JPH10273773A - Optical thin film - Google Patents

Optical thin film

Info

Publication number
JPH10273773A
JPH10273773A JP9078352A JP7835297A JPH10273773A JP H10273773 A JPH10273773 A JP H10273773A JP 9078352 A JP9078352 A JP 9078352A JP 7835297 A JP7835297 A JP 7835297A JP H10273773 A JPH10273773 A JP H10273773A
Authority
JP
Japan
Prior art keywords
film
hafnium oxide
attenuation coefficient
vacuum
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9078352A
Other languages
Japanese (ja)
Inventor
Shiyunsuke Niizaka
俊輔 新坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9078352A priority Critical patent/JPH10273773A/en
Publication of JPH10273773A publication Critical patent/JPH10273773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hafnium oxide film low in attenuation coefficient and dense in film structure by forming the film by at least an ion-beam sputtering method and controlling the attenuation coefficient in a specified wavelength range below a specified value. SOLUTION: A hafnium oxide film is formed by an ion-beam sputtering method in a lower vacuum than normally. Namely, a substrate is set in a device chamber, and then the device is evacuated. In this case, the vacuum is controlled to 1×10<-6> to 5×10<-7> Torr which is lower than the ultimate vacuum (1×10<-7> to 3×10<-7> Torr). Since a minute amt. of moisture is left under such a low vacuum, a film is low in absorption loss (low in attenuation coefficient) is formed by the action of the moisture. The attenuation coefficient is decreased to <=0.005 in the wavelength range from 230 to 300 nm, an optical film having such a hafnium oxide film is low in absorption loss, and the reflectance or transmittance is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学基板に形成さ
れる光学薄膜に関する。
[0001] The present invention relates to an optical thin film formed on an optical substrate.

【0002】[0002]

【従来技術】現在、ほとんどすべての光学部材には反射
防止膜、反射増加膜等の光学薄膜が形成されている。そ
の光学薄膜は、スペックによっては、積層数が数十層に
もおよぶ多層膜になる場合もある。
2. Description of the Related Art At present, almost all optical members are formed with optical thin films such as an antireflection film and a reflection enhancement film. Depending on the specifications, the optical thin film may be a multilayer film in which the number of laminations reaches several tens.

【0003】真空蒸着法により成膜した光学薄膜は、積
層数が増加するにしたがって、散乱が増加する、膜に亀
裂が入る、或いは水分が膜に浸透し、分光特性が変化す
る等の問題が生じる。そこで、最近の生産形態の多様化
に伴って、真空蒸着法による成膜方法以外の他の成膜方
法、イオンプロセス等の新技術を利用した成膜技術が検
討されている。
The optical thin film formed by the vacuum evaporation method has problems such as an increase in the number of layers, an increase in scattering, a crack in the film, or a permeation of moisture into the film to change the spectral characteristics. Occurs. Therefore, with the recent diversification of production forms, film formation techniques using new techniques such as a film formation method other than the vacuum deposition method and an ion process are being studied.

【0004】イオンプロセス等の新技術を利用した成膜
技術として、イオンプレーティング法、イオンアシスト
法、イオンビームスパッタ法、CVD法等が挙げられ
る。イオンプロセス等を利用した成膜技術の技術的メリ
ットとして、 (1)膜特性の向上が図れる(膜硬度、膜密着性向上) (2)基板温度は上げなくても屈折率の高い膜が得られ
る等が挙げられる。
As a film forming technique using a new technique such as an ion process, there are an ion plating method, an ion assist method, an ion beam sputtering method, a CVD method and the like. The technical merits of the film forming technology using the ion process and the like are as follows: (1) The film characteristics can be improved (improved film hardness and film adhesion) (2) A film having a high refractive index can be obtained without increasing the substrate temperature. And the like.

【0005】また、近年、半導体素子の集積度を増すた
めに、半導体製造用縮小投影露光装置(ステッパー)の
高解像力化の要求が高まっている。このステッパーによ
るフォトリソグラフィーの解像度を上げる一つの方法と
して、光源波長の短波長化が挙げられる。光学薄膜材料
は波長が短くなるにしたがって、吸収量が増大する傾向
があり、短波長で吸収が少ない光学薄膜材料は、種類が
限られている。
In recent years, in order to increase the degree of integration of semiconductor elements, there is an increasing demand for a high-resolution reduction projection exposure apparatus (stepper) for semiconductor manufacturing. One method of increasing the resolution of photolithography using this stepper is to shorten the wavelength of the light source. As the wavelength of the optical thin film material decreases, the amount of absorption tends to increase, and the types of the optical thin film material having a short wavelength and low absorption are limited.

【0006】そのなかでも酸化ハフニウムはKrF波長
(248.4nm)程度まで使用できる光学薄膜材料と
して注目されている。しかし、酸化ハフニウムは、真空
蒸着法により成膜した場合は、柱状構造をとり微小な隙
間を有するので、水分吸着等の経時変化が起こり、分光
特性が変化するという問題がある。
Above all, hafnium oxide has attracted attention as an optical thin film material that can be used up to a KrF wavelength (248.4 nm). However, when hafnium oxide is formed by a vacuum evaporation method, it has a columnar structure and has minute gaps, so that there is a problem that a temporal change such as moisture adsorption occurs and the spectral characteristics change.

【0007】そこで、上記イオンプロセスを利用した成
膜技術を用いて膜構造の緻密化、表面粗さの向上が図ら
れる。
Therefore, the film structure is densified and the surface roughness is improved by using the film forming technique utilizing the ion process.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、イオン
プロセス等を利用した成膜技術により成膜した光学薄膜
は、真空蒸着法により成膜した光学薄膜に比べて吸収損
失が大きいという問題がある。例えば、酸化ハフニウム
膜の248.4nmにおける減衰係数は、EB真空蒸着
法により成膜した場合、0.001以下であり、イオン
ビームスパッタ法により成膜した場合、0.005以上
である。
However, there is a problem that an optical thin film formed by a film forming technique utilizing an ion process or the like has a larger absorption loss than an optical thin film formed by a vacuum evaporation method. For example, the attenuation coefficient at 248.4 nm of the hafnium oxide film is 0.001 or less when the film is formed by the EB vacuum evaporation method, and is 0.005 or more when the film is formed by the ion beam sputtering method.

【0009】そこで、本発明はこれらの問題点に鑑み、
減衰係数が小さく、膜構造が緻密な酸化ハフニウム膜を
有する光学薄膜を提供することを目的とする。
Therefore, the present invention has been made in view of these problems,
It is an object to provide an optical thin film having a hafnium oxide film having a small attenuation coefficient and a dense film structure.

【0010】[0010]

【課題を解決する手段】イオンビームスパッタ法を用い
て、石英ガラス基板上に酸化ハフニウム膜を成膜した。
この時の吸収損失の原因を分析調査したところ、不純物
は少なく膜中に酸素が十分含まれていたことより、金属
と酸素の結合状態に関する欠陥が原因ではないかと推測
された。
Means for Solving the Problems A hafnium oxide film was formed on a quartz glass substrate by using an ion beam sputtering method.
Analyzes of the cause of the absorption loss at this time revealed that the film contained only a small amount of impurities and sufficient oxygen, suggesting that the cause was a defect in the bonding state between the metal and oxygen.

【0011】そこで、成膜された酸化ハフニウム膜を大
気中、400℃で3時間ベーキングしたことで大幅に損
失が減少した。その時の効果を図1に示す。実線は成膜
直後の透過率、破線はベーキング後の透過率を示す。以
上を踏まえて、本発明者は、成膜条件を鋭意検討の結
果、本発明を行うに至った。
Therefore, the loss was greatly reduced by baking the formed hafnium oxide film in air at 400 ° C. for 3 hours. FIG. 1 shows the effect at that time. The solid line shows the transmittance immediately after film formation, and the broken line shows the transmittance after baking. Based on the above, the present inventor has carried out the present invention as a result of intensive studies on the film forming conditions.

【0012】本発明は、第一に「少なくとも、イオンビ
ームスパッタ法により形成された酸化ハフニウム膜であ
って、230〜300nmの波長範囲において、減衰係
数が0.005より小さい酸化ハフニウム膜を有する光
学薄膜(請求項1)」を提供する。
The present invention firstly provides an optical system having at least a hafnium oxide film formed by an ion beam sputtering method, wherein the hafnium oxide film has an attenuation coefficient of less than 0.005 in a wavelength range of 230 to 300 nm. A thin film (Claim 1) is provided.

【0013】[0013]

【発明の実施形態】本発明にかかる酸化ハフニウム膜の
実施形態は、イオンビームスパッタ法により成膜され
る。基板を装置チャンバー内にセット後、排気を行い真
空化を行うが、通常のイオンビームスパッタ法で要求さ
れる到達真空度(1×10-7〜3×10-7torr)に比べ
て、真空の程度が悪い1×10ー6〜5×10-7torr程度
に設定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a hafnium oxide film according to the present invention is formed by an ion beam sputtering method. After the substrate is set in the apparatus chamber, the chamber is evacuated and evacuated to a vacuum. However, compared to the ultimate degree of vacuum (1 × 10 −7 to 3 × 10 −7 torr) required by the normal ion beam sputtering method, the vacuum is reduced. the extent of was set to 1 × 10 over 6 ~5 × 10 -7 torr bad.

【0014】次に、基板を遮蔽して、アルゴンガスのイ
オンビームで酸素を導入せずにプレスパッタを行い、装
置の環境を整えた。基板の遮蔽を取り外して、本スパッ
タを行い成膜した。排気が不十分で、真空度が悪い状態
では、微少量の水分が存在するので、この水分が成膜時
に作用して吸収損失の小さな(減衰係数の小さな)膜が
成膜できる。
Next, the substrate was shielded, and pre-sputtering was performed with an ion beam of argon gas without introducing oxygen to prepare an environment for the apparatus. The shielding of the substrate was removed, and the main sputtering was performed to form a film. In a state where the evacuation is insufficient and the degree of vacuum is poor, a very small amount of water is present, and this water acts during the film formation to form a film having a small absorption loss (a small attenuation coefficient).

【0015】[0015]

【実施例】【Example】

[実施例1]基板上に光学的膜厚λ/2の酸化ハフニウ
ム膜をイオンビームスパッタ法を用いて成膜した。イオ
ンソースにアルゴンガスを使用し、ターゲットは純度9
9.9%以上の酸化ハフニウムターゲットを使用した。
Example 1 A hafnium oxide film having an optical thickness of λ / 2 was formed on a substrate by using an ion beam sputtering method. Argon gas is used for the ion source, and the target is 9 purity.
A hafnium oxide target of 9.9% or more was used.

【0016】先ず、基板を装置チャンバー内にセット
後、約5時間排気を行い、真空度を1×10ー6torr に
した。次に、基板を遮蔽して、アルゴンガスのイオンビ
ーム1kv、70mAの条件で酸素を導入せずに約15
分間プレスパッタを行い、装置の環境を整えた。基板の
遮蔽を取り外して、プレスパッタと同様の条件で本スパ
ッタを行い成膜した。
[0016] First, after setting a substrate in the apparatus chamber is performed for about 5 hours evacuated and the vacuum degree of 1 × 10 over 6 torr. Next, the substrate was shielded, and about 15 kV without introducing oxygen under the conditions of an argon gas ion beam of 1 kv and 70 mA.
Pre-sputtering was performed for one minute to prepare the environment of the apparatus. After removing the shielding of the substrate, main sputtering was performed under the same conditions as in the pre-sputtering to form a film.

【0017】分光特性を測定した結果、λ=248.4
nmにおける吸収損失は0.4%であった。酸化ハフニ
ウム膜の屈折率を2.28として、これを換算すると、
減衰係数は、0.0014である。さらに、大気中、4
00℃で3時間ベーキングした。吸収損失は約0.23
%であった。これを換算すると、減衰係数は0.000
8である。
As a result of measuring the spectral characteristics, λ = 248.4
The absorption loss in nm was 0.4%. If the refractive index of the hafnium oxide film is 2.28 and this is converted,
The damping coefficient is 0.0014. Furthermore, in the atmosphere,
Baking was performed at 00 ° C. for 3 hours. The absorption loss is about 0.23
%Met. When converted, the attenuation coefficient is 0.000
8

【0018】[比較例1]排気を約12時間行い、真空
度を5×10-7torr未満にする以外は、実施例1と同様
な条件でイオンビームスパッタ法を用いて、基板上に光
学的膜厚λ/2(λ=248.4nm)の酸化ハフニウ
ム膜を成膜した。分光特性を測定した結果、λ=24
8.4nmにおける吸収損失は1.4%以上であった。
これを換算すると、減衰係数は、0.005以上であ
る。
[Comparative Example 1] An ion beam sputtering method was used on the substrate under the same conditions as in Example 1 except that the evacuation was performed for about 12 hours and the degree of vacuum was reduced to less than 5 × 10 −7 torr. A hafnium oxide film having a target film thickness of λ / 2 (λ = 248.4 nm) was formed. As a result of measuring the spectral characteristics, λ = 24
The absorption loss at 8.4 nm was 1.4% or more.
When converted, the attenuation coefficient is 0.005 or more.

【0019】[実施例2]基板上に光学的膜厚がλ/4
の酸化ハフニウムと酸化シリコンとからなる積層数が2
1層の多層膜(酸化ハフニウムをH、酸化シリコンをL
とすると、[HL]10Lをイオンビームスパッタ法を用
いて成膜した。イオンソースにアルゴンガスを使用し、
ターゲットにそれぞれ純度99.9%以上の酸化物ター
ゲットを使用した。
[Embodiment 2] The optical film thickness on the substrate is λ / 4.
Number of layers consisting of hafnium oxide and silicon oxide
Single-layer film (hafnium oxide is H, silicon oxide is L
Then, [HL] 10 L was formed by ion beam sputtering. Using argon gas for the ion source,
Oxide targets each having a purity of 99.9% or more were used as targets.

【0020】先ず、基板を装置チャンバー内にセット
後、約5時間排気を行い、真空度を8×10-7torrにし
た。次に、基板を遮蔽して、アルゴンガスのイオンビー
ム1kv、70mAの条件で酸素を導入せずに約15分
間、酸化ハフニウムターゲットのプレスパッタを行い、
装置の環境を整えた。基板の遮蔽を取り外して、プレス
パッタと同様の条件で本スパッタを行い、酸化ハフニウ
ム膜を成膜した。
First, after the substrate was set in the apparatus chamber, evacuation was performed for about 5 hours, and the degree of vacuum was set to 8 × 10 -7 torr. Next, the substrate was shielded, and a hafnium oxide target was pre-sputtered for about 15 minutes without introducing oxygen under the conditions of an argon gas ion beam of 1 kv and 70 mA,
Equipment environment was adjusted. After removing the shielding of the substrate, the main sputtering was performed under the same conditions as in the pre-sputtering to form a hafnium oxide film.

【0021】基板を遮蔽して、アルゴンガスのイオンビ
ーム1kv、70mAの条件で、酸素を導入して約15
分間、酸化シリコンターゲットのプレスパッタを行い、
装置の環境を整えた。基板の遮蔽を取り外して、プレス
パッタと同様の条件で本スパッタを行い、酸化シリコン
膜を成膜した。本スパッタについて、上記工程を酸化ハ
フニウム膜について10回、酸化シリコン膜について1
1回繰り返して、21層の交互層を成膜した。
The substrate was shielded, and oxygen was introduced under the conditions of an argon gas ion beam of 1 kv and 70 mA to introduce about 15
For a minute, pre-sputter the silicon oxide target,
Equipment environment was adjusted. After removing the shield of the substrate, main sputtering was performed under the same conditions as in the pre-sputtering, and a silicon oxide film was formed. For the main sputtering, the above steps were repeated 10 times for the hafnium oxide film and 1 for the silicon oxide film.
This was repeated once to form 21 alternate layers.

【0022】分光特性を測定した結果、λ=248.4
nmにおける反射率は99.4%、吸収損失は0.5%
以下であった。酸化シリコンの減衰係数を文献値より
0.0001としてこれを換算すると、酸化ハフニウム
の減衰係数は、0.002である。さらに、大気中、4
00℃で3時間ベーキングした。反射率は99.8%、
吸収損失は約0.1%以下であった。酸化シリコンの減
衰係数を文献値より0.0001としてこれを換算する
と、酸化ハフニウムの減衰係数は、0.0005であ
る。
As a result of measuring the spectral characteristics, λ = 248.4
The reflectivity in nm is 99.4% and the absorption loss is 0.5%
It was below. When the attenuation coefficient of silicon oxide is set to 0.0001 from the literature value and converted, the attenuation coefficient of hafnium oxide is 0.002. Furthermore, in the atmosphere,
Baking was performed at 00 ° C. for 3 hours. The reflectivity is 99.8%,
The absorption loss was less than about 0.1%. When the attenuation coefficient of silicon oxide is set to 0.0001 from the literature value and converted, the attenuation coefficient of hafnium oxide is 0.0005.

【0023】多層膜においても本発明にかかる酸化ハフ
ニウムの減衰係数は、0.005より小さく、大気に接
していない層もベーキングによる損失減少効果があるこ
とがわかった。
The attenuation coefficient of the hafnium oxide according to the present invention in the multilayer film is smaller than 0.005, and it has been found that the layer not in contact with the atmosphere has the effect of reducing the loss by baking.

【0024】[0024]

【発明の効果】以上説明したとおり、本発明にかかる酸
化ハフニウム膜は減衰係数は0.005より小さいの
で、本発明にかかる酸化ハフニウム膜を有する光学薄膜
の吸収損失が小さくなり、反射率又は透過率を向上させ
ることができる。
As described above, since the hafnium oxide film according to the present invention has an attenuation coefficient of less than 0.005, the absorption loss of the optical thin film having the hafnium oxide film according to the present invention is reduced, and the reflectance or the transmission is reduced. Rate can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基板上に成膜された酸化ハフニウム膜の透過率
(成膜後、成膜後ベークキング)を示す図である。
FIG. 1 is a diagram showing the transmittance (after film formation and baking after film formation) of a hafnium oxide film formed on a substrate.

フロントページの続き (51)Int.Cl.6 識別記号 FI G02B 5/28 G02B 1/10 Z Continued on the front page (51) Int.Cl. 6 Identification code FI G02B 5/28 G02B 1/10 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、イオンビームスパッタ法によ
り形成された酸化ハフニウム膜であって、230〜30
0nmの波長範囲において、減衰係数が0.005より
小さい酸化ハフニウム膜を有する光学薄膜。
At least a hafnium oxide film formed by an ion beam sputtering method, wherein
An optical thin film having a hafnium oxide film having an attenuation coefficient of less than 0.005 in a wavelength range of 0 nm.
JP9078352A 1997-03-28 1997-03-28 Optical thin film Pending JPH10273773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9078352A JPH10273773A (en) 1997-03-28 1997-03-28 Optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9078352A JPH10273773A (en) 1997-03-28 1997-03-28 Optical thin film

Publications (1)

Publication Number Publication Date
JPH10273773A true JPH10273773A (en) 1998-10-13

Family

ID=13659602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9078352A Pending JPH10273773A (en) 1997-03-28 1997-03-28 Optical thin film

Country Status (1)

Country Link
JP (1) JPH10273773A (en)

Similar Documents

Publication Publication Date Title
US5981075A (en) Optical articles and devices with a thin film containing krypton, xenon, or radon atoms
JP4033286B2 (en) High refractive index dielectric film and manufacturing method thereof
US4846541A (en) Interference film filter and an optical waveguide and a method for producing the same
JP2003315977A (en) Method for producing lithography mask blank and apparatus therefor
JP2911610B2 (en) Pattern transfer method
JP4434949B2 (en) Methods for obtaining thin, stable, fluorine-doped silica layers, the resulting thin layers, and their application in ophthalmic optics
US9964670B2 (en) Inorganic optical element having a birefringent film with a columnar structure and a protective film formed thereon and method for manufacturing same
US6468703B1 (en) Method for producing a structure of interference colored filters
JP2007063574A (en) Method for forming multilayer film and film-forming apparatus
JP2007156321A (en) Method for manufacturing optical multilayer filter
JPH10273773A (en) Optical thin film
KR101918768B1 (en) Hafnium oxide or zirconium oxide coating
Hutcheson et al. A direct comparison of the visible and ultraviolet reflectance of aluminum films evaporated in conventional and ultra-high vacuum systems
JPH08115912A (en) Manufacture of silicon nitride film
JP2001194506A (en) Antireflection substrate in ultraviolet and vacuum ultraviolet region
JP3466865B2 (en) Optical component, method for manufacturing the same, and manufacturing apparatus
JP2902729B2 (en) Manufacturing method of dielectric multilayer film
JP4454389B2 (en) ND filter and manufacturing method thereof
JPH08146201A (en) Production of optical thin film
JPH04371955A (en) Photomask blank and photomask
JPS62234163A (en) Photomask and its production
JPH0720312A (en) Optical filter
JPS6155205B2 (en)
JPH0735921A (en) Optical filter
JPH04371953A (en) Photomask blank and production of photomask using this photomask blank