JPH10275283A - Fire alarm - Google Patents

Fire alarm

Info

Publication number
JPH10275283A
JPH10275283A JP7967097A JP7967097A JPH10275283A JP H10275283 A JPH10275283 A JP H10275283A JP 7967097 A JP7967097 A JP 7967097A JP 7967097 A JP7967097 A JP 7967097A JP H10275283 A JPH10275283 A JP H10275283A
Authority
JP
Japan
Prior art keywords
fire
line
constant current
inspection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7967097A
Other languages
Japanese (ja)
Other versions
JP3651532B2 (en
Inventor
Takatoshi Yamagishi
貴俊 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP07967097A priority Critical patent/JP3651532B2/en
Publication of JPH10275283A publication Critical patent/JPH10275283A/en
Application granted granted Critical
Publication of JP3651532B2 publication Critical patent/JP3651532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and speedily grasp the number of responding sensors on a reception part side. SOLUTION: The respective fire sensors 4 have constant current control means making prescribed constant current flow between a common line 2 and a line 3 based on a signal from a reception part and the reception part has a counting means discriminating the number (n) of the responding fire sensors from discharge time when discharging is executed from a capacitor to the common line 2 and the line 3. Thus, the reception part can discriminate the number (n) based on discharge time from the capacitor based on a current value between the common line 2 and the line 3, which is obtained by adding constant current passing through the responding fire sensors. In such a case, the sensors which do not respond cannot be specified but the presence or absence of abnormality can easily and speedily be grasped from the number of the responding sensors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、住戸内に点在する
火災感知器の点検を住戸外から遠隔に行う場合などの火
災報知機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fire alarm for checking fire detectors scattered in a dwelling unit from outside the dwelling unit.

【0002】[0002]

【従来の技術】従来、火災感知器の動作試験は、感知器
の種別により加熱試験器や加煙試験器を用いて熱または
煙を実際に加えて試験を行っていた。また、熱や煙を直
接加える試験は、人や時間を要し感知器を汚すことにな
るので、火災感知器内部の回路にテスト電圧を加え、検
出部を動作させて模擬的に試験することなど、種々の試
験方法がある。
2. Description of the Related Art Conventionally, an operation test of a fire detector has been performed by actually applying heat or smoke using a heating tester or a smoke tester depending on the type of the detector. Also, a test in which heat or smoke is directly applied takes human time and contaminates the detector, so apply a test voltage to the circuit inside the fire detector and operate the detector to perform a simulated test. There are various test methods.

【0003】住戸に設けられる火災報知機において、点
検を行う場合に、そこの住居人が不在の場合がある。例
えば、住戸の管理人がある場合には、立ち会いを依頼し
て住戸内に入ることができるが、手間が係る。一般的に
は、火災報知機の点検員であっても、住戸内に他人を入
れるのは好まれず、点検作業が手間取ることが多い。
[0003] When a fire alarm installed in a dwelling unit is inspected, the resident may not be present. For example, when there is a manager of a dwelling unit, it is possible to enter the dwelling unit by requesting a witness, but this is troublesome. In general, even a fire alarm checker does not like to put another person in the dwelling unit, and the inspection work is often troublesome.

【0004】そこで、特開平5−346995号公報に
は、住戸の外部から個別に火災感知器に点検入力を戸外
表示器から行うことを目的として、周波数により特定さ
れたアダプタが感知器に試験電圧を発生させ動作試験す
る火災報知機が開示されている。しかし、この公報の火
災報知機では、個別にアダプタと戸外表示器の信号送出
回路の周波数を合わせるために調整する必要があるとと
もに、試験結果は火災受信機の動作に基づいて鳴動させ
られる戸外ブザーにより確認を行っていた。
Japanese Patent Application Laid-Open No. Hei 5-34695 discloses that an adapter specified by a frequency has a test voltage applied to the fire detector for the purpose of individually performing an inspection input to the fire detector from outside the dwelling unit from the outdoor display. There is disclosed a fire alarm which generates and generates an operation test. However, in the fire alarm disclosed in this publication, it is necessary to individually adjust the frequency of the signal transmission circuit of the adapter and the outdoor indicator, and the test result is an outdoor buzzer that is sounded based on the operation of the fire receiver. Has been confirmed.

【0005】[0005]

【発明が解決しようとする課題】この点から、図4に示
すような火災受信機等の受信部からの共通線およびライ
ン線の間に複数の火災感知器が並列に接続されてなる火
災報知機において、各火災感知器は、受信部からの信号
に基づいて共通線およびライン線との間に所定の定電流
を流す定電流制御手段を有するとともに、受信部は、前
記信号出力後の共通線およびライン線の間の電流値から
応答した火災感知器の個数を判別する計数手段を有する
ことを特徴とし、受信部は、応答した火災感知器各々を
通過する定電流を合計した共通線およびライン線間の電
流値からその個数を判別することが提案されている。こ
の場合、応答しない感知器を特定することはできない
が、その応答した感知器の個数から異常の有無について
は簡便早急に把握することができる。
In view of this, a fire alarm in which a plurality of fire detectors are connected in parallel between a common line and a line from a receiving unit such as a fire receiver as shown in FIG. Each fire detector has a constant current control means for flowing a predetermined constant current between the common line and the line line based on a signal from the receiving unit, and the receiving unit is connected to the common line after outputting the signal. It is characterized by having counting means for judging the number of fire detectors that responded from the current value between the line and the line line, wherein the receiving unit includes a common line that sums constant currents passing through each responding fire sensor and It has been proposed to determine the number from the current value between the line lines. In this case, a sensor that does not respond cannot be specified, but the presence or absence of an abnormality can be easily and quickly grasped from the number of sensors that responded.

【0006】しかし、マイコン等を用いるときに、共通
線およびライン線に流れる電流値を読み込むには、アナ
ログ・デジタル変換をして電流値をコード信号に変換す
る必要がある。また、電流値を読み込まずに、感知器の
個数分を想定した電流値を受信部側に用意して比較器で
比較する方式もあるが、部品点数が多くなり回路構成が
複雑になってしまう。
However, when using a microcomputer or the like, in order to read the current value flowing through the common line and the line line, it is necessary to convert the current value into a code signal by analog-to-digital conversion. Also, there is a method in which a current value assuming the number of sensors is prepared on the receiving unit side without reading the current value and compared with a comparator, but the number of parts increases and the circuit configuration becomes complicated. .

【0007】[0007]

【課題を解決するための手段】上記の点に鑑み、本発明
は、火災受信機等の受信部からの共通線およびライン線
の間に複数の火災感知器が並列に接続されてなる火災報
知機において、各火災感知器は、受信部からの信号に基
づいて共通線およびライン線との間に所定の定電流を流
す定電流制御手段を有するとともに、受信部は、コンデ
ンサと、該コンデンサから前記信号出力後の共通線およ
びライン線の間へ放電するときの放電時間から応答した
火災感知器の個数を判別する計数手段を有することを特
徴とするものである。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a fire alarm in which a plurality of fire detectors are connected in parallel between a common line and a line from a receiving unit such as a fire receiver. In the machine, each fire detector has constant current control means for flowing a predetermined constant current between the common line and the line line based on a signal from the receiving unit, and the receiving unit includes a capacitor and a capacitor. It is characterized by having counting means for judging the number of fire detectors responding from the discharge time when discharging between the common line and the line line after the signal output.

【0008】したがって、受信部は、応答した火災感知
器各々を流れる定電流を合計した共通線およびライン線
間の電流値に基づくコンデンサからの放電時間に基づい
てその個数を判別することができる。この場合、応答し
ない感知器を特定することはできないが、応答する感知
器の個数から異常の有無については簡便早急に把握する
ことができる。
Therefore, the number of receiving units can be determined based on the discharge time from the capacitor based on the current value between the common line and the line line obtained by summing the constant currents flowing through the responding fire sensors. In this case, a sensor that does not respond cannot be specified, but the presence or absence of an abnormality can be easily and quickly grasped from the number of sensors that respond.

【0009】このとき、受信部では、コンデンサの放電
時間について、火災感知器1個の定電流における放電時
間と、常時の監視状態における放電時間と、応答する火
災感知器の定電流を含めた放電時間と、を測定すること
により、コンデンサ個体のばらつきや常時の監視電流等
を消去した個数判別が可能になる。
At this time, in the receiving unit, the discharge time of the capacitor includes the discharge time at a constant current of one fire detector, the discharge time in a constant monitoring state, and the discharge time including the constant current of the responding fire detector. By measuring the time and the time, it becomes possible to determine the number of capacitors that have eliminated the variation of individual capacitors and the constantly monitored current.

【0010】当然、受信部の出力する信号を点検信号と
して、各火災感知器は、点検信号を受信するときに、自
己点検処理を行って正常終了時に定電流制御手段を働か
せることにより、異常の火災感知器は定電流制御を行わ
ず、受信部の計数手段からの個数の結果が変わることに
より、異常の感知器の存在がわかる。また、自己点検を
行わせなくても、火災感知器の脱落等、正常な個数の接
続があるかどうかが把握できる。
Naturally, using the signal output from the receiving section as an inspection signal, each fire detector performs a self-inspection process when receiving the inspection signal, and activates the constant current control means at the time of normal termination, whereby an abnormal condition is detected. The fire detector does not perform constant current control, and the result of the number from the counting means of the receiving unit changes, thereby indicating the presence of an abnormal sensor. In addition, even if the self-inspection is not performed, it is possible to determine whether or not there is a normal number of connections such as a dropout of a fire detector.

【0011】[0011]

【発明の実施の形態】以下、本発明を実施した形態につ
いて説明する。図1はシステムの一実施形態を概略的に
示す構成図である。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram schematically showing an embodiment of the system.

【0012】例えば住戸内の居間に設けられた火災受信
機1から引き出された共通線2およびライン線3からな
る電源兼信号線に、各部屋等に設けられる複数の火災感
知器4が並列に送り配線によって接続され、その信号線
2、3の後端には終端抵抗5が接続されている。
For example, a plurality of fire detectors 4 provided in each room or the like are connected in parallel to a power / signal line including a common line 2 and a line line 3 drawn from a fire receiver 1 provided in a living room in a dwelling unit. The signal lines 2 and 3 are connected at the rear ends thereof to a terminating resistor 5.

【0013】また、信号線2、3の火災受信機1と各火
災感知器4との間には、常時は共通線2およびライン線
3を火災受信機1に切り換え接続している線路切換器6
が配置されている。
A line switch between the fire detectors 1 on the signal lines 2 and 3 and each fire detector 4 normally connects and connects the common line 2 and the line line 3 to the fire receiver 1. 6
Is arranged.

【0014】常時は、各火災感知器4は、信号線2、3
を通じて火災受信機1から供給される電源によってそれ
ぞれ火災監視動作を行い、火災検出時にはスイッチング
動作を行って信号線2、3間を低インピーダンスの略短
絡状態とする。火災受信機1は、そのスイッチング動作
に基づく略短絡状態を検知して火災報知動作を行う。こ
のとき、火災受信機1は、例えば玄関脇に設けられ接続
される戸外表示器10に火災表示を行ったり、住戸完結
型でなく、図示しない住棟受信機が建物全体の監視制御
として設けられているときには、必要な火災信号を住棟
受信機に出力する。
Normally, each fire detector 4 is connected to the signal lines 2 and 3
The fire monitoring operation is performed by the power supply supplied from the fire receiver 1 through the switch, and when a fire is detected, the switching operation is performed to bring the signal lines 2 and 3 into a low-impedance substantially short-circuit state. The fire receiver 1 detects a substantially short-circuit state based on the switching operation and performs a fire notification operation. At this time, for example, the fire receiver 1 is not provided with a dwelling unit receiver, which is not provided with a dwelling unit receiver (not shown) for performing a fire display on an outdoor display 10 provided and connected to the entrance and connected thereto. , A necessary fire signal is output to the living room receiver.

【0015】点検時には、線路切換器6から戸外の例え
ば戸外表示器10の側に引き出されたコネクタ11に、
点検器12がコネクタ接続される。この点検器12から
の点検操作に基づき、線路切換器6は、火災受信機1へ
点検出力線9を介して点検開始出力を行い、火災受信機
1で点検中を表示させるとともに、各火災感知器4への
信号線2、3を、火災受信機1から切り離し、点検器1
2へ接続する。この状態において、火災受信機1は、線
路切換器6の点検開始出力に基づき点検表示を行い、点
検器12からの戸外点検が可能となる。このとき、各火
災感知器4は信号線2、3を通じて点検器12から供給
される電源電圧(ここでは12V)によって動作する。
At the time of inspection, a connector 11 pulled out from the track changer 6 to the outside, for example, to the outdoor display 10 side,
The checker 12 is connected to the connector. On the basis of the inspection operation from the inspection device 12, the line switch 6 outputs an inspection start output to the fire receiver 1 via the inspection output line 9, displays the inspection being performed on the fire receiver 1, and detects each fire. Disconnect the signal lines 2 and 3 to the fire detector 1 from the fire receiver 1
Connect to 2. In this state, the fire receiver 1 performs an inspection display based on the inspection start output of the track changer 6, and the outdoor inspection from the inspector 12 is enabled. At this time, each fire detector 4 operates with the power supply voltage (12 V in this case) supplied from the checker 12 through the signal lines 2 and 3.

【0016】図2は、図1のシステムに使用される火災
感知器4の概略回路図である。
FIG. 2 is a schematic circuit diagram of the fire detector 4 used in the system of FIG.

【0017】火災感知器4は、電源兼信号線2、3がそ
れぞれ接続される端子C、Lを電源として、安定した電
圧および電流を供給する定電圧回路B2と、抵抗とコン
デンサとの充電時定数に基づきマイコンに割り込み入力
を行う図示しない発振回路やマイコン等による制御回路
B3と、サーミスタの温度特性により火災による熱を検
出するなどのセンサ回路B4と、制御回路B3により火
災と判別されるときに端子C、L間を低インピーダンス
の略短絡状態にスイッチングするとともに、図示しない
確認灯を点灯する火災出力回路B1と、を有し、さら
に、点検動作を行うために信号線3の入力側が接続され
る端子Lから点検信号としての試験電圧の入力を検出す
る試験信号受信回路B6と、点検動作時に制御回路B3
の制御に基づいてセンサ回路B4へ点検動作を行わせる
試験回路B5と、制御回路B3の制御に基づいて端子
C、L間に所定の定電流を流す定電流制御回路B7と、
を有する。
The fire detector 4 includes a constant voltage circuit B2 for supplying a stable voltage and current using the terminals C and L to which the power / signal lines 2 and 3 are connected, respectively, and a circuit for charging the resistor and the capacitor. When a fire is determined by the control circuit B3, a control circuit B3 such as an oscillating circuit (not shown) or a microcomputer that performs interrupt input to the microcomputer based on a constant, a sensor circuit B4 for detecting heat due to a fire based on the temperature characteristics of the thermistor, and the like. And a fire output circuit B1 for switching between the terminals C and L to a low impedance substantially short-circuit state and for turning on a not-shown confirmation lamp. Further, the input side of the signal line 3 is connected to perform an inspection operation. A test signal receiving circuit B6 for detecting an input of a test voltage as a check signal from a terminal L to be tested, and a control circuit B3 for checking operation.
A test circuit B5 for causing the sensor circuit B4 to perform an inspection operation based on the control of the above; a constant current control circuit B7 for flowing a predetermined constant current between the terminals C and L based on the control of the control circuit B3;
Having.

【0018】次に、サーミスタを用いる場合の制御回路
B3による点検動作は、疑似的な高温度状態を形成する
ため、センサ回路B4においてサーミスタに例えば低抵
抗を並列に接続することにより、疑似的に高温度状態を
検出することができる。そして、その結果に基づき、制
御回路B3は点検結果を正常と判断し、定電流制御回路
B7をオンして、端子C、L間に所定の定電流を流す。
この定電流制御のタイミングは、各火災感知器同時に行
われる。以上、図1のシステムに使用される火災感知器
4の具体例としてのサーミスタ式熱感知器について説明
してきたが、その他の種類の例えば光電式煙感知器や炎
感知器等を用いることができるが、そのときに、このシ
ステムに必要な回路を設けておく必要がある。
Next, the inspection operation by the control circuit B3 when a thermistor is used is performed in such a manner that a low resistance is connected in parallel to the thermistor in the sensor circuit B4 in order to form a pseudo high temperature state. High temperature conditions can be detected. Then, based on the result, the control circuit B3 determines that the inspection result is normal, turns on the constant current control circuit B7, and flows a predetermined constant current between the terminals C and L.
The timing of the constant current control is simultaneously performed for each fire detector. In the above, the thermistor-type heat detector as a specific example of the fire detector 4 used in the system of FIG. 1 has been described. However, other types such as a photoelectric smoke detector and a flame detector can be used. However, at that time, it is necessary to provide necessary circuits for this system.

【0019】また、点検器12は、詳細に示さない計数
手段としてのマイコン等を利用して全体が制御され、端
子Lを介してライン線3から各感知器4に電源電圧また
は試験電圧が供給される。また、端子LPを介して火災
受信機1の信号線2、3に疑似的に終端抵抗電位を与
え、端子STを介して線路切換器6に線路切換動作を行
わせるとともに、火災受信機1に点検開始入力を与え
る。また、線路切換器6は、端子STtおよび端子ST
を介して火災受信機1へ入力される点検器12からの点
検開始入力を検知して接点を切り換えるものであり、常
時火災受信機1への端子LIに接続されている各感知器
4への端子LOは、接点切り換えにより、点検器12へ
の端子Ltに接続され、同時に、火災受信機1への端子
LIは、接点切り換えにより、点検器12への端子LP
tに接続される。その他、コモン線2に接続される端子
CIから端子CO、さらに点検器12からの端子Ctに
ついては常時接続状態である。
The inspection device 12 is entirely controlled using a microcomputer or the like as a counting means (not shown in detail), and a power supply voltage or a test voltage is supplied from the line line 3 to each sensor 4 via the terminal L. Is done. In addition, terminal resistance potentials are artificially given to the signal lines 2 and 3 of the fire receiver 1 via the terminal LP, and the line switch 6 is caused to perform a line switching operation via the terminal ST. Give the inspection start input. In addition, the line switch 6 includes a terminal STt and a terminal STt.
The contact is switched by detecting the inspection start input from the inspector 12 input to the fire receiver 1 via the, and the sensor 4 is constantly connected to each of the detectors 4 connected to the terminal LI to the fire receiver 1. The terminal LO is connected to the terminal Lt to the inspector 12 by contact switching, and at the same time, the terminal LI to the fire receiver 1 is connected to the terminal LP to the inspector 12 by contact switching.
t. In addition, the terminals CI to CO connected to the common line 2 and the terminal Ct from the inspection device 12 are always connected.

【0020】この点検器12の操作について、図1に示
すように、点検器12を戸外からコネクタ11に接続し
た後、電源を投入する。すると、線路切換器6から火災
受信機1に点検開始入力を与える。そして、各感知器4
からの信号線2、3は、火災受信機1から点検器12に
切り換えられ、火災受信機1の信号線2、3は、点検器
12により疑似的に終端抵抗によるインピーダンスが与
えられ、火災受信機1の断線表示を行わせない。
As for the operation of the inspection device 12, as shown in FIG. 1, after the inspection device 12 is connected to the connector 11 from outside, the power is turned on. Then, an inspection start input is given from the line switch 6 to the fire receiver 1. And each sensor 4
Signal lines 2 and 3 are switched from the fire receiver 1 to the inspection device 12, and the signal lines 2 and 3 of the fire receiver 1 are given pseudo-impedance by the terminating resistance by the inspection device 12 to receive the fire. The disconnection display of the machine 1 is not performed.

【0021】この状態で点検動作が開始されるが、点検
動作をスタートさせると、点検器12から電源電圧を供
給している図示しない電圧制限回路を動作させて端子L
に点検入力としての試験電圧供給を開始する。上記動作
中の信号線2、3の間の電流値について、図4に簡単に
示した。図4では、点線の左側が点検器12等の受信部
となり、終端抵抗5と、n個接続される火災感知器4の
一部が簡略的に示されている。
In this state, an inspection operation is started. When the inspection operation is started, a voltage limiting circuit (not shown) for supplying a power supply voltage from the inspector 12 is operated to operate the terminal L.
The test voltage supply as a check input is started. FIG. 4 schematically shows the current value between the signal lines 2 and 3 during the above operation. In FIG. 4, the left side of the dotted line is a receiving unit such as the inspection device 12, and the terminating resistor 5 and a part of the n connected fire detectors 4 are simply shown.

【0022】まず、通常状態で受信部側から端子C、L
間に定電圧を供給すると、終端抵抗5を通過する所定の
電流Irが流れる。このとき、各火災感知器4には小さ
な監視電流が流れているので、通常状態において正確に
は、所定の電流Ir+αであるが、このα分はIrと同
様に扱えるので、Irに包含して考えることができる。
First, in the normal state, the terminals C and L
When a constant voltage is supplied in between, a predetermined current Ir passing through the terminating resistor 5 flows. At this time, since a small monitoring current is flowing through each of the fire detectors 4, in a normal state, the current is exactly a predetermined current Ir + α. However, since this α component can be handled in the same manner as Ir, it is included in Ir. You can think.

【0023】この状態から、信号線2、3間に接続され
た各火災感知器4は、試験信号受信回路B6により試験
電圧の供給を受け制御回路B3に点検入力が行われる。
そして、点検器12から点検動作の起動させるパルス信
号を出力し、各火災感知器4は、そのパルス信号を受け
て、制御回路B3の制御に基づいて試験回路B5を動作
させてセンサ回路B4を点検する。そして、各火災感知
器4の制御回路B3はセンサ回路B4が正常な場合、定
電流制御回路B7を動作させて信号線2、3間に所定の
定電流を放出させる。このときに、1つの火災感知器4
が定電流制御回路B7の作用により流す所定の定電流を
Idとすると、通常状態よりも電流Idが正常な個数n
個分増加することになる。
In this state, the fire detectors 4 connected between the signal lines 2 and 3 are supplied with the test voltage by the test signal receiving circuit B6, and the inspection input is performed to the control circuit B3.
Then, the fire detector 4 outputs a pulse signal for starting the inspection operation from the inspector 12, and each fire detector 4 receives the pulse signal and operates the test circuit B5 based on the control of the control circuit B3 to activate the sensor circuit B4. Inspection to. When the sensor circuit B4 is normal, the control circuit B3 of each fire detector 4 operates the constant current control circuit B7 to discharge a predetermined constant current between the signal lines 2 and 3. At this time, one fire detector 4
Is a predetermined constant current flowing through the operation of the constant current control circuit B7, the current Id is more normal than the normal state n
It will increase by the number.

【0024】そして、常時の電流をI1、点検結果の電
流をI2とすると、I1=Ir、I2=n・Id+Ir
となるが、点検器12は、電流値の変化から、後述する
方式により点検を行う前と比較して、点検結果の正常な
感知器の個数を判別する。このように動作させることに
より、個別に点検結果を取り込まなくても、正常な個数
を把握することにより、全体として正常かどうかがわか
る。
Assuming that the normal current is I1 and the current of the inspection result is I2, I1 = Ir, I2 = n = Id + Ir
However, the inspection device 12 determines the number of normal detectors as a result of the inspection based on the change in the current value, as compared with before the inspection is performed by the method described later. By operating in this way, it is possible to determine whether the number is normal as a whole by grasping the normal number without taking in the inspection results individually.

【0025】次に、感知器の個数を算定する方式につい
て、図3に基づいて説明する。図3では、図4同様、点
線の左側が点検器12等の受信部となり、終端抵抗5
と、n個接続される火災感知器4の一部が簡略的に示さ
れている。
Next, a method of calculating the number of sensors will be described with reference to FIG. In FIG. 3, similarly to FIG.
And a part of n fire detectors 4 connected in a simplified manner.

【0026】通常状態において、各火災感知器4には受
信部側から定電圧供給されていて、このとき接点aは閉
じている。感知器の個数算定動作に入る前に、先ずコン
デンサCoの所定の定電流に対する放電時間t3を計測
する。このため、先ず定電圧供給源からコンデンサCo
に充電するため、接点bを閉じる。コンデンサCoの電
位が十分になるように待機した後、接点dを閉じるとと
もに接点bを開放する。この状態でコンデンサCoの電
位は、接点dと、所定の定電流Irに制御するための定
電流制限回路4’を介して放電され、抵抗分割による所
定の電位まで低下したことをコンパレータCMが判別す
るまでの時間を計測する。そして、接点dを開放する。
図示しない計数手段としてのマイコンは、接点bの開放
からコンパレータCMの動作時までの時間を放電時間t
3として図示しない記憶手段に格納する。
In the normal state, each fire detector 4 is supplied with a constant voltage from the receiving unit side, and at this time, the contact a is closed. Before starting the operation of calculating the number of sensors, first, the discharge time t3 of the capacitor Co for a predetermined constant current is measured. For this reason, first, the capacitor Co is supplied from the constant voltage supply source.
Contact b is closed. After waiting until the potential of the capacitor Co becomes sufficient, the contact d is closed and the contact b is opened. In this state, the comparator CM determines that the potential of the capacitor Co is discharged through the contact d and the constant current limiting circuit 4 'for controlling the current to the predetermined constant current Ir, and has dropped to the predetermined potential by resistance division. Measure the time until you do it. Then, the contact d is opened.
The microcomputer (not shown) as a counting means calculates the time from the opening of the contact b to the operation of the comparator CM as the discharge time t.
3 is stored in a storage unit (not shown).

【0027】つぎに、通常状態における放電時間t1を
計測する。同様に、先ず定電圧供給源からコンデンサC
oに充電するため、接点bを閉じる。コンデンサCoの
電位が十分になるように待機した後、信号線2、3への
接点cを閉じるとともに電源電圧(このときには試験電
圧になっている)からの接点aを開放し、接点bを開放
する。この状態でコンデンサCoの電位は、接点cと、
通常状態での監視電流が流れる信号線2、3介して放電
され、同様に所定の電位まで低下したことをコンパレー
タCMが判別するまでの時間を計測する。そして、接点
aを閉じて接点cを開放する。図示しない計数手段とし
てのマイコンは、接点bの開放からコンパレータCMの
動作時までの時間を放電時間t1として図示しない記憶
手段に格納する。
Next, the discharge time t1 in the normal state is measured. Similarly, the capacitor C is first supplied from the constant voltage source.
To charge o, contact b is closed. After waiting until the potential of the capacitor Co becomes sufficient, the contacts c to the signal lines 2 and 3 are closed, and the contact a from the power supply voltage (in this case, the test voltage) is opened, and the contact b is opened. I do. In this state, the potential of the capacitor Co is changed to the contact c,
In the normal state, the monitoring current is discharged through the signal lines 2 and 3, and the time until the comparator CM determines that the voltage has dropped to a predetermined potential is measured. Then, the contact a is closed and the contact c is opened. The microcomputer serving as a counting means (not shown) stores the time from the opening of the contact b to the operation of the comparator CM in the storage means (not shown) as the discharging time t1.

【0028】そして、応答する火災感知器4を定電流制
御させた状態における放電時間t2を計測する。まず、
各火災感知器4に応答させるため、パルス信号等による
点検信号を送出し、同様に、定電圧供給源からコンデン
サCoに充電するため、接点bを閉じる。コンデンサC
oの電位を十分にして各火災感知器が点検結果を応答で
きるように待機した後、信号線2、3への接点cを閉じ
るとともに電源電圧からの接点aを開放し、接点bを開
放する。この状態でコンデンサCoの電位は、接点c
と、応答する火災感知器4が定電流制御する結果として
の所定の電流値を通常状態での監視電流に合わせた電流
が流れる信号線2、3介して放電され、同様に所定の電
位まで低下したことをコンパレータCMが判別するまで
の時間を計測する。そして、接点aを閉じて接点cを開
放する。図示しない計数手段としてのマイコンは、接点
bの開放からコンパレータCMの動作時までの時間を放
電時間t2として図示しない記憶手段に格納する。
Then, the discharge time t2 in a state where the responding fire detector 4 is controlled at a constant current is measured. First,
In order to make each fire detector 4 respond, a check signal such as a pulse signal is transmitted, and similarly, the contact b is closed to charge the capacitor Co from the constant voltage supply source. Capacitor C
After making the potential of o sufficient so that each fire sensor can respond to the inspection result, the contact c to the signal lines 2 and 3 is closed, the contact a from the power supply voltage is opened, and the contact b is opened. . In this state, the potential of the capacitor Co is changed to the contact c.
And a predetermined current value as a result of the constant current control of the responding fire detector 4 is discharged through the signal lines 2 and 3 through which a current matching the monitoring current in the normal state flows, and similarly drops to a predetermined potential. The time until the comparator CM determines that the operation has been performed is measured. Then, the contact a is closed and the contact c is opened. The microcomputer as counting means (not shown) stores the time from the opening of the contact b to the operation of the comparator CM in the storage means (not shown) as the discharge time t2.

【0029】通常状態で受信部側から端子C、L間に定
電圧を供給すると、終端抵抗5を通過する所定の電流I
rが流れる。このとき、各火災感知器4には小さな監視
電流が流れているので、通常状態において正確には、所
定の電流Ir+αであるが、このα分はIrと同様に扱
えるので、Irに包含して考える。そして、1つの火災
感知器4が定電流制御回路B7の作用により流す所定の
定電流をIdとすると、通常状態よりも電流Idが正常
な個数n個分増加することになる。すなわち、常時の電
流をI1、点検結果の電流をI2、所定の定電流をI3
とすると、I1=Ir、I2=n・Id+Ir、I3=
Idとなる。ここで、コンデンサCoの容量と定電圧供
給とは一定であるので、I1・t1=I2・t2=I3
・t3となり、I2=I1+n・I3なので、個数n
は、n=t3(t1−t2)/(t1・t2)により算
出することができる。
When a constant voltage is supplied between the terminals C and L from the receiving unit side in a normal state, a predetermined current I passing through the terminating resistor 5 is supplied.
r flows. At this time, since a small monitoring current is flowing through each of the fire detectors 4, in a normal state, the current is exactly a predetermined current Ir + α. Think. Assuming that a predetermined constant current flowing from one fire detector 4 by the operation of the constant current control circuit B7 is Id, the current Id is increased by a normal number n from the normal state. That is, the constant current is I1, the inspection result current is I2, and the predetermined constant current is I3.
Then, I1 = Ir, I2 = n · Id + Ir, I3 =
Id. Here, since the capacity of the capacitor Co and the constant voltage supply are constant, I1 · t1 = I2 · t2 = I3
T3, and since I2 = I1 + nI3, the number n
Can be calculated by n = t3 (t1−t2) / (t1 · t2).

【0030】このように、コンデンサCoからの放電時
間を取り込むことは、図示しないマイコンの1ポートあ
ればよく、わざわざアナログ・デジタル変換を行わなく
てもよいので、簡便で安価な方式である。
As described above, it is sufficient to take in the discharge time from the capacitor Co only by one port of the microcomputer (not shown), and it is not necessary to perform the analog-to-digital conversion. This is a simple and inexpensive method.

【0031】また、上記の方式以外に、受信部側に感知
器複数個分+終端抵抗の疑似信号部分を設けて時間を比
較する方式を用いることができる。しかし、回路素子点
数が増え、回路構成も複雑になってしまう。
In addition to the above-described method, a method of comparing the time by providing a plurality of detectors and a pseudo signal portion of the terminating resistor on the receiving unit side can be used. However, the number of circuit elements increases and the circuit configuration becomes complicated.

【0032】上記の実施形態において、受信部として点
検動作は点検器12で行っているが、火災受信機1で行
えてもよく、点検入力は、電源電圧から試験電圧への電
圧変位およびパルス信号のその他の方式、コード信号や
周波数変化等を用いてもよく、また、火災感知器4の応
答は、自己点検を行わずとも、単純に信号応答として定
電流制御を行ってもよい。
In the above embodiment, the inspection operation is performed by the inspection device 12 as the receiving unit. However, the inspection may be performed by the fire receiver 1, and the inspection input includes the voltage displacement from the power supply voltage to the test voltage and the pulse signal. Alternatively, a code signal, a change in frequency, or the like may be used, and the response of the fire detector 4 may be simply a constant current control as a signal response without performing a self-check.

【0033】さらに、火災感知器4内の回路構成とし
て、火災出力回路B1と定電流制御回路B7とを別個に
設けているが、火災出力回路B1に定電流制御を行わせ
てもよく、この場合システム全体として火災信号である
スイッチング動作を定電流制御とする必要がある。
Further, as a circuit configuration in the fire detector 4, a fire output circuit B1 and a constant current control circuit B7 are separately provided. However, the fire output circuit B1 may perform constant current control. In this case, the switching operation, which is a fire signal, needs to be performed by constant current control as the entire system.

【0034】以上のように、上記の実施形態では、火災
受信機等の受信部からの共通線2およびライン線3の間
に複数の火災感知器4が並列に接続されてなる火災報知
機において、各火災感知器4は、受信部からの信号に基
づいて共通線2およびライン線3との間に所定の定電流
Idを流す定電流制御手段(回路)B7を有するととも
に、受信部は、コンデンサCoと、該コンデンサCoか
ら前記信号出力後の共通線2およびライン線3の間へ放
電するときの放電時間から応答した火災感知器の個数n
を判別する計数手段を有するので、受信部は、応答した
火災感知器各々を流れる定電流Idを合計した共通線2
およびライン線3間の電流値に基づくコンデンサCoか
らの放電時間に基づいてその個数nを判別することがで
きる。この場合、応答しない感知器を特定することはで
きないが、応答する感知器の個数から異常の有無につい
ては簡便早急に把握することができる。
As described above, in the above embodiment, a fire alarm in which a plurality of fire detectors 4 are connected in parallel between a common line 2 and a line line 3 from a receiving unit such as a fire receiver. Each of the fire detectors 4 includes a constant current control unit (circuit) B7 for flowing a predetermined constant current Id between the common line 2 and the line line 3 based on a signal from the receiving unit. The number n of fire detectors responding from the capacitor Co and the discharge time when discharging between the common line 2 and the line line 3 after outputting the signal from the capacitor Co
Receiving means, the receiving unit is provided with a common line 2 which is the sum of the constant currents Id flowing through the responding fire sensors.
The number n can be determined based on the discharge time from the capacitor Co based on the current value between the line lines 3. In this case, a sensor that does not respond cannot be specified, but the presence or absence of an abnormality can be easily and quickly grasped from the number of sensors that respond.

【0035】このとき、受信部では、コンデンサの放電
時間について、火災感知器1個の定電流における放電時
間と、常時の監視状態における放電時間と、応答する火
災感知器の定電流を含めた放電時間と、を測定すること
により、コンデンサ個体のばらつきや常時の監視電流等
を消去した個数判別が可能になる。
At this time, in the receiving unit, the discharge time of the capacitor including the discharge time at the constant current of one fire detector, the discharge time in the constantly monitored state, and the discharge time including the constant current of the responding fire detector. By measuring the time and the time, it becomes possible to determine the number of capacitors that have eliminated the variation of individual capacitors and the constantly monitored current.

【0036】当然、受信部の出力する信号を点検信号と
して、各火災感知器4は、点検信号を受信するときに、
自己点検処理を行って正常終了時に定電流制御手段(回
路)B7を働かせることにより、異常の火災感知器は定
電流制御を行わず、受信部の計数手段からの個数の結果
が変わることにより、異常の感知器の存在がわかる。ま
た、自己点検を行わせなくても、火災感知器の脱落等、
正常な個数の接続があるかどうかが把握できる。
Naturally, using the signal output from the receiving unit as an inspection signal, each of the fire detectors 4
By performing the self-inspection process and activating the constant current control means (circuit) B7 at the time of normal termination, the abnormal fire detector does not perform the constant current control, and the result of the number from the counting means of the receiving unit changes. You can see the presence of the abnormal sensor. In addition, even without self-inspection, fire detector
It can be grasped whether there is a normal number of connections.

【図面の簡単な説明】[Brief description of the drawings]

【図1】システムを概略的に示す構成図。FIG. 1 is a configuration diagram schematically showing a system.

【図2】図1の火災感知器の概略ブロック回路図。FIG. 2 is a schematic block circuit diagram of the fire detector of FIG. 1;

【図3】図1のシステムから判別方式を簡単に示す概略
図。
FIG. 3 is a schematic diagram simply showing a discrimination method from the system of FIG. 1;

【図4】図1のシステムでの電流の様子を簡単に示す概
略図。
FIG. 4 is a schematic diagram simply showing a state of a current in the system of FIG. 1;

【符号の説明】[Explanation of symbols]

2、3 信号線 4 火災感知器 12 点検器 2, 3 signal line 4 fire detector 12 checker

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 火災受信機等の受信部からの共通線およ
びライン線の間に複数の火災感知器が並列に接続されて
なる火災報知機において、 前記各火災感知器は、前記受信部からの信号に基づいて
前記共通線およびライン線との間に所定の定電流を流す
定電流制御手段を有するとともに、前記受信部は、コン
デンサと、該コンデンサから前記信号出力後の共通線お
よびライン線の間へ放電するときの放電時間から応答し
た火災感知器の個数を判別する計数手段を有することを
特徴とする火災報知機。
1. A fire alarm in which a plurality of fire detectors are connected in parallel between a common line and a line line from a receiver such as a fire receiver, wherein each of the fire detectors And a constant current control means for causing a predetermined constant current to flow between the common line and the line line based on the signal of the common line and the line line after the signal is output from the capacitor. A fire alarm comprising counting means for judging the number of fire detectors responding from the discharge time when discharging between the fire detectors.
【請求項2】 受信部の出力する信号は、点検信号であ
って、各火災感知器は、該点検信号を受信するときに、
自己点検処理を行って正常終了時に定電流制御手段を働
かせる請求項1の火災報知機。
2. The signal output from the receiving unit is an inspection signal, and each fire detector receives the inspection signal when receiving the inspection signal.
2. The fire alarm according to claim 1, wherein a self-inspection process is performed and the constant current control means is activated at the time of normal termination.
JP07967097A 1997-03-31 1997-03-31 fire alarm Expired - Fee Related JP3651532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07967097A JP3651532B2 (en) 1997-03-31 1997-03-31 fire alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07967097A JP3651532B2 (en) 1997-03-31 1997-03-31 fire alarm

Publications (2)

Publication Number Publication Date
JPH10275283A true JPH10275283A (en) 1998-10-13
JP3651532B2 JP3651532B2 (en) 2005-05-25

Family

ID=13696626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07967097A Expired - Fee Related JP3651532B2 (en) 1997-03-31 1997-03-31 fire alarm

Country Status (1)

Country Link
JP (1) JP3651532B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517950B1 (en) 1994-03-28 2003-02-11 Cryovac, Inc. High modulus oxygen-permeable multilayer film, packaging process using same, and packaged product comprising same
JP2017033219A (en) * 2015-07-31 2017-02-09 株式会社近計システム Cable theft monitoring system and cable theft monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517950B1 (en) 1994-03-28 2003-02-11 Cryovac, Inc. High modulus oxygen-permeable multilayer film, packaging process using same, and packaged product comprising same
JP2017033219A (en) * 2015-07-31 2017-02-09 株式会社近計システム Cable theft monitoring system and cable theft monitoring device

Also Published As

Publication number Publication date
JP3651532B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
US7382245B2 (en) Method and apparatus for indicating a power condition at a notification appliance
KR970705032A (en) AC Power Outlet Grounding Characteristics and AC Power Outlet Ground Integrity and Wire Test Circuit Device
EP1001554A2 (en) Line shunt and ground fault detection apparatus and method
JPH10275283A (en) Fire alarm
CA2512498C (en) Hazard detector
JPH10275282A (en) Fire alarm
JP3254084B2 (en) Inspection device and disaster prevention monitoring device
JPS62501990A (en) Fault state detection method and circuit
US4968944A (en) Apparatus for detecting malfunctions of a single electrical device in a group of electrical devices, and methods of constructing and utilizing same
JP3849079B2 (en) Fire detector
US20030025492A1 (en) Circuit testers
US4972153A (en) Apparatus for detecting a plurality of energy levels in a conductor
GB2189613A (en) Testing electrical circuitry or components
JP2000076565A (en) Fire alarm
JP3791852B2 (en) fire alarm
JP3491138B2 (en) Microcomputer heat detector
JPH081589Y2 (en) Direct current heating device
JP3732302B2 (en) fire alarm
JP3602284B2 (en) fire alarm
AU2004203791B2 (en) Hazard detector
JPH113483A (en) Fire signaling equipment having remote test function and tester
JP2541663Y2 (en) Electric water heater remaining hot water display
JP3711466B2 (en) Fire detector
JPH0510973A (en) Load survey meter
JPH09198583A (en) Automatic fire alarming equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees