, each bypass inlet 8C These pulsations can interfere with each other and be attenuated between the passages 8.

【0047】なお、図5に本実施例の変形例として示す
ように、例えば4本のバイパス通路9,9,…を計測用
通路4と管体1の内壁1A近傍との間に形成する構成と
してもよい。
As shown as a modification of the present embodiment in FIG. 5, for example, four bypass passages 9, 9,... Are formed between the measurement passage 4 and the vicinity of the inner wall 1A of the tube 1. It may be.

【0048】次に、図6は本発明による第2の実施例を
示し、本実施例では、前記第1の実施例と同一の構成要
素に同一の符号を付し、その説明を省略するものとす
る。しかし、本実施例の特徴は、計測用通路4の流入口
4Aに後述の全周拡開部11を形成し、各バイパス通路
8の分岐流入口8Cに面取り部12を形成したことにあ
る。
Next, FIG. 6 shows a second embodiment according to the present invention. In this embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. And However, a feature of the present embodiment is that a full-circle expanding portion 11 described later is formed at an inlet 4A of the measurement passage 4 and a chamfered portion 12 is formed at a branch inlet 8C of each bypass passage 8.

【0049】ここで、本実施例による流量計測装置は前
記第1の実施例とほぼ同様に、管体1内に配設されたハ
ウジング3と、計測用通路4、感熱抵抗体5および各バ
イパス通路8等を備えている。
Here, the flow rate measuring device according to the present embodiment is substantially the same as the first embodiment, and the housing 3 disposed in the pipe 1, the measuring passage 4, the thermal resistor 5, and each bypass A passage 8 and the like are provided.

【0050】11は計測用通路4の流入口4Aに形成さ
れた全周拡開部を示し、該全周拡開部11は、計測用通
路4の流入口4A側がその開口端に向けて凸湾曲状に拡
径することによって形成され、流入口4Aから計測用通
路4内に流入する空気流の絞りとなっている。
Reference numeral 11 denotes a full-circle widening portion formed at the inflow port 4A of the measurement passage 4. The full-circle widening portion 11 is formed such that the inflow port 4A side of the measurement passage 4 is convexly curved toward the open end thereof. The diameter of the air flow is reduced by the diameter of the air inlet 4A, and serves as a throttle for the airflow flowing into the measurement passage 4 from the inflow port 4A.

【0051】12,12は各バイパス通路8の分岐流入
口8Cに形成された面取り部を示し、該各面取り部12
は分岐流入口8Cの開口端下流側が凸湾曲状に面取りさ
れることによって形成されている。
Reference numerals 12 and 12 denote chamfers formed at the branch inlet 8C of each bypass passage 8, respectively.
Is formed by chamfering the downstream side of the opening end of the branch inlet 8C into a convexly curved shape.

【0052】このように構成される本実施例でも、前記
第1の実施例とほぼ同様の作用効果を得ることができる
が、特に本実施例では、流入口4Aから流入する空気流
が全周拡開部11によって絞られるから、その流入速度
を大きくすることができ、この空気流により逆流が流出
口4Bから感熱抵抗体5に到達するのをさらに確実に防
止できる。さらに、この逆流を各面取り部12によって
計測用通路4内から各バイパス通路8の分岐流入口8C
内へと円滑に導くことができる。
In this embodiment constructed as described above, substantially the same operation and effect as those of the first embodiment can be obtained. However, in this embodiment, in particular, the air flow flowing from the inflow port 4A is expanded all around. Since the flow is restricted by the portion 11, the inflow velocity can be increased, and the backflow can be more reliably prevented from reaching the thermal resistor 5 from the outflow port 4B by this air flow. Further, this backflow is removed from the inside of the measurement passage 4 by the respective chamfers 12 to the branch inlets 8C of the respective bypass passages 8.
It can be guided smoothly inside.

【0053】次に、図7は本発明による第3の実施例を
示し、本実施例では、前記第1の実施例と同一の構成要
素に同一の符号を付し、その説明を省略するものとす
る。しかし、本実施例の特徴は、各バイパス通路21の
分岐流出口21Dをハウジング3の側面3Cに開口させ
たことにある。
Next, FIG. 7 shows a third embodiment according to the present invention. In this embodiment, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof will be omitted. And However, a feature of this embodiment is that the branch outlet 21D of each bypass passage 21 is opened to the side surface 3C of the housing 3.

