JPH10274657A - Device for generating and analyzing hydride - Google Patents
Device for generating and analyzing hydrideInfo
- Publication number
- JPH10274657A JPH10274657A JP1725498A JP1725498A JPH10274657A JP H10274657 A JPH10274657 A JP H10274657A JP 1725498 A JP1725498 A JP 1725498A JP 1725498 A JP1725498 A JP 1725498A JP H10274657 A JPH10274657 A JP H10274657A
- Authority
- JP
- Japan
- Prior art keywords
- reducing agent
- sample
- section
- acid
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、試料の目的成分の
水素化物を生成させて分析する水素化物生成分析装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride generation analyzer for generating and analyzing a hydride of a target component of a sample.
【0002】[0002]
【従来技術とその問題点】半金属元素などの分析におい
て、原子吸光分析やICP分析を行うと検出感度が低
く、測定誤差が大きくなる場合があるが、これを水素化
物としガス化してICP分析等に導くと、原子化部分へ
の分析目的成分の導入効率が向上し、また導入した水素
化物の殆ど全量が原子化されるので検出感度が高く、測
定精度が向上すると云う利点がある。2. Description of the Related Art In the analysis of metalloid elements, if atomic absorption analysis or ICP analysis is performed, the detection sensitivity is low and the measurement error may be large. In this case, there is an advantage that the efficiency of introduction of the analysis target component into the atomized portion is improved, and almost all of the introduced hydride is atomized, so that the detection sensitivity is high and the measurement accuracy is improved.
【0003】通常、水素化物を発生させるには、試料に
酸と共に還元剤を加えているが、試料に応じて水素化物
の発生条件を整える必要があり、従来は酸濃度や還元剤
濃度などの液性を手作業で調整している。このため測定
元素が異なるごとに人手を必要とし、迅速な測定を行え
ない。また、従来のこの種の分析装置では、装置の測定
域外の濃度については手作業で希釈率や試料導入量を調
整しなければならず、試料液の調整などに手間どるなど
の問題がある。さらに、従来の装置は試料の導入方法と
して主に連続吸引法、バッチ添加法、FIA法(ループ
インジェクション法)が採用されているが、連続吸引式
では、試料溶液を多量(少なくとも約20ml程度)に必要と
するため、濃縮率に制限があるため微量の分析を行うに
は限界がある。バッチ添加法ではエアーセグメント方式
を利用しているため、管路内に試料液が残留してメモリ
が残り、測定のつど管路を洗浄する必要がある。Usually, in order to generate hydride, a reducing agent is added to a sample together with an acid. However, it is necessary to prepare hydride generation conditions according to the sample. Liquidity is adjusted manually. Therefore, each time the element to be measured is different, human labor is required, and rapid measurement cannot be performed. Further, in this type of conventional analyzer, it is necessary to manually adjust the dilution ratio and the sample introduction amount for the concentration outside the measurement range of the device, and there is a problem that the adjustment of the sample solution is troublesome. Further, the conventional apparatus mainly employs a continuous suction method, a batch addition method, and an FIA method (loop injection method) as a sample introduction method. However, in the continuous suction method, a large amount of the sample solution (at least about 20 ml) is used. Therefore, there is a limit in performing a trace amount analysis because the concentration ratio is limited. In the batch addition method, since the air segment method is used, the sample liquid remains in the pipeline to leave a memory, and it is necessary to clean the pipeline each time measurement is performed.
【0004】[0004]
【発明の解決課題】本発明は、従来の水素化物発生分析
装置における上記問題を解決したものであり、少量の試
料液でも測定可能であり、測定系の残留メモリーが少な
く、さらに好適な態様においては、試料に応じて酸濃度
および還元剤濃度の選択と共に予備還元を行うことがで
きるようにし、しかも試料液の導入から分析に至る一連
の操作を自動的に実施できることから、測定元素の変更
も含めた多元素逐次分析可能な水素化物発生分析装置を
提供するものである。SUMMARY OF THE INVENTION The present invention has solved the above-mentioned problems in the conventional hydride generation analyzer, and can measure even a small amount of sample liquid, has a small residual memory of the measurement system, and has a more preferable embodiment. Allows the pre-reduction to be performed together with the selection of the acid concentration and the reducing agent concentration according to the sample, and since a series of operations from the introduction of the sample solution to the analysis can be automatically performed, the change of the element to be measured can be performed. It is an object of the present invention to provide a hydride generation analyzer capable of sequentially analyzing multiple elements including the hydride.
【0005】[0005]
【課題を解決する手段】本発明の分析装置は、エアーセ
グメント方式に代えてキャリアーを送液して試料を測定
系に導入することにより管路内のメモリーの残留を減少
させ、また、試料注入量をバッチ添加法並み(1ml以
下)に少量で足りるようにして試料溶液の濃縮率を高め
て測定できるようにした。さらに好ましくは、試薬導入
部を形成する酸供給部および還元剤供給部に酸濃度およ
び還元剤濃度を調整できる手段を設け、試料に応じてこ
れらの濃度を選択できるようにし、また、各部分を一体
に制御する制御回路を設けて試料液の導入から分析に至
る一連の操作を自動的に実施できるようにした。The analyzer according to the present invention reduces the residual memory in the pipeline by feeding a carrier and introducing a sample into a measurement system instead of the air segment system, and also allows the sample injection. The amount was sufficient to be as small as the batch addition method (1 ml or less) so that the concentration ratio of the sample solution was increased to enable measurement. More preferably, a means capable of adjusting the acid concentration and the reducing agent concentration is provided in the acid supply section and the reducing agent supply section forming the reagent introduction section, so that these concentrations can be selected according to the sample, and A control circuit for integrally controlling is provided so that a series of operations from introduction of a sample solution to analysis can be automatically performed.
【0006】すなわち、本発明によれば、(1)試料導入
部、試薬導入部、反応部、気液分離部および検出部が管
路によって順に連続して一体に接続されている流れ分析
装置において、試料導入部には試料液を保持するループ
が設けられており、該ループ中の試料液をキャリアーに
よって管路を通じて反応部に導入し、該反応部には試薬
導入部が接続しており、該試薬導入部には酸供給部と還
元剤供給部とが各々設けられており、該反応部に供給し
た酸および還元剤によって試料中の分析対象元素の水素
化物ガスを生成させ、該水素化物ガスを含む試料液を該
反応部から気液分離部に導き、該気液分離部に導入した
不活性ガスによって気液分離した水素化物ガスを検出部
に導いて分析することを特徴とする水素化物生成分析装
置が提供される。That is, according to the present invention, there is provided (1) a flow analyzer in which a sample introduction section, a reagent introduction section, a reaction section, a gas-liquid separation section, and a detection section are sequentially and integrally connected by a pipe. The sample introduction section is provided with a loop for holding a sample solution, the sample solution in the loop is introduced into the reaction section through a conduit by a carrier, and a reagent introduction section is connected to the reaction section, The reagent introduction section is provided with an acid supply section and a reducing agent supply section, respectively, and the hydride gas of the element to be analyzed in the sample is generated by the acid and the reducing agent supplied to the reaction section. Introducing hydrogen into the gas-liquid separation section from the reaction section to the gas-liquid separation section, and introducing the hydride gas separated by gas and liquid by the inert gas introduced into the gas-liquid separation section to the detection section for analysis. A compound generation analyzer is provided.