【0054】ここで、バイパス通路21,21(一方の
み図示)は前記第1の実施例と同様に、計測用通路4を
上,下方向に挟む位置でハウジング3内に形成され、感
熱抵抗体5よりも下流側で計測用通路4から分岐する分
岐流入口21Aと、該分岐流入口21Aから内壁1Aの
近傍に向けて径方向に延びる径方向通路21Bとを有し
ている。
Here, the bypass passages 21 and 21 (only one is shown) are formed in the housing 3 at positions sandwiching the measurement passage 4 in the upward and downward directions, as in the first embodiment. It has a branch inlet 21A that branches off from the measurement passage 4 on the downstream side of 5, and a radial passage 21B extending radially from the branch inlet 21A toward the vicinity of the inner wall 1A.

【0055】しかし、本実施例では、各バイパス通路2
1に、径方向通路21Bの先端側から斜め下流側に向け
てハウジング3の側面3Cへと延びる側方通路21Cが
形成され、該側方通路21Cの先端側には、ハウジング
3の側面3Cに開口する分岐流出口21Dが形成されて
いる。
However, in this embodiment, each bypass passage 2
1, a side passage 21C extending from the distal end of the radial passage 21B toward the oblique downstream side to the side surface 3C of the housing 3 is formed, and the distal end side of the side passage 21C is formed on the side surface 3C of the housing 3. A branch outlet 21D that opens is formed.

【0056】そして、分岐流出口21Dは、分岐流入口
21Aよりも下流側に位置して管体1の内壁1A近傍に
開口し、管体1の内壁1Aから径方向内側に向けて最も
離間した位置での離間距離dが前記数2の式を満たすよ
うに形成されている。
The branch outlet 21D is located downstream of the branch inlet 21A, opens near the inner wall 1A of the tube 1, and is furthest away from the inner wall 1A of the tube 1 radially inward. The distance d at the position is formed so as to satisfy the equation (2).

【0057】このように構成される本実施例でも、前記
第1の実施例とほぼ同様の作用効果を得ることができる
が、特に本実施例では、各バイパス通路21の分岐流出
口21Dをハウジング3の側面3Cに開口させたから、
逆流が各バイパス通路21内に侵入するのを確実に防ぐ
ことができる。
In this embodiment constructed as described above, substantially the same operation and effect as those of the first embodiment can be obtained. In this embodiment, in particular, the branch outlet 21D of each bypass passage 21 is connected to the housing. Because it was opened on the side 3C of 3,
It is possible to reliably prevent the backflow from entering each bypass passage 21.

【0058】なお、前記第1および第2の実施例では、
各バイパス通路8の分岐流出口8Dを管体1の内壁1A
に接するように形成したが、本発明はこれに限らず、管
体1の内壁1Aから内径Dの1/5以内となる範囲であ
れば、分岐流出口8Dを内壁1Aから離間させてもよ
い。
In the first and second embodiments,
The branch outlet 8D of each bypass passage 8 is connected to the inner wall 1A of the tubular body 1.
However, the present invention is not limited to this, and the branch outlet 8D may be separated from the inner wall 1A as long as it is within 1/5 of the inner diameter D from the inner wall 1A of the tube 1. .

【0059】また、前記各実施例では、ハウジング3の
上,下両端側を管体1の内壁1Aに固定する構成とした
が、本発明はこれに限らず、上端側または下端側のみを
固定する構成としてもよく、また管体1と一体形成して
もよい。
In each of the above embodiments, the upper and lower ends of the housing 3 are fixed to the inner wall 1A of the tube 1. However, the present invention is not limited to this, and only the upper end or the lower end is fixed. And may be formed integrally with the tube 1.

【0060】[0060]

【発明の効果】以上詳述した通り、請求項1に記載の発
明によれば、バイパス通路を流量検出素子よりも下流側
に位置して主通路から分岐させ、該バイパス通路の下流
側を管体の内壁近傍に開口させる構成としたから、気体
が管体内を逆流した場合には、気体の圧力が管体中央部
よりも内壁近傍で小さくなることを利用して、この逆流
をバイパス通路を介してハウジングの下流側に円滑に流
出させることができ、この逆流が流量検出素子に達する
のを確実に防止することができる。また、管体内の流量
が急激に変化した場合でも、この変化による主通路内の
圧力変動を安定した管体の内壁近傍の圧力によりバイパ
ス通路を介して確実に緩衝できる。従って、逆流の流量
が検出されるのを確実に防止でき、過渡状態での流量の
検出誤差を確実に減少できると共に、気体が脈動してい
る場合や過渡状態にある場合の計測精度を大幅に向上さ
せることができる。
As described in detail above, according to the first aspect of the present invention, the bypass passage is located downstream of the flow rate detecting element and branched from the main passage, and the downstream side of the bypass passage is connected to the pipe. Since the structure is designed to open near the inner wall of the body, when the gas flows backward in the pipe, utilizing the fact that the pressure of the gas becomes smaller near the inner wall than in the center of the pipe, this backflow is passed through the bypass passage. This allows the fluid to smoothly flow out to the downstream side of the housing, thereby reliably preventing the backflow from reaching the flow rate detecting element. Further, even when the flow rate in the pipe suddenly changes, the pressure fluctuation in the main passage due to the change can be reliably buffered through the bypass passage by the stable pressure near the inner wall of the pipe. Therefore, it is possible to reliably prevent the flow rate of the backflow from being detected, to reliably reduce the flow rate detection error in the transient state, and to greatly improve the measurement accuracy when the gas is pulsating or in the transient state. Can be improved.

【0061】また、請求項2に記載の発明によれば、主
通路の流入口開口端に全周拡開部を形成したから、管体
内の気体を全周拡開部によって絞りつつ主通路内に流入
させることができ、流入口から主通路内に流入する気体
の速度を確実に大きくできる。従って、ハウジングの下
流側で発生した圧力変動等が流出口から主通路内に伝わ
ったときでも、この圧力変動が流量検出素子まで伝播す
るのを流入口から流入した気体によって確実に防ぐこと
ができる。
According to the second aspect of the present invention, since the full-circle expanding portion is formed at the inflow opening end of the main passage, the gas in the pipe flows into the main passage while being throttled by the full-circular expanding portion. Thus, the velocity of the gas flowing into the main passage from the inflow port can be reliably increased. Therefore, even when a pressure fluctuation or the like generated on the downstream side of the housing is transmitted from the outlet to the main passage, it is possible to reliably prevent the pressure fluctuation from propagating to the flow rate detecting element by the gas flowing from the inlet. .

【0062】さらに、請求項3に記載の発明によれば、
バイパス通路の分岐流入口に面取り部を形成したから、
主通路内に侵入した逆流を面取り部によって分岐流入口
からバイパス通路内へと円滑に導くことができ、バイパ
ス通路を介して管体の内壁近傍へと確実に流出させるこ
とができる。
Further, according to the third aspect of the present invention,
Since a chamfer was formed at the branch inlet of the bypass passage,
The backflow that has entered the main passage can be smoothly guided from the branch inlet into the bypass passage by the chamfered portion, and can be reliably discharged to the vicinity of the inner wall of the pipe via the bypass passage.

【0063】また、請求項4に記載の発明によれば、バ
イパス通路をL字状に形成したから、バイパス通路内に
流出側から逆流が侵入した場合に、この逆流が主通路内
に流入するのを確実に抑制できると共に、バイパス通路
の通路寸法を長く形成でき、圧力変動等に対するバイパ
ス通路の緩衝作用を確実に大きくすることができる。
According to the fourth aspect of the present invention, since the bypass passage is formed in an L shape, when a backflow enters the bypass passage from the outflow side, the backflow flows into the main passage. And the size of the bypass passage can be made long, and the buffering effect of the bypass passage against pressure fluctuations and the like can be reliably increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による流量計測装置を示
す要部破断の斜視図である。
FIG. 1 is a cutaway perspective view of a main part showing a flow measuring device according to a first embodiment of the present invention.

【図2】図1中の矢示II−II方向からみた縦断面図であ
る。
FIG. 2 is a longitudinal sectional view as seen from the direction of arrows II-II in FIG.

【図3】吸入空気が管体内を順方向に流通する状態を示
す説明図である。
FIG. 3 is an explanatory diagram showing a state in which intake air flows in a forward direction in a pipe;

【図4】吸入空気が管体内を逆流した状態を示す説明図
である。
FIG. 4 is an explanatory diagram showing a state in which intake air flows backward in a pipe.

【図5】本発明の第1の実施例の変形例による流量計測
装置を示す横断面図である。
FIG. 5 is a cross-sectional view showing a flow measurement device according to a modification of the first embodiment of the present invention.

【図6】本発明の第2の実施例による流量計測装置を示
す縦断面図である。
FIG. 6 is a longitudinal sectional view showing a flow rate measuring device according to a second embodiment of the present invention.

【図7】本発明の第3の実施例による流量計測装置を示
す要部破断の斜視図である。
FIG. 7 is a cutaway perspective view of a main part showing a flow measuring device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 管体 1A 内壁 2 通気路 3 ハウジング 3A 上流側端面 3B 下流側端面 3C 側面 4 計測用通路(主通路) 5 感熱抵抗体(流量検出素子) 8,9,21 バイパス通路 8C,21A 分岐流入口 8D,21D 分岐流出口 11 全周拡開部 12 面取り部 DESCRIPTION OF SYMBOLS 1 Pipe 1A Inner wall 2 Ventilation path 3 Housing 3A Upstream end face 3B Downstream end face 3C Side face 4 Measurement passage (main passage) 5 Heat-sensitive resistor (flow detection element) 8, 9, 21 Bypass passage 8C, 21A Branch inlet 8D, 21D Branch outlet 11 All-round widened part 12 Chamfered part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部が被測気体を流通させる通気路とな
った管体と、該管体内を直径方向に横切るように設けら
れたハウジングと、該ハウジングの直径方向中央部に位
置して軸方向に貫通して設けられ、流入口が該ハウジン
グの上流側端面に開口し流出口が該ハウジングの下流側
端面に開口する主通路と、該主通路の途中に設けられ該
主通路を流れる気体の流量を検出する流量検出素子と、
上流側が該流量検出素子よりも下流側に位置して前記主
通路の途中から分岐し下流側が前記管体の内壁近傍に位
置して前記ハウジングの下流側端面または側面に開口す
るバイパス通路とから構成してなる流量計測装置。
1. A tubular body having a ventilation passage through which a gas to be measured flows, a housing provided so as to cross the tubular body in a diametric direction, and a shaft located at a central portion in a diametrical direction of the housing. A main passage having an inlet opening at the upstream end face of the housing and an outlet opening at the downstream end face of the housing, and a gas provided in the middle of the main passage and flowing through the main passage. A flow rate detecting element for detecting the flow rate of
An upstream side is located downstream of the flow rate detecting element, and a branch path is branched from the middle of the main passage, and a downstream side is located near an inner wall of the pipe body and is opened at a downstream end face or side face of the housing. Flow measurement device.
【請求項2】 前記主通路の流入口には、その開口端に
全周拡開部を形成してなる請求項1に記載の流量計測装
置。
2. The flow rate measuring device according to claim 1, wherein the inflow port of the main passage is formed with a full-width expansion portion at an open end thereof.
【請求項3】 前記バイパス通路には、前記主通路から
分岐する分岐流入口に面取り部を形成してなる請求項1
または2に記載の流量計測装置。
3. A chamfered portion is formed in the bypass passage at a branch inlet that branches off from the main passage.
Or the flow measuring device according to 2.
【請求項4】 前記バイパス通路は、前記ハウジングに
対してL字状に形成してなる請求項1,2または3に記
載の流量計測装置。
4. The flow measuring device according to claim 1, wherein the bypass passage is formed in an L shape with respect to the housing.
JP17579396A 1996-06-14 1996-06-14 Flow measurement device Expired - Lifetime JP3582933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17579396A JP3582933B2 (en) 1996-06-14 1996-06-14 Flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17579396A JP3582933B2 (en) 1996-06-14 1996-06-14 Flow measurement device

Publications (2)

Publication Number Publication Date
JPH102767A true JPH102767A (en) 1998-01-06
JP3582933B2 JP3582933B2 (en) 2004-10-27

Family

ID=16002353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17579396A Expired - Lifetime JP3582933B2 (en) 1996-06-14 1996-06-14 Flow measurement device

Country Status (1)

Country Link
JP (1) JP3582933B2 (en)

Also Published As

Publication number Publication date
JP3582933B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
US5942683A (en) Apparatus for measuring gas flow rate in a bypass passage and having a passage restriction portion downstream of the detecting element
JP3292817B2 (en) Thermal flow sensor
US6223594B1 (en) Thermal type air flow amount measuring apparatus having flow rectifier
US6578414B2 (en) Split-flow-type flowmeter
US5672822A (en) Thermal flow meter with less turbulence in fluid flow
KR890000771A (en) Heated air flow meter and internal combustion engine using the same
KR100324840B1 (en) Thermal flow sensor
KR890007061A (en) Hot air flow meter and internal combustion engine using it
JPH02262016A (en) Air quantity measuring apparatus
EP1577534A2 (en) Air cleaner
JP4951006B2 (en) Exhaust turbocharger for internal combustion engines
US6474177B2 (en) Flow measurement device for measuring flow rate and flow velocity
KR880000356B1 (en) Measuring device of air flow
JPH07103797A (en) Heat ray type measuring instrument for air flow rate
JP2007155435A (en) Air flowrate measurement device
US5119672A (en) Air flow rate meter
JP3582933B2 (en) Flow measurement device
JPH021518A (en) Hot-wire type air flowmeter
JP5085889B2 (en) Heating resistor type flow measuring device
JPH10331732A (en) Air cleaner
JPH01206223A (en) Hot-wire type air flowmeter
US6973825B2 (en) Hot-wire mass flow sensor with low-loss bypass passage
JPS5984115A (en) Device for measuring flow rate
JPH11229979A (en) Air cleaner
JPS58111720A (en) Air intake structure of internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

EXPY Cancellation because of completion of term