【0007】本発明の分析装置は、(2)試薬導入部に酸
供給部および還元剤供給部と共に予備還元剤供給部が設
けられており、反応部の試料液に予備還元剤が供給され
た後に酸および還元剤が供給される分析装置を含む。In the analyzer of the present invention, (2) a pre-reducing agent supply unit is provided in the reagent introducing unit together with the acid supply unit and the reducing agent supply unit, and the pre-reducing agent is supplied to the sample liquid in the reaction unit. Includes an analyzer to which the acid and reducing agent are later supplied.
【0008】さらに、本発明の分析装置は、好ましくは
酸および還元剤の濃度を選択できる手段を有する。即
ち、上記分析装置は(3)酸供給部に濃度の異なる酸が保
持されており、試料液に応じて酸の濃度が選択される分
析装置、(4)還元剤供給部に濃度の異なる還元剤が保持
されており、試料液に応じて還元剤の濃度が選択される
分析装置、(5)酸供給部に酸と希釈水の供給手段が各々
設けられており、希釈水によって所定濃度に酸が希釈さ
れて反応部に供給される分析装置、(6)還元剤供給部に
還元剤と希釈水の供給手段が各々設けられており、希釈
水によって所定濃度に還元剤が希釈されて反応部に供給
される分析装置を含む。Further, the analyzer of the present invention preferably has means for selecting the concentrations of the acid and the reducing agent. That is, in the above analyzer, (3) an analyzer in which an acid having a different concentration is held in an acid supply section and an acid concentration is selected according to a sample liquid; and (4) a reducing agent having a different concentration in a reducing agent supply section. An analyzer in which an agent is held and the concentration of the reducing agent is selected in accordance with the sample liquid. An analyzer in which the acid is diluted and supplied to the reaction section. (6) The reducing agent supply section is provided with a supply means for the reducing agent and the dilution water, respectively. Including the analyzer supplied to the unit.
【0009】さらに本発明の分析装置は、(7)予備還元
剤供給部に複数の予備還元剤が保持され、試料液に応じ
てこれらが選択される分析装置、(8)試料導入部、試薬
導入部、反応部、気液分離部および検出部の動作を一体
に制御する制御回路が設けられており、試料液の導入か
ら分析に至る一連の操作が自動的に行われる分析装置を
含む。Further, the analyzer according to the present invention comprises: (7) an analyzer in which a plurality of pre-reducing agents are held in a pre-reducing agent supply unit, wherein these are selected according to a sample solution; A control circuit that integrally controls the operations of the introduction unit, the reaction unit, the gas-liquid separation unit, and the detection unit is provided, and includes an analyzer that automatically performs a series of operations from introduction of a sample solution to analysis.
【0010】[0010]
【発明の実施形態】以下に本発明を図面に示す実施例に
基づいて詳細に説明する。図1は本発明の分析装置に係
る測定系を示す概念図であり、図2〜図4は試薬導入部
の構成例を示す概念図である。本発明の分析装置は、図
示するように、試料導入部11、反応部13、試薬導入
部14、気液分離部15および検出部16が管路17に
よって順に連続して一体に接続された連続流れ分析装置
であり、試料液が管路を流れる間に試薬が添加され、反
応部に導かれて分析に適する状態に反応し、引き続き検
出部に導かれて分析されるフローインジェクション(FI)
に基づく装置である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1 is a conceptual diagram showing a measurement system according to the analyzer of the present invention, and FIGS. 2 to 4 are conceptual diagrams showing a configuration example of a reagent introduction unit. As shown in the drawing, the analyzer of the present invention has a continuous configuration in which a sample introduction unit 11, a reaction unit 13, a reagent introduction unit 14, a gas-liquid separation unit 15, and a detection unit 16 are connected sequentially and integrally by a pipe line 17. A flow analyzer, in which a reagent is added while a sample solution flows through a pipe line, guided to a reaction unit, reacts in a state suitable for analysis, and subsequently guided to a detection unit for analysis by flow injection (FI).
It is a device based on.
【0011】試料導入部11は、測定系の管路17に介
在された開閉バルブを備えており、該開閉バルブには試
料液を保持するループが装着されている。該開閉バルブ
には六方バルブなどを用い、その管路の切替部分に上記
ループを装着したものを用いれば良い。好ましくは、該
ループにオートサンプラー12を接続し、一定量の試料液
が自動的に該ループに導入されるようにすると良い。上
記開閉バルブが測定系の管路に対して開くと該ループ中
の試料液が該管路を流れるキャリアーによって管路内に
導入され、該管路を通じて反応部に導入される。The sample introducing section 11 has an opening / closing valve interposed in a pipe 17 of a measuring system, and the opening / closing valve is provided with a loop for holding a sample liquid. A six-way valve or the like may be used as the opening / closing valve, and a valve having the above-mentioned loop attached to a switching portion of the pipeline may be used. Preferably, an autosampler 12 is connected to the loop so that a fixed amount of sample solution is automatically introduced into the loop. When the open / close valve is opened with respect to the pipeline of the measurement system, the sample liquid in the loop is introduced into the pipeline by the carrier flowing through the pipeline, and is introduced into the reaction unit through the pipeline.
【0012】反応部13は、一例として、反応時間を確
保するように、管路17がコイル状に形成された部分で
ある。該反応部13には試薬導入部14が接続してお
り、試料液が反応部13を流れる間に反応部13に供給
された試薬との反応が進む。The reaction section 13 is, for example, a section in which the pipe 17 is formed in a coil shape so as to secure a reaction time. A reagent introduction section 14 is connected to the reaction section 13, and the reaction with the reagent supplied to the reaction section 13 proceeds while the sample liquid flows through the reaction section 13.
【0013】試薬導入部14には酸供給部14aと還元
剤供給部14bとがおのおの設けられており、酸供給部
14aは管路14dおよび送液ポンプ14eを通じて測
定系管路17に接続しており、還元剤供給部14bは管
路14dおよび送液ポンプ14eを通じて反応部13に
連通している。これらの管路14dを通じて反応部に酸
および還元剤がおのおの導入され、試料液中の半金属元
素等の目的成分と反応して水素化物を発生する。酸は試
料液と混合して、試料ゾーンを還元雰囲気とする一方、
水素を発生させるための酸性度を保持する。また還元剤
はこの状態の試料液と反応して分析成分元素に遊離した
水素を結合させて水素化物を発生させる。酸と還元剤の
種類は分析対象元素の種類や試料液の性質などに応じて
適宜用いられるが、半金属元素等の分析には酸として塩
酸が一般的に用いられ、還元剤としては水素化ホウ素ナ
トリウム(NaBH4)等が用いられる。The reagent introduction section 14 is provided with an acid supply section 14a and a reducing agent supply section 14b, and the acid supply section 14a is connected to a measurement system pipe 17 through a pipe 14d and a liquid feed pump 14e. The reducing agent supply unit 14b communicates with the reaction unit 13 through a conduit 14d and a liquid feed pump 14e. An acid and a reducing agent are each introduced into the reaction section through these pipes 14d, and react with target components such as metalloid elements in the sample solution to generate hydrides. The acid is mixed with the sample solution to make the sample zone a reducing atmosphere,
Maintain the acidity to generate hydrogen. Further, the reducing agent reacts with the sample liquid in this state to combine the liberated hydrogen with the analysis component element to generate a hydride. The type of acid and reducing agent is appropriately used depending on the type of the element to be analyzed and the properties of the sample solution, but hydrochloric acid is generally used as the acid for the analysis of metalloid elements and the like, and hydrogenating is used as the reducing agent. Sodium boron (NaBH 4 ) or the like is used.
【0014】上記試薬導入部14には、好ましくは、図
2に示すように、酸供給部14aおよび還元剤供給部1
4bと共に予備還元剤供給部14cが設けられ、これに
対応して反応部13に予備反応部13aが設けられる。
この予備反応部13aには管路14および送液ポンプ1
4eを通じて予備還元剤供給部14cと上記酸供給部1
4aとが接続しており、予備反応部13aの試料液に予
備還元剤と酸とを供給する。予備還元剤は試料液と反応
して、例えば、ヒ素(As)を5価から3価に、セレン(Se)
を6価から4価に還元して水素化物を発生させやすい価
数にする。この状態の試料液が反応部13に導入されて
還元剤が添加され水素化物を生成する。半金属元素等の
分析では予備還元剤として、例えばヒ素(As)に対しては
ヨウ化カリウム等が用いられる。The reagent introduction section 14 is preferably provided with an acid supply section 14a and a reducing agent supply section 1 as shown in FIG.
A preliminary reducing agent supply section 14c is provided along with 4b, and a preliminary reaction section 13a is provided in the reaction section 13 corresponding to this.
The pre-reaction section 13a includes a pipe 14 and a liquid feed pump 1
4e and the acid supply unit 1
4a, and supplies a pre-reducing agent and an acid to the sample liquid in the pre-reaction section 13a. The pre-reducing agent reacts with the sample solution to convert arsenic (As) from pentavalent to trivalent, for example, selenium (Se).
Is reduced from hexavalent to tetravalent to have a valence that facilitates generation of hydride. The sample liquid in this state is introduced into the reaction section 13 and a reducing agent is added to generate a hydride. In the analysis of a metalloid element or the like, potassium iodide or the like is used as a preliminary reducing agent, for example, for arsenic (As).
【0015】好ましくは、上記酸供給部14aおよび還
元剤供給部14bにはこれらの濃度が適宜選択できる手
段が設けられ、また予備還元剤供給部14cには複数の
予備還元剤を選択できる手段が設けられている。具体的
には、図3に示すように、酸供給部14aおよび還元剤
供給部14bに各々濃度の異なる酸ないし還元剤を保持
した複数の容器14j、14kを設けて適宜に選択でき
るようにすると良い。図示する例では1M、2M、4M、
6Mの4種類の濃度の塩酸と、0.5%、1.0%、2.0
%、5.0%の4種類の濃度の水素化ホウ素ナトリウム
が設けられており、試料液の状態に応じてこれらの濃度
が選択され、送液ポンプ14eおよび管路14dを通じ
て反応部13ないし予備反応部13aに送られる。Preferably, the acid supply section 14a and the reducing agent supply section 14b are provided with means for appropriately selecting their concentrations, and the preliminary reducing agent supply section 14c is provided with means for selecting a plurality of preliminary reducing agents. Is provided. Specifically, as shown in FIG. 3, a plurality of containers 14j and 14k holding different concentrations of acids or reducing agents are provided in the acid supply unit 14a and the reducing agent supply unit 14b, respectively, so that they can be appropriately selected. good. In the example shown, 1M, 2M, 4M,
6M hydrochloric acid at four concentrations, 0.5%, 1.0%, 2.0%
% And 5.0% sodium borohydride are provided, and these concentrations are selected according to the state of the sample solution. It is sent to the reaction section 13a.
【0016】濃度を調整する他の手段としては、図4に
示すように、高濃度の酸を供給する送液ポンプ14fと
希釈水を供給する送液ポンプ14gによって酸供給部1
4aを形成し、さらに高濃度の還元剤を供給する送液ポ
ンプ14hと希釈水を供給する送液ポンプ14iによっ
て還元剤供給部14bを形成し、酸および還元剤に対す
る希釈水の量を調整して酸および還元剤を目的の濃度と
し、これを管路14dを通じて反応部13に供給するも
のでも良い。As another means for adjusting the concentration, as shown in FIG. 4, an acid supply unit 1 is supplied by a liquid supply pump 14f for supplying a high-concentration acid and a liquid supply pump 14g for supplying dilution water.
4a, a reducing agent supply section 14b is formed by a liquid sending pump 14h for supplying a high-concentration reducing agent and a liquid sending pump 14i for supplying dilution water, and the amount of the diluting water with respect to the acid and the reducing agent is adjusted. Alternatively, the acid and the reducing agent may be adjusted to target concentrations and supplied to the reaction section 13 through the pipe 14d.
【0017】また、予備還元剤供給部14cには種々の
還元剤を各々保持した複数の容器14mが設けられ、試
料液に応じてこれらの還元剤が適宜選択される。例え
ば、各容器に予備還元剤として過酸化水素水、ヨウ化カ
リウム、水などが保持され適宜選択される。A plurality of containers 14m each holding various reducing agents are provided in the preliminary reducing agent supply section 14c, and these reducing agents are appropriately selected according to the sample liquid. For example, each container holds a hydrogen peroxide solution, potassium iodide, water, or the like as a preliminary reducing agent, and is appropriately selected.
【0018】気液分離部15は水素化物を含む試料液と
共に不活性ガスが供給される密閉容器であり、測定系の
管路17と共に不活性ガスの供給管路15aおよび廃液
を外部に排出する管路15bが接続されている。測定系
の管路17は検出部16に連通しており、不活性ガスに
よって気液分離された水素化物ガスが管路17を通じて
検出部16に導入される。The gas-liquid separation unit 15 is a closed container to which an inert gas is supplied together with a sample liquid containing hydride, and discharges an inert gas supply line 15a and waste liquid to the outside together with a measurement system line 17. The pipe 15b is connected. The pipe 17 of the measurement system communicates with the detection unit 16, and the hydride gas separated by the inert gas from the gas-liquid separation is introduced into the detection unit 16 through the pipe 17.
【0019】検出部16には原子吸光分析器、あるいは
ICP発光分光分析器などが設けられており、水素化物
として導入された目的元素の分析を行う。The detection unit 16 is provided with an atomic absorption analyzer, an ICP emission spectrometer, or the like, and analyzes a target element introduced as a hydride.
【0020】上記分析装置は、好ましくは、試料導入部
11、試薬導入部14(酸供給部、還元剤供給部および
予備還元剤供給部)、反応部13、気液分離部15およ
び検出部16の各部分は制御回路21によって接続され
ており、これら各部分の動作は制御部20に設けたコン
ピュータによって自動的に制御され、試料液の導入から
分析に至る一連の操作が自動的に行われる。更に酸濃
度、還元剤濃度および予備還元剤の選択手段を有する場
合には、分析対象元素の種類や試料液の状態に応じて自
動的に或いは選択指令を入力することにより、目的の濃
度の酸および還元剤さらには予備還元剤が選択されて、
反応部ないし予備反応部に供給される。あるいは酸およ
び還元剤に対する希釈水量を調節して試薬と水の混合比
率を調整することにより目的濃度の酸および還元剤を形
成し、反応部ないし予備反応部に供給する。The analyzer preferably comprises a sample introduction section 11, a reagent introduction section 14 (acid supply section, reducing agent supply section and preliminary reducing agent supply section), a reaction section 13, a gas-liquid separation section 15, and a detection section 16. Are connected by a control circuit 21. The operations of these parts are automatically controlled by a computer provided in the control unit 20, and a series of operations from introduction of a sample solution to analysis are automatically performed. . Further, in the case where a means for selecting an acid concentration, a reducing agent concentration, and a pre-reducing agent is provided, an acid having a desired concentration can be obtained automatically or by inputting a selection command according to the type of the element to be analyzed and the state of the sample solution. And a reducing agent and further a pre-reducing agent are selected,
It is supplied to the reaction section or the preliminary reaction section. Alternatively, an acid and a reducing agent having a desired concentration are formed by adjusting a mixing ratio of a reagent and water by adjusting a dilution water amount with respect to an acid and a reducing agent, and supplied to a reaction section or a preliminary reaction section.
【0021】[0021]
【測定例】以下に本発明装置による測定例を示す。本例
では検出器として原子吸光光度計を使用し、ヒ素の測定
例について説明する。なお、以下の説明において、流
量、試薬の種類等は例示であり、本発明装置の使用はこ
れらに限定されない。[Measurement Example] A measurement example using the apparatus of the present invention is shown below. In this example, an example of measuring arsenic using an atomic absorption photometer as a detector will be described. In the following description, the flow rate, the type of the reagent, and the like are merely examples, and the use of the device of the present invention is not limited to these.
【0022】測定例1 図3の測定系を有する装置において以下の手順に従い装
置を起動する。 (イ)測定系を起動し、水をキャリアーとして用い、一定
流量の水を管路17に送液して管路内の洗浄を行うと共
にオートサンプラー12および付属のバルブ類の初期化
を行い、気液分離部15に導入するアルゴンガス流量の
設定を行う。 (ロ)検出部16を起動し、原子吸光分光器等の校正、分
光器内部の中空陰極ランプの余熱、管状炉の加熱などを
行う。 (ハ)制御用コンピュータから測定条件を入力し、オート
サンプラー上の標準液位置とその濃度、試料溶液の数、
各溶液の繰り返し測定数等を設定する。また、コンピュ
ーターに記録されている各測定元素に対する試薬(NaB
H4、HCl)の種類、予備還元剤の種類、これら各試薬の流
量、最適試薬濃度、キャリアーの流量、アルゴンガス流
量、反応槽の温度、水素化物発生用管状炉の温度、定量
下限濃度ないし吸光度、定量上限濃度ないし吸光度など
の設定を必要に応じて変更する。 Measurement Example 1 The apparatus having the measurement system shown in FIG. 3 is started according to the following procedure. (B) Activate the measurement system, use water as a carrier, send a constant flow of water to the pipe 17 to clean the inside of the pipe, and initialize the autosampler 12 and attached valves, The flow rate of the argon gas introduced into the gas-liquid separation unit 15 is set. (B) Activate the detection unit 16 to perform calibration of the atomic absorption spectrometer, etc., residual heat of the hollow cathode lamp inside the spectrometer, and heating of the tubular furnace. (C) Input the measurement conditions from the control computer, and the position of the standard solution on the autosampler and its concentration, the number of sample solutions,
Set the number of repeated measurements for each solution. In addition, reagents (NaB
H 4, HCl) type, type of pre-reduction agent, flow rate of each of these reagents, optimal reagent concentration, carrier flow rate, the argon gas flow rate, reactor temperature, the temperature of the hydride generating tube furnace, to no lower limit of quantitation concentration Change the settings such as absorbance, upper limit of quantitation or absorbance as necessary.
【0023】(ニ)制御用コンピュータに測定対象元素を
入力する。複数の元素を測定する場合には、全ての元素
を指定して入力する。以下、ヒ素の測定例を示す。 (ホ)ヒ素の測定において、標準条件として、コンピュー
ターから自動的に酸として3M塩酸、還元剤として1%
NaBH4、予備還元剤として40%KI溶液を指定す
る。この指定に従い、酸供給部、還元剤供給部および予
備還元剤供給部において上記試薬が選択され、予備反応
部および反応部に各々2ml/minの割合で自動的に供給さ
れる。 (ヘ)この状態を指定された時間(例えば3分)保持して測
定系を安定化させる。一方、検出器では測定手段の中空
陰極ランプが測定光路上の最適位置にセットされ、測定
波長を自動的にヒ素の最高感度の得られる共鳴線波長(1
93.7nm)に設定される。(D) Input the element to be measured into the control computer. When measuring a plurality of elements, all the elements are specified and input. Hereinafter, an example of arsenic measurement will be described. (E) In the measurement of arsenic, as a standard condition, 3M hydrochloric acid as an acid and 1% as a reducing agent automatically from a computer as a standard condition.
NaBH 4 , 40% KI solution as pre-reducing agent. According to this designation, the above reagent is selected in the acid supply section, the reducing agent supply section and the preliminary reducing agent supply section, and is automatically supplied to the preliminary reaction section and the reaction section at a rate of 2 ml / min each. (F) This state is maintained for a designated time (for example, 3 minutes) to stabilize the measurement system. On the other hand, in the detector, the hollow cathode lamp of the measuring means is set at the optimum position on the measuring optical path, and the measuring wavelength is automatically set to the resonance line wavelength (1) at which the highest sensitivity of arsenic is obtained.
93.7 nm).
【0024】(ト)測定系が安定化した後、標準液および
試料液の測定が逐次行われる。なお試料液は、試料導入
部において標準条件で500μlの量がキャリアー(水など)
によって逐次測定系に導入される。各試料液の測定後、
吸光度が算出(ピーク高さまたはピーク面積)され、測定
した吸光度に基づいて試料液中の測定元素(半金属元素
など)の濃度が算出される。結果は制御部に接続した表
示装置に表示されると共に制御部に記録される。(G) After the measurement system is stabilized, the measurement of the standard solution and the sample solution is sequentially performed. In the sample solution, the amount of 500 μl of carrier (water, etc.) under standard conditions is
Is introduced into the sequential measurement system. After measuring each sample solution,
The absorbance is calculated (peak height or peak area), and the concentration of the measurement element (such as a metalloid element) in the sample solution is calculated based on the measured absorbance. The result is displayed on a display device connected to the control unit and recorded in the control unit.
【0025】(チ)必要に応じて再測定の要否の判断を行
い、再測定を行う。再測定が必要な例として、検量線の
範囲を超える高濃度の試料については以下のように再測
定が行われる。 (1)まず、試料注入量を最初の測定の1/2(250μl)とし
て測定する。 (2)上記調整によっても、測定濃度が検量線の範囲を超
える場合は試料注入量を上記注入量の1/2として試料
溶液を測定する。 (3)上記調整によっても、なお測定濃度が検量線の範囲
を超える場合には、この操作を繰り返して検量線の範囲
内に入るように試料注入量を制御する。(H) The necessity of re-measurement is determined as necessary, and re-measurement is performed. As an example requiring re-measurement, a re-measurement is performed as follows for a sample having a high concentration exceeding the range of the calibration curve. (1) First, the sample injection amount is measured as 1/2 (250 μl) of the first measurement. (2) When the measured concentration exceeds the range of the calibration curve even after the above adjustment, the sample solution is measured with the sample injection amount being 1 of the injection amount. (3) If the measured concentration still exceeds the range of the calibration curve by the above adjustment, repeat this operation to control the sample injection amount so as to fall within the range of the calibration curve.
【0026】(4)更に、このような注入量の調整によっ
ても、測定濃度がなお検量線の範囲を越える場合には、
試料注入量を測定直前の量(上記(3)で繰返し調整した
最後の量)に保持し、塩酸濃度の低いものを順次選択し
て測定する。この測定濃度が検量線の範囲内であれば、
最高濃度の標準液を再度この条件で測定し、減感率(D)
を求めて算出された試料中の分析対象元素濃度にこれを
乗じて定量を行う。 (5)以上の酸濃度の調整によっても測定濃度が検量線の
範囲を超える場合は、試料注入量および塩酸濃度を測定
直前の量ないし濃度(上記(4)で繰返し調整した最後の
量、濃度)に保持すると共に還元剤のNaBH4濃度の
濃度の低いものを順次選択して測定を行う。これが、検
量線の範囲内であれば、最高濃度の標準液を再度この条
件で測定し、減感率(D)を求めて算出された試料中の分
析対象元素濃度にこれを乗じて定量を行う。 (6)最終的に、検量線範囲内に入らない場合は定量上限
以上のである旨データに付加して次の測定を行う。(4) Further, if the measured concentration still exceeds the range of the calibration curve by such adjustment of the injection amount,
The injection amount of the sample is held at the amount immediately before the measurement (the last amount repeatedly adjusted in the above (3)), and the sample having a lower hydrochloric acid concentration is sequentially selected and measured. If this measured concentration is within the range of the calibration curve,
The highest concentration standard solution was measured again under these conditions, and the desensitization rate (D)
Is multiplied by the concentration of the element to be analyzed in the sample, which is calculated by the calculation, and quantification is performed. (5) If the measured concentration exceeds the range of the calibration curve even after the above adjustment of the acid concentration, adjust the sample injection amount and hydrochloric acid concentration immediately before the measurement or the concentration (the last amount, concentration after repeated adjustment in (4) above). ) And successively select a reducing agent having a lower concentration of NaBH 4 for measurement. If this is within the range of the calibration curve, the standard solution with the highest concentration is measured again under these conditions, and the concentration of the element to be analyzed in the sample calculated by obtaining the desensitization rate (D) is multiplied by this to determine the quantification. Do. (6) If it does not fall within the range of the calibration curve, add the data indicating that it is more than the upper limit of quantification and perform the next measurement.
【0027】(ニ)再測定が必要なもののうち、測定結果
が定量下限以下の低濃度または共存物質等の妨害があり
定量下限以下の濃度に表示されていると考えられる試料
については以下のように再測定を行う。 (1)試料注入量を2倍(1000μl)として該当する試料溶液
を測定する。 (2)上記調整によっても定量下限以下の場合は試料注入
量を上記(1)の2倍にして測定を行う。測定濃度がなお
定量下限以下の場合は、この操作を繰り返して定量範囲
内に入る量に調整する。 (3)上記(2)の調整によっても、なお定量下限以下の場合
は、試料注入量を測定直前の量(上記(2)で繰り返し調
整した最後の量)に保持し、高濃度の塩酸および高濃度
のNaBH4を選択して測定する。これを設定可能な濃
度範囲内で繰り返す。 (4)上記(3)の調整でも、なお定量下限以下の場合は、試
料注人量を測定直前の量(上記(3)で繰返し調整した最
後の量)に保持し、さらに高濃度の酸濃度と還元剤濃度
を選択して測定し、これを設定可能濃度範囲内で繰り返
す。 (5)最終的に定量下限以下の試料については定量下限以
下である旨データに付加して次の測定を行う。(D) Among the samples requiring re-measurement, the samples whose measurement results are considered to be displayed at a low concentration below the lower limit of quantification or at a concentration lower than the lower limit of quantification due to interference with coexisting substances or the like are as follows. Repeat the measurement. (1) Double the sample injection volume (1000 μl) and measure the corresponding sample solution. (2) If the above adjustment does not result in a lower limit of quantification, measure the amount by injecting the sample twice as much as in (1) above. If the measured concentration is still below the lower limit of quantification, this operation is repeated to adjust the concentration to fall within the quantification range. (3) Even after the adjustment in (2) above, if the amount is still below the lower limit of quantification, the sample injection volume is maintained at the volume immediately before measurement (the last volume repeatedly adjusted in (2) above), High concentration NaBH 4 is selected and measured. This is repeated within a settable density range. (4) If the adjustment in (3) above is still below the lower limit of quantification, maintain the sample injection volume at the volume immediately before measurement (the last volume repeatedly adjusted in (3) above), The concentration and the reducing agent concentration are selected and measured, and this is repeated within the settable concentration range. (5) Finally, for the sample below the lower limit of quantification, add the data indicating that it is lower than the lower limit of quantification to the next measurement.
【0028】複数の測定元素を分析対象とする場合に
は、各元素ごとに測定条件を整えて順次測定を行う。制
御部にこの測定条件の変更を予め入力しておけば、複数
の元素を自動的に分析することができる。When a plurality of elements to be measured are to be analyzed, measurement conditions are prepared for each element and measurements are sequentially performed. If the change of the measurement condition is input in advance to the control unit, a plurality of elements can be automatically analyzed.
【0029】測定例2 図4の測定系を有する装置において以下の手順に従い装
置を起動する。 (イ)測定例1の(イ)〜(ニ)と同様にして測定系の状態を整
える。 (ロ)ヒ素の分折において、最適の試薬濃度になるように
各送液ポンプの流量が調節される。例えば、還元剤の送
液ポンプ14hと14iの流量比を1:6にして、1%
NaBΗ4を管路14dを通じて反応部13に送液す
る。このとき管路14dの総流量は2ml/minになるよう
に制御する(具体的には、還元剤の流量0.29ml/min、希
釈水量は1.71ml/min)。 (ハ)同様に、酸供給部の送液ポンプ14fと14gの流
量比を1:2にして、6ΜHClを管路14dを通じて
2ml/minで送液する。 (ニ)また、予備還元剤である40%KI溶液を予備反応
部13aに2ml/minで送液する。 Measurement Example 2 The apparatus having the measurement system shown in FIG. 4 is started according to the following procedure. (A) The state of the measurement system is adjusted in the same manner as (A) to (D) of Measurement Example 1. (B) In the analysis of arsenic, the flow rate of each liquid sending pump is adjusted so as to obtain the optimum reagent concentration. For example, the flow ratio of the reducing agent feed pumps 14h and 14i is set to 1: 6, and 1%
The NaBita 4 for feeding to the reaction section 13 through the pipe 14d. At this time, control is performed so that the total flow rate of the pipe 14d is 2 ml / min (specifically, the flow rate of the reducing agent is 0.29 ml / min, and the amount of diluting water is 1.71 ml / min). (C) Similarly, the flow rate ratio between the feed pumps 14f and 14g in the acid supply section is set to 1: 2, and 6ΜHCl is passed through the pipe 14d.
Feed at 2 ml / min. (D) Also, a 40% KI solution as a preliminary reducing agent is sent to the preliminary reaction section 13a at a rate of 2 ml / min.
【0030】(ホ)この状態を指定時間(例えば3分間)保
持して、装置状態を安定化させる。一方、検出器では測
定手段の中空陰極ランプが測定光路上の最適位置にセッ
トされ、測定波長を自動的にヒ素の最高感度の得られる
共鳴線波長(193.7nm)に設定される。 (ヘ)測定系が安定化した後、標準液および試料液の測定
が逐次行われる。なお試料液は、試料導入部において標
準条件で500μlの量がキャリアー(水など)によって逐次
測定系に導入される。各試料液の測定後、吸光度が算出
(ピーク高さまたはピーク面積)され、測定した吸光度に
基づいて試料液中の測定元素(半金属元素など)の濃度が
算出される。結果は制御部に接続した表示装置に表示さ
れると共に制御部に記録される。(E) This state is maintained for a specified time (for example, 3 minutes) to stabilize the state of the apparatus. On the other hand, in the detector, the hollow cathode lamp of the measuring means is set at the optimum position on the measuring optical path, and the measuring wavelength is automatically set to the resonance line wavelength (193.7 nm) at which the highest sensitivity of arsenic is obtained. (F) After the measurement system is stabilized, the measurement of the standard solution and the sample solution is sequentially performed. Note that the sample solution is sequentially introduced into the measurement system by a carrier (eg, water) in an amount of 500 μl under standard conditions in the sample introduction section. After each sample solution is measured, absorbance is calculated
(Peak height or peak area), and the concentration of the measurement element (metalloid element, etc.) in the sample solution is calculated based on the measured absorbance. The result is displayed on a display device connected to the control unit and recorded in the control unit.
【0031】(ト)再測定の要否の判断を行い、必要な試
料について再測定を行う。再測定の要領は、酸濃度およ
び還元剤濃度を送液ポンプの流量調整によって行う以外
は測定例1と基本的に同じである。例えば、希釈水量を
増加して酸および還元剤の濃度を順次半分に下げて再測
定を行う。希釈水量を変えずに酸供給量あるいは還元剤
供給量を減じても良い。または、希釈水量を減じて酸お
よび還元剤の濃度を順次高めて再測定を行う。希釈水量
を変えずに酸供給量あるいは還元剤供給量を増しても良
い。(G) The necessity of re-measurement is determined, and a re-measurement is performed for a necessary sample. The procedure of the re-measurement is basically the same as in Measurement Example 1 except that the acid concentration and the reducing agent concentration are adjusted by adjusting the flow rate of the liquid sending pump. For example, re-measurement is performed by increasing the amount of dilution water and sequentially decreasing the concentrations of the acid and the reducing agent by half. The acid supply amount or the reducing agent supply amount may be reduced without changing the dilution water amount. Alternatively, re-measurement is performed by sequentially increasing the concentrations of the acid and the reducing agent by reducing the amount of dilution water. The acid supply amount or the reducing agent supply amount may be increased without changing the dilution water amount.
【0032】実施例1 図3の測定系を利用してヒ素の測定を行った。ヒ素標準
液を利用して検量線を作成した結果、検量線の直線範囲
(タ゛イナミックレンシ゛)は0.03から0.2ppm(吸光度:0.030
から0.250)であった。このときの測定は、標準条件(試
料注入量500μl、塩酸濃度3M、ホウ素化水素ナトリウ
ム1%)で行った。様々なヒ素濃度の試料溶液を自動測
定させた結果を表1に示す。測定は測定番号順に行っ
た。なお、吸光度欄の−印は測定省略したものであり、
N.D.は測定により検出不能であったものを示す。また、
OV.は測定範囲を逸脱したことを示している。また、本
測定系では塩酸として濃度1、2、3、6Mの各溶液を
供給できるようにし、ホウ素化水素ナトリウムとして濃
度0.5、1.0、2.0、5.0%の各溶液をそれぞれ供
給できるように設定した。 Example 1 Arsenic was measured using the measurement system shown in FIG. As a result of creating a calibration curve using the arsenic standard solution, the linear range of the calibration curve
(Dynamic Resin) is 0.03 to 0.2 ppm (absorbance: 0.030
From 0.250). The measurement at this time was performed under standard conditions (sample injection amount 500 μl, hydrochloric acid concentration 3 M, sodium borohydride 1%). Table 1 shows the results obtained by automatically measuring sample solutions having various arsenic concentrations. The measurement was performed in the order of the measurement number. The-mark in the absorbance column is a measurement omitted,
ND shows what could not be detected by the measurement. Also,
OV. Indicates that the measurement range was deviated. In this measurement system, each solution having a concentration of 1, 2, 3, or 6 M can be supplied as hydrochloric acid, and each solution having a concentration of 0.5, 1.0, 2.0, or 5.0% can be supplied as sodium borohydride. Were set to be supplied respectively.
【0033】[0033]
【表1】 [Table 1]
【0034】実施例2 図4の測定系を利用してヒ素の測定を行った。ヒ素標準
液を利用して検量線を作成した結果、検量線の直線範囲
(タ゛イナミックレンシ゛)は0.03から0.2ppm(吸光度:0.030か
ら0.250)であった。このときの測定は、標準条件(試料
注入量500μl、塩酸濃度3M、ホウ素化水素ナトリウム
1%)で行った。様々なヒ素濃度の試料溶液を自動測定
させた結果を表2に示す。測定は測定番号順に行った。
なお、吸光度欄の−印は測定省略したものであり、N.D.
は測定により検出不能であったものを示す。また、OV.
は測定範囲を逸脱したことを示している。本測定系では
塩酸として12M溶液を、ホウ素化水素ナトリウムとし
て5.0%をそれぞれ供給できるように設定した。 Example 2 Arsenic was measured using the measurement system shown in FIG. As a result of creating a calibration curve using the arsenic standard solution, the linear range of the calibration curve
(Dynamic Resin) was 0.03 to 0.2 ppm (absorbance: 0.030 to 0.250). The measurement at this time was performed under standard conditions (sample injection amount 500 μl, hydrochloric acid concentration 3 M, sodium borohydride 1%). Table 2 shows the results of automatically measuring sample solutions having various arsenic concentrations. The measurement was performed in the order of the measurement number.
The-mark in the absorbance column is a value for which measurement was omitted, and ND
Indicates those which could not be detected by the measurement. Also, OV.
Indicates that the measurement range has been deviated. In this measurement system, it was set so that a 12M solution as hydrochloric acid and 5.0% as sodium borohydride could be supplied.
【0035】[0035]
【表2】 [Table 2]
【0036】表1および2において、ヒ素濃度が0.0
1ppmオーダの試料について、測定番号1の条件で測定
すると検出限界以下であるため測定不能(N.D)となり、
そこで試料注入量を2倍(1000μm)にして測定したとこ
ろ(測定番号8)、測定値(0.009)が得られたが、これは
検量線限界を超えた範囲であるので、さらに塩酸濃度を
2倍(6M)に高めて測定(測定番号9)することにより測定
値(0.034)を得た。ヒ素濃度が0.1ppmオーダの試料に
ついては測定番号1の条件で検量線の範囲内での測定が
可能であった。ヒ素濃度が1ppmオーダの試料について
は、測定番号1、2の条件で検量線限界を超えたが、測
定番号3の条件で測定値(0.28)が得られた。ただしこの
値は検量線外付近であるので、さらに測定条件を整えて
(測定番号4)、測定値(0.143)を得た。なおヒ素濃度が
0.001ppmオーダの試料については何れの測定条件に
おいても検出不能であった。In Tables 1 and 2, the arsenic concentration was 0.0
When a sample on the order of 1 ppm is measured under the conditions of measurement number 1, it is below the detection limit and cannot be measured (ND).
Therefore, when the sample injection amount was doubled (1000 μm) and measured (measurement number 8), a measured value (0.009) was obtained. However, since this was within the range of the calibration curve limit, the hydrochloric acid concentration was further increased by 2%. The measurement value (measurement number 9) was increased by a factor of 6 (6M) to obtain a measurement value (0.034). With respect to a sample having an arsenic concentration of 0.1 ppm order, it was possible to measure within the range of the calibration curve under the condition of measurement number 1. For the sample having an arsenic concentration on the order of 1 ppm, the calibration curve limit was exceeded under the conditions of measurement numbers 1 and 2, but the measurement value (0.28) was obtained under the condition of measurement number 3. However, this value is near the outside of the calibration curve.
(Measurement number 4) and a measurement value (0.143) were obtained. Note that the sample having an arsenic concentration of 0.001 ppm was not detectable under any of the measurement conditions.
【図1】 本発明装置の測定系を示す概念図FIG. 1 is a conceptual diagram showing a measurement system of the apparatus of the present invention.
【図2】 試薬導入部の構成例を示す概念図FIG. 2 is a conceptual diagram showing a configuration example of a reagent introduction unit.
【図3】 試薬導入部の構成例を示す概念図FIG. 3 is a conceptual diagram showing a configuration example of a reagent introduction unit.
【図4】 試薬導入部の構成例を示す概念図FIG. 4 is a conceptual diagram showing a configuration example of a reagent introduction unit.
11:試料導入部、12:オートサンプラー、13:反
応部、14:試薬導入部、15:気液分離部、16:検
出部11: sample introduction part, 12: autosampler, 13: reaction part, 14: reagent introduction part, 15: gas-liquid separation part, 16: detection part
Claims (8)
分離部および検出部が管路によって順に連続して一体に
接続されている流れ分析装置において、試料導入部には
試料液を保持するループが設けられており、該ループ中
の試料液をキャリアーによって管路を通じて反応部に導
入し、該反応部には試薬導入部が接続しており、該試薬
導入部には酸供給部と還元剤供給部とが各々設けられて
おり、該反応部に供給した酸および還元剤によって試料
中の分析対象元素の水素化物ガスを生成させ、該水素化
物ガスを含む試料液を該反応部から気液分離部に導き、
該気液分離部に導入した不活性ガスによって気液分離し
た水素化物ガスを検出部に導いて分析することを特徴と
する水素化物生成分析装置。1. A flow analyzer in which a sample introduction section, a reagent introduction section, a reaction section, a gas-liquid separation section, and a detection section are sequentially and integrally connected by a pipe line. A loop for holding is provided, and a sample solution in the loop is introduced into the reaction section through a conduit by a carrier, a reagent introduction section is connected to the reaction section, and an acid supply section is connected to the reagent introduction section. And a reducing agent supply unit are provided, respectively, and the hydride gas of the element to be analyzed in the sample is generated by the acid and the reducing agent supplied to the reaction unit, and the sample liquid containing the hydride gas is supplied to the reaction unit. To the gas-liquid separator,
A hydride generation analyzer, wherein a hydride gas separated into gas and liquid by an inert gas introduced into the gas-liquid separation unit is guided to a detection unit for analysis.
部と共に予備還元剤供給部が設けられており、反応部の
試料液に予備還元剤が供給された後に酸および還元剤が
供給される請求項1に記載の分析装置。2. A pre-reducing agent supply section is provided in the reagent introduction section together with an acid supply section and a reducing agent supply section, and the acid and the reducing agent are supplied after the pre-reducing agent is supplied to the sample liquid in the reaction section. The analyzer according to claim 1.
おり、試料液に応じて酸の濃度が選択される請求項1ま
たは2に記載の分析装置。3. The analyzer according to claim 1, wherein the acid supply section holds acids having different concentrations, and the acid concentration is selected according to the sample solution.
持されており、試料液に応じて還元剤の濃度が選択され
る請求項1または2に記載の分析装置。4. The analyzer according to claim 1, wherein the reducing agent supply section holds reducing agents having different concentrations, and the concentration of the reducing agent is selected according to the sample liquid.
設けられており、希釈水によって所定濃度に酸が希釈さ
れて反応部に供給される請求項1または2に記載の分析
装置。5. The analyzer according to claim 1, wherein the acid supply unit is provided with an acid and a dilution water supply unit, and the acid is diluted to a predetermined concentration by the dilution water and supplied to the reaction unit. .
段が各々設けられており、希釈水によって所定濃度に還
元剤が希釈されて反応部に供給される請求項1または2
に記載の分析装置。6. The reducing agent supply unit is provided with a supply unit for a reducing agent and a dilution water, respectively, and the reducing agent is diluted to a predetermined concentration by the dilution water and supplied to the reaction unit.
The analyzer according to claim 1.
保持され、試料液に応じてこれらが選択される請求項2
〜6のいずれかに記載の分析装置。7. The pre-reducing agent supply unit holds a plurality of pre-reducing agents, and selects one of them according to a sample liquid.
An analyzer according to any one of claims 1 to 6.
分離部および検出部の動作を一体に制御する制御回路が
設けられており、試料液の導入から分析に至る一連の操
作が自動的に行われる請求項1〜7のいずれかに記載の
分析装置。8. A control circuit for integrally controlling the operations of a sample introduction unit, a reagent introduction unit, a reaction unit, a gas-liquid separation unit, and a detection unit is provided, and a series of operations from introduction of a sample solution to analysis is performed. The analyzer according to any one of claims 1 to 7, which is performed automatically.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01725498A JP3446583B2 (en) | 1997-01-30 | 1998-01-29 | Hydride generation analyzer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1642597 | 1997-01-30 | ||
JP9-16425 | 1997-01-30 | ||
JP01725498A JP3446583B2 (en) | 1997-01-30 | 1998-01-29 | Hydride generation analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10274657A true JPH10274657A (en) | 1998-10-13 |
JP3446583B2 JP3446583B2 (en) | 2003-09-16 |
Family
ID=26352773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01725498A Expired - Fee Related JP3446583B2 (en) | 1997-01-30 | 1998-01-29 | Hydride generation analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3446583B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100371052C (en) * | 2005-01-26 | 2008-02-27 | 北京吉天仪器有限公司 | Gas-liquid separator |
JP2011039050A (en) * | 2009-08-07 | 2011-02-24 | F Hoffmann-La Roche Ag | Analysis system for liquid sample |
KR101397971B1 (en) * | 2012-09-28 | 2014-05-27 | 주식회사 위드텍 | A monitoring system for monitoring metals and metal compounds in water |
CN104508489A (en) * | 2012-07-24 | 2015-04-08 | 株式会社日立高新技术 | Automatic analysis device |
WO2017010021A1 (en) * | 2015-07-16 | 2017-01-19 | 株式会社三菱化学アナリテック | Nitrogen analysis method and nitrogen analysis device |
WO2020116274A1 (en) * | 2018-12-03 | 2020-06-11 | 三井金属鉱業株式会社 | Method and device for isolating and analyzing target substance in solution |
WO2021140796A1 (en) * | 2020-01-06 | 2021-07-15 | 株式会社日立ハイテク | Electrolyte analysis apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100914460B1 (en) * | 2002-11-04 | 2009-08-27 | 주식회사 포스코 | Apparatus with means for making hydride |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3019157U (en) | 1995-06-09 | 1995-12-12 | 日本ジャーレル・アッシュ株式会社 | Hydride generator |
-
1998
- 1998-01-29 JP JP01725498A patent/JP3446583B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100371052C (en) * | 2005-01-26 | 2008-02-27 | 北京吉天仪器有限公司 | Gas-liquid separator |
JP2011039050A (en) * | 2009-08-07 | 2011-02-24 | F Hoffmann-La Roche Ag | Analysis system for liquid sample |
CN104508489A (en) * | 2012-07-24 | 2015-04-08 | 株式会社日立高新技术 | Automatic analysis device |
CN104508489B (en) * | 2012-07-24 | 2016-03-16 | 株式会社日立高新技术 | Automatic analysing apparatus |
KR101397971B1 (en) * | 2012-09-28 | 2014-05-27 | 주식회사 위드텍 | A monitoring system for monitoring metals and metal compounds in water |
WO2017010021A1 (en) * | 2015-07-16 | 2017-01-19 | 株式会社三菱化学アナリテック | Nitrogen analysis method and nitrogen analysis device |
WO2020116274A1 (en) * | 2018-12-03 | 2020-06-11 | 三井金属鉱業株式会社 | Method and device for isolating and analyzing target substance in solution |
JP2020091128A (en) * | 2018-12-03 | 2020-06-11 | 三井金属鉱業株式会社 | Method and apparatus for separating or analyzing target component in solution |
KR20210031757A (en) * | 2018-12-03 | 2021-03-22 | 미쓰이금속광업주식회사 | Method and apparatus for separating or analyzing a desired component in a solution |
US11215592B2 (en) | 2018-12-03 | 2022-01-04 | Mitsui Mining & Smelting Co., Ltd. | Method and device for isolating and analyzing target substance in solution |
WO2021140796A1 (en) * | 2020-01-06 | 2021-07-15 | 株式会社日立ハイテク | Electrolyte analysis apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3446583B2 (en) | 2003-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thompson et al. | Simultaneous determination of trace concentrations of arsenic, antimony, bismuth, selenium and tellurium in aqueous solution by introduction of the gaseous hydrides into an inductively coupled plasma source for emission spectrometry. Part I. Preliminary studies | |
EP0222994A1 (en) | Gas analyzer for the simultaneous measurement of a plurality of ingredients | |
EP0522828A1 (en) | Microwave heated digesting system | |
US5205988A (en) | Apparatus for measuring gaseous aldehyde | |
Matusiewicz et al. | Simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements in sonicate slurries of analytical samples by microwave induced plasma optical emission spectrometry with dual-mode sample introduction system | |
EP0469437A1 (en) | Method of and apparatus for preparing calibration gas | |
JPH10274657A (en) | Device for generating and analyzing hydride | |
US5139956A (en) | Method and system for determining peroxide content | |
US5330714A (en) | Process and apparatus for simultaneous measurement of sulfur and non-sulfur containing compounds | |
Nakahara | Development of gas-phase sample-introduction techniques for analytical atomic spectrometry | |
Schramel | Consideration of inductively coupled plasma spectroscopy for trace element analysis in the bio-medical and environmental fields | |
Elsayed et al. | Optimisation of operating parameters for simultaneous multi-element determination of antimony, arsenic, bismuth and selenium by hydride generation, graphite atomiser sequestration atomic absorption spectrometry | |
JPH0444696B2 (en) | ||
GB2321703A (en) | Analysing components which form detectable hydrides | |
TW202311729A (en) | Method and device for detecting urea | |
JPH0755780A (en) | High sensitivity measuring apparatus for ultra-trace ingredient in various gas by gas chromatograph | |
JP2008292215A (en) | Measuring gas dilution device, method therefor, mercury analyzer, and method therefor | |
Bian et al. | Online flow digestion of biological and environmental samples for inductively coupled plasma–optical emission spectroscopy (ICP–OES) | |
Pacquette et al. | Hydride generation laser-induced fluorescence of arsenic and selenium in the inductively coupled plasma and electrothermal atomizer | |
CN105136698A (en) | Volatile compound determination method and apparatus thereof | |
ávan Staden | Design and optimisation of a flow injection hydride generator and its use for automated standard additions | |
JPS60102542A (en) | Analyzing apparatus for reducing and vaporizing element | |
CN105388059B (en) | Flow injection secondary gas separation elution method | |
Khvostikov et al. | Determination of mercury by nondispersive atomic fluorescence spectrometry | |
JP2002267653A (en) | Nitrogen concentration measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030603 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080704 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080704 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090704 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090704 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100704 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100704 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100704 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |