JPH10273397A - Faraday element - Google Patents

Faraday element

Info

Publication number
JPH10273397A
JPH10273397A JP9313997A JP9313997A JPH10273397A JP H10273397 A JPH10273397 A JP H10273397A JP 9313997 A JP9313997 A JP 9313997A JP 9313997 A JP9313997 A JP 9313997A JP H10273397 A JPH10273397 A JP H10273397A
Authority
JP
Japan
Prior art keywords
film
faraday
faraday rotation
wavelength
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9313997A
Other languages
Japanese (ja)
Inventor
Toshiyasu Suzuki
利保 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP9313997A priority Critical patent/JPH10273397A/en
Priority to US08/959,214 priority patent/US5965287A/en
Publication of JPH10273397A publication Critical patent/JPH10273397A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/28Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids by liquid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Abstract

PROBLEM TO BE SOLVED: To obtain a faraday element having high isolation characteristics by combining a Bi-substituted rare earth iron garnet single crystal film not containing Co which is formed into a film by a liquid phase epitacial method with a rare earth iron garnet single crystal film containing Co which is formed into a film by a liquid phase epitaxial method under specific composition conditions. SOLUTION: This faraday element is obtained by combining the following films A and B which are formed into films by liquid phase epitaxial method. [A]: a film of magnetic garnet single crystal of formula I [R is a rare earth element containing Y; Ma is a trivalent positive element not containing Co; 0.6<=x<=1.9; 0<=y<=0.5]. [B]: a film of magnetic garnet single crystal of formula II [R' is a rare earth element containing Y; Mb is a trivalent positive element; Mc is a tetravalent positive element; 0<=k<=0.3; 0<=1<=0.5; 0<=m<=0.23; 0.02<=n<=0.28]. The films A and B are superposed so as to provide such thickness as to have 45 deg. synthetic faraday rotation angle and the films A is combined with the film B so that dependence of each Faraday rotation angle of the films A and B to wavelength counteracts to each other and minimum value Kmin of isolation is 1550 nm wavelength band is >=35 dB.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液相エピタキシャ
ル(以下、「LPE」と略記する)法により成膜した磁
性ガーネット単結晶からなり、1550nm帯で使用する
ファラデー素子に関し、更に詳しく述べると、Co(コ
バルト)を含まないBi(ビスマス)置換希土類鉄ガー
ネット単結晶からなるA膜と、Coを含む希土類鉄ガー
ネット単結晶からなるB膜とを重ね合わせ、両方の膜の
ファラデー回転係数の波長依存性の違いを利用して広帯
域化したファラデー素子に関するものである。
The present invention relates to a Faraday element formed of a magnetic garnet single crystal formed by a liquid phase epitaxial (hereinafter abbreviated as "LPE") method and used in a 1550 nm band. The A film composed of Bi (bismuth) -substituted rare earth iron garnet single crystal not containing Co (cobalt) and the B film composed of rare earth iron garnet single crystal containing Co are overlapped, and the wavelength dependence of the Faraday rotation coefficient of both films is superposed. The present invention relates to a Faraday element having a wide band using a difference in gender.

【0002】[0002]

【従来の技術】近年、光ファイバ通信の使用波長は、エ
ルビウムドープファイバ増幅器(EDFA)の実用化に
伴って、1550nm帯が主流になりつつある。この波長
帯で用いる磁性ガーネット単結晶としては、Bi置換希
土類鉄ガーネット、例えばTb1.85Bi1.15Fe4.75
0.2512なる組成のLPE膜が知られている。ここで
LPE膜を採用している理由はLPE法が量産性に優れ
ていることによる。このような磁性ガーネット単結晶の
特性を評価する基準の一つにファラデー回転係数θ
F (deg/cm)がある。ファラデー回転係数は、その絶対
値が大きいほど必要なファラデー回転角を得るための膜
厚を薄くできるので製造し易くなり好ましい。Bi置換
を行うのは、それによってファラデー回転係数を大きく
できるためである。
2. Description of the Related Art In recent years, the wavelength used in optical fiber communication has become mainstream in the 1550 nm band with the practical use of erbium-doped fiber amplifiers (EDFA). As a magnetic garnet single crystal used in this wavelength band, Bi-substituted rare earth iron garnet, for example, Tb 1.85 Bi 1.15 Fe 4.75 A
An LPE film having a composition of l 0.25 O 12 is known. Here, the reason why the LPE film is adopted is that the LPE method is excellent in mass productivity. One of the criteria for evaluating the characteristics of such a magnetic garnet single crystal is a Faraday rotation coefficient θ.
F (deg / cm). The larger the absolute value of the Faraday rotation coefficient is, the more the film thickness for obtaining the required Faraday rotation angle can be reduced, so that the Faraday rotation coefficient is preferable because it is easy to manufacture. Bi substitution is performed because the Faraday rotation coefficient can be increased thereby.

【0003】最近、この1550nm帯において大容量光
通信を実現するために、波長多重伝送方式が期待されて
いる。波長多重伝送を行うには、波長1550nm用の広
帯域光アイソレータを必要とする。この広帯域光アイソ
レータ用のファラデー素子として必要な特性は、ファラ
デー回転係数の波長変化率が小さいことである。また磁
性ガーネット単結晶は、前記のような量産性などの観点
からLPE法で成膜できることが望まれる。
Recently, a wavelength multiplexing transmission system has been expected to realize large-capacity optical communication in the 1550 nm band. To perform wavelength multiplex transmission, a broadband optical isolator for a wavelength of 1550 nm is required. A characteristic required as a Faraday element for this broadband optical isolator is that the rate of change in wavelength of the Faraday rotation coefficient is small. Further, it is desired that the magnetic garnet single crystal can be formed by the LPE method from the viewpoint of mass productivity as described above.

【0004】[0004]

【発明が解決しようとする課題】一般に磁性ガーネット
単結晶膜のファラデー回転角は、波長に依存して変化す
る。従って、光源の特定の波長に対して偏光面を丁度4
5度回転させるようにファラデー素子が設定されていて
も、光源の波長が変化すると、偏光面の回転角は45度
からずれてくる。その結果、逆方向に入射した光の消去
の度合いが低下してくるので、光アイソレータのアイソ
レーションが劣化することになる。
Generally, the Faraday rotation angle of a magnetic garnet single crystal film changes depending on the wavelength. Thus, for a particular wavelength of the light source, the polarization plane is just 4
Even if the Faraday element is set to rotate by 5 degrees, when the wavelength of the light source changes, the rotation angle of the polarization plane deviates from 45 degrees. As a result, the degree of erasure of the light incident in the opposite direction decreases, so that the isolation of the optical isolator deteriorates.

【0005】前記のような1550nm帯での大容量光通
信として期待されている最近の波長多重伝送では、波長
1550nmを中心に40nm以内の波長域で実験が行われ
ている。これは、エルビウムドープファイバ増幅器で増
幅できる波長範囲が1530nm〜1570nm程度である
ことによる。そこで、このような波長多重伝送システム
に用いる光アイソレータは、この広い波長帯域で良好な
アイソレーションを呈する必要がある。しかし、例えば
前記の従来用いられていた組成の磁性ガーネット単結晶
はファラデー回転係数の波長依存性がかなり大きい問題
があり、そのような広帯域の光アイソレータには不向き
であった。
[0005] In recent wavelength division multiplexing transmission, which is expected for large-capacity optical communication in the 1550 nm band as described above, experiments are performed in a wavelength range of 40 nm or less centered on a wavelength of 1550 nm. This is because the wavelength range that can be amplified by the erbium-doped fiber amplifier is about 1530 nm to 1570 nm. Therefore, an optical isolator used in such a wavelength division multiplex transmission system needs to exhibit good isolation in this wide wavelength band. However, for example, the magnetic garnet single crystal having the above-mentioned composition has a problem that the wavelength dependence of the Faraday rotation coefficient is considerably large, and is not suitable for such a broadband optical isolator.

【0006】本発明の目的は、波長1550nm帯の広帯
域でファラデー回転角の波長依存性が小さく、高アイソ
レーション特性を呈するファラデー素子を提供すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Faraday element having a small wavelength dependence of a Faraday rotation angle in a wide band of a wavelength of 1550 nm and exhibiting high isolation characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、LPE法によ
り成膜した組成式がR3-x Bix Fe5-y May 12
示される磁性ガーネット単結晶からなるA膜と、同じく
LPE法により成膜した組成式がR′3-k Bik Fe
5-l-m-n Mbl Mcm Con 12で示される磁性ガーネ
ット単結晶からなるB膜を、それらの合成ファラデー回
転角が45度となる厚みに重ね合わせ、且つA膜のファ
ラデー回転角の波長依存性とB膜のファラデー回転角の
波長依存性が打ち消し合って波長1550nm帯でのアイ
ソレーションの最小値Kmin が35dB以上となるよう
に組み合わせた、波長1550nm帯で使用するファラデ
ー素子である。但し、R及びR′はイットリウムを含む
希土類元素、Maはコバルトを含まない3価の陽性元
素、Mbは3価の陽性元素、Mcは4価の陽性元素、 0.6≦x≦1.9 0≦y≦0.5 0≦k≦0.3 0≦l≦0.5 0≦m≦0.23 0.02≦n≦0.28 である。
Means for Solving the Problems The present invention includes a A film composition formula was deposited is made of a magnetic garnet single crystal represented by R 3-x Bi x Fe 5 -y Ma y O 12 by LPE method, also composition formula was formed by LPE method R '3-k Bi k Fe
The 5-lmn Mb l Mc m Co n O 12 B film of a magnetic garnet single crystal represented by the superimposed thicknesses their synthesis Faraday rotation angle is 45 degrees, and the wavelength of the Faraday rotation angle A film depends This is a Faraday element used in the 1550 nm band, which is combined such that the minimum value K min of the isolation in the 1550 nm band is 35 dB or more by canceling out the wavelength dependency of the Faraday rotation angle of the B film with the property. Here, R and R 'are rare earth elements containing yttrium, Ma is a trivalent positive element not containing cobalt, Mb is a trivalent positive element, Mc is a tetravalent positive element, and 0.6 ≦ x ≦ 1.9. 0 ≦ y ≦ 0.5 0 ≦ k ≦ 0.3 0 ≦ l ≦ 0.50 ≦ m ≦ 0.23 0.02 ≦ n ≦ 0.28

【0008】本発明者は、種々の組成のLPE磁性ガー
ネット単結晶膜を試作し、それらの各種特性を測定する
基礎実験を重ねてきた。その結果、Coを含まないBi
置換希土類鉄ガーネット単結晶と、Coを含む希土類鉄
ガーネット単結晶とで、波長1550nmにおけるファラ
デー回転係数の波長依存性が逆になっていることを見い
出した。波長依存性を評価する指標としては、次式で定
義される波長1550nmにおけるファラデー回転係数の
波長変化率FWC (%/nm)を用いた。 FWC =(θF(1570nm) −θF(1550nm) )/|θ
F(1550nm) |/20×100 但し、θF(1550nm) とθF(1570nm) は、それぞれ155
0nmと1570nmにおけるファラデー回転係数である。
上記の基礎実験の結果の一例を表1に示し、各試料につ
いてのBi置換量とファラデー回転係数の波長変化率FW
C との関係を図1に示す。
The present inventor has made trial productions of LPE magnetic garnet single crystal films of various compositions and has repeated basic experiments for measuring various properties thereof. As a result, Bi containing no Co
It has been found that the wavelength dependence of the Faraday rotation coefficient at a wavelength of 1550 nm is reversed between the substituted rare earth iron garnet single crystal and the rare earth iron garnet single crystal containing Co. As an index for evaluating the wavelength dependence, a wavelength change rate FWC (% / nm) of the Faraday rotation coefficient at a wavelength of 1550 nm defined by the following equation was used. FWC = (θF (1570nm) -θF (1550nm) ) / | θ
F (1550 nm) | / 20 × 100 where θ F (1550 nm) and θ F (1570 nm) are each 155
Faraday rotation coefficients at 0 nm and 1570 nm.
An example of the results of the above basic experiment is shown in Table 1 and the Bi substitution amount and the wavelength change rate FW of the Faraday rotation coefficient for each sample.
The relationship with C is shown in FIG.

【0009】[0009]

【表1】 [Table 1]

【0010】表1から分かるように、Coを含んでいる
試料11,12のファラデー回転係数の波長変化率FWC
は符号がマイナスであるのに対して、それ以外のCoを
含んでいない試料のファラデー回転係数の波長変化率FW
C は全て符号がプラスであり且つ0.12〜0.15%
/nmで希土類元素の種類及びBi置換量にかかわらずほ
ぼ一定である(図1参照)。これらの結果から、Coを
含まないBi置換希土類鉄ガーネット単結晶と、Coを
含む希土類鉄ガーネット単結晶とは、ファラデー回転係
数の波長依存性が逆符号の関係にあることを利用し、両
者を組み合わせることで、それぞれの磁性ガーネット単
結晶単独の場合に比べてファラデー回転係数の波長依存
性を小さくできる可能性が生じる。
As can be seen from Table 1, the wavelength change rate FWC of the Faraday rotation coefficients of Co and Samples 11 and 12 is shown.
Is a minus sign, but the wavelength change rate FW of the Faraday rotation coefficient of the sample that does not contain other Co.
C has all positive signs and 0.12 to 0.15%
/ Nm is almost constant irrespective of the type of rare earth element and the Bi substitution amount (see FIG. 1). From these results, the Bi-substituted rare-earth iron garnet single crystal not containing Co and the rare-earth iron garnet single crystal containing Co have the opposite sign of the wavelength dependence of the Faraday rotation coefficient. By combining them, there is a possibility that the wavelength dependence of the Faraday rotation coefficient can be reduced as compared with the case where each magnetic garnet single crystal is used alone.

【0011】一例として、Coが置換されていないBi
置換希土類鉄ガーネット単結晶のA膜(後述する実施例
の膜番号A−4)と、Co置換希土類鉄ガーネット単結
晶のB膜(後述する実施例の膜番号B−4)のファラデ
ー回転係数θF の波長依存性を図2に示す。Coが置換
されていないA膜のファラデー回転係数の波長変化率FW
C はプラスの符号を持つ。それに対してCo置換がなさ
れたB膜は、Coに起因するファラデー回転の影響で1
550nm付近ではファラデー回転係数の波長変化率FWC
はマイナス符号をもつ。これはCoを含む希土類鉄ガー
ネットのみに見られる現象である。
As an example, Bi in which Co is not substituted
The Faraday rotation coefficient θ of the A film of the substituted rare earth iron garnet single crystal (film number A-4 in the example described later) and the B film of the Co substituted rare earth iron garnet single crystal (film number B-4 in the example described later) FIG. 2 shows the wavelength dependence of F. Wavelength change rate FW of Faraday rotation coefficient of A film not substituted with Co
C has a plus sign. On the other hand, the Co-substituted B film has a thickness of 1 due to the Faraday rotation caused by Co.
550nm wavelength change rate of Faraday rotation coefficient FWC
Has a minus sign. This is a phenomenon found only in rare earth iron garnet containing Co.

【0012】ところで光アイソレータにおけるアイソレ
ーションとは、順方向と逆方向の挿入損失の比である。
本発明では、ファラデー素子の性能を評価するために、
次のような評価方法を採用した。これは、「ファラデー
回転係数の波長変化率FWC の異なるA膜とB膜とを組み
合わせて、波長1550nmにおける合成ファラデー回転
角45度のファラデー素子を作製し、それを用いて光ア
イソレータを作製する。偏光子及び検光子には50dB
以上の消光比が得られているルチル単結晶を用いる。そ
して、波長領域1530nm〜1570nmでのアイソレー
ションを測定し、この時のアイソレーションの最低値K
min (dB)を求め、それによって性能比較を行う。」
という評価方法である。
By the way, the isolation in the optical isolator is the ratio of the insertion loss in the forward direction to the insertion loss in the reverse direction.
In the present invention, in order to evaluate the performance of the Faraday element,
The following evaluation method was adopted. This is because a Faraday element having a synthetic Faraday rotation angle of 45 degrees at a wavelength of 1550 nm is manufactured by combining an A film and a B film having different Faraday rotation coefficient wavelength change rates FWC, and an optical isolator is manufactured using the Faraday element. 50 dB for polarizer and analyzer
A rutile single crystal having the above extinction ratio is used. Then, the isolation in the wavelength region of 1530 nm to 1570 nm is measured, and the minimum value K of the isolation at this time is measured.
min (dB) is determined and a performance comparison is performed. "
This is the evaluation method.

【0013】Bi置換希土類鉄ガーネット単結晶は、B
i置換量が多くなるほどファラデー回転係数の絶対値が
大きくなり(但し、符号はマイナス)、45度ファラデ
ー回転角を得るのに必要な膜厚が薄くて済む。そして、
Coが無いBi置換希土類鉄ガーネット単結晶は、前述
のように希土類元素の種類やBi量にかかわらず、15
50nm付近でのファラデー回転係数の波長変化率FWC は
プラス符号をもち、ほぼ一定の値をとる(但し、ファラ
デー回転係数の符号はマイナス)。他方、Co置換希土
類鉄ガーネット単結晶の1550nm付近でのファラデー
回転係数の波長変化率FWC は逆にマイナス符号をもち、
Coの価数(2価又は3価)や置換量の多少によって値
が変化する(但し、ファラデー回転係数の符号はプラ
ス)。そこで、両方の膜の膜厚の調整によって1550
nmにおける合成ファラデー回転角を45度にし、各々の
性質をもつ膜を組み合わせることで、1550nm付近で
のファラデー回転係数の波長変化率FWC を相殺できる。
つまり本発明においては、Bi置換したA膜によってフ
ァラデー回転角を稼ぎ、Coを含むB膜によってファラ
デー回転係数の波長変化率FWC の調整を行っているので
ある。A膜の膜厚はファラデー回転角が−(45+α)
度となるようにし(実際には−50度程度)、B膜の膜
厚はファラデー回転角が+α度(実際には+5度程度)
となるように設定する。α度が小さすぎると膜厚が薄く
なりすぎて作製し難かったり、ファラデー回転係数の波
長変化率の打ち消し効果が乏しくなるし、α度が大きす
ぎると膜厚が厚くなりすぎて膜の成長が難しくなるた
め、上記のように5度前後とするのがよい。そしてA膜
とB膜とでファラデー回転角の波長依存性をできるだけ
打ち消し合うようにする。膜厚比率の調整と、膜の組成
の選択で、好適な条件を求めることができる。
The Bi-substituted rare earth iron garnet single crystal is
As the i-substitution amount increases, the absolute value of the Faraday rotation coefficient increases (however, the sign is minus), and the film thickness required for obtaining a 45-degree Faraday rotation angle can be reduced. And
As described above, the Bi-substituted rare earth iron garnet single crystal having no Co can be used regardless of the type of the rare earth element and the amount of Bi.
The wavelength change rate FWC of the Faraday rotation coefficient near 50 nm has a plus sign and takes a substantially constant value (however, the sign of the Faraday rotation coefficient is minus). On the other hand, the wavelength change rate FWC of the Faraday rotation coefficient near 1550 nm of the Co-substituted rare earth iron garnet single crystal has a minus sign,
The value changes depending on the valence (divalent or trivalent) of Co and the amount of substitution (however, the sign of the Faraday rotation coefficient is plus). Therefore, 1550 is adjusted by adjusting the thickness of both films.
By setting the synthetic Faraday rotation angle in nm to 45 degrees and combining films having the respective properties, the wavelength change rate FWC of the Faraday rotation coefficient near 1550 nm can be offset.
In other words, in the present invention, the Faraday rotation angle is gained by the Bi-substituted A film, and the wavelength change rate FWC of the Faraday rotation coefficient is adjusted by the B film containing Co. The Faraday rotation angle of the film A is-(45 + α).
Degree (actually about -50 degrees), and the thickness of the B film is such that the Faraday rotation angle is + α degrees (actually about +5 degrees).
Set so that If the α degree is too small, the film thickness will be too thin to make it difficult to produce, or the effect of canceling the wavelength change rate of the Faraday rotation coefficient will be poor. Since it becomes difficult, it is preferable to set the angle to about 5 degrees as described above. Then, the wavelength dependence of the Faraday rotation angle is canceled as much as possible between the film A and the film B. Suitable conditions can be determined by adjusting the thickness ratio and selecting the composition of the film.

【0014】本発明において、Coを含まないBi置換
希土類鉄ガーネット単結晶(A膜)と、Coを含む希土
類鉄ガーネット単結晶(B膜)は、それぞれ別々にLP
E成長により作製した後、重ね合わせるのが好ましい。
別々にLPE成長させる方が基板材料や膜組成に制約が
少ないからである。その場合、例えばA膜として必ずし
も単一の膜である必要はなく、複数の膜を重ねてもよ
い。また、非磁性ガーネット基板上に、まずA膜もしく
はB膜のいずれかをLPE成長させ、その上に残る他方
の膜をLPE成長させる構成でもよい。通常、LPE成
膜する際に使用する非磁性ガーネット基板は順方向の挿
入損失を低減するため研磨によって除去する。その他、
非磁性ガーネット基板の一方の面にA膜をLPE成長さ
せ、該基板の他方の面にB膜をLPE成長させる構成で
もよい。但し、この構成は基板を除去できないために、
その分厚くなるし挿入損失が増えるため、あまり好まし
くはない。
In the present invention, a Co-containing Bi-substituted rare earth iron garnet single crystal (A film) and a Co-containing rare earth iron garnet single crystal (B film) are each separately LP-coated.
It is preferable to stack them after they are formed by E growth.
This is because the separate LPE growth has less restrictions on the substrate material and the film composition. In this case, for example, the A film is not necessarily a single film, and a plurality of films may be stacked. Alternatively, a configuration may be employed in which either the A film or the B film is first grown on the nonmagnetic garnet substrate by LPE, and the other film remaining thereon is grown by LPE. Usually, the non-magnetic garnet substrate used when forming the LPE film is removed by polishing in order to reduce the insertion loss in the forward direction. Others
The configuration may be such that the A film is LPE-grown on one surface of the non-magnetic garnet substrate and the B film is LPE-grown on the other surface of the substrate. However, this configuration cannot remove the substrate,
This is not preferable because the thickness increases and the insertion loss increases.

【0015】[0015]

【発明の実施の形態】A膜におけるRとしては、Y(イ
ットリウム)、Tb(テルビウム)、Gd(ガドリニウ
ム)、La(ランタン)から選ばれる1種又は2種以上
の希土類元素を用いるのがよい。A膜においてBi量x
は、0.6≦x≦1.9とする。Bi置換量xの増加に
ともなってファラデー回転係数が増大し、少なすぎると
所望のファラデー回転角を得るのに膜厚が著しく厚くな
ってしまうためである。特にLPE法では600μm以
上の膜厚に成長させることは一般に困難であるから、1
枚の膜で構成できることを考慮すると、Bi量xは、
1.15≦xであることが好ましい。逆に、Bi量xが
多すぎると、クラックが入り育成不能となる。A膜にお
いてMaは含まれていなくてもよいが、Feサイトの一
部をAl(アルミニウム)、In(インジウム)、Ga
(ガリウム)から選ばれる1種又は2種以上で置換する
と、LPE膜の飽和磁化が小さくなり、光アイソレータ
を構成するときに磁石を小さくできるため好ましい。但
し、置換量yが多すぎると、ファラデー回転係数が低下
するため好ましくない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As R in the A film, one or more rare earth elements selected from Y (yttrium), Tb (terbium), Gd (gadolinium) and La (lanthanum) are preferably used. . Bi amount x in A film
Is set to 0.6 ≦ x ≦ 1.9. This is because the Faraday rotation coefficient increases with an increase in the Bi substitution amount x, and if it is too small, the film thickness becomes extremely large in order to obtain a desired Faraday rotation angle. In particular, it is generally difficult to grow the film to a thickness of 600 μm or more by the LPE method.
Considering that it can be composed of a single film, the Bi amount x is
It is preferable that 1.15 ≦ x. Conversely, if the Bi amount x is too large, cracks occur and growth is impossible. Although Ma may not be contained in the A film, a part of the Fe site may be changed to Al (aluminum), In (indium), or Ga.
Substitution with one or more members selected from (gallium) is preferable because the saturation magnetization of the LPE film becomes small and the magnet can be made small when forming an optical isolator. However, if the substitution amount y is too large, the Faraday rotation coefficient decreases, which is not preferable.

【0016】B膜におけるR′はY、Tb、Gdから選
ばれる1種又は2種以上とすることが好ましく、その極
く一部がBiで置換されていてもかまわない。B膜にお
いてMb及びMcは含まれていなくてもよいが、Mbと
しては例えばAl、In、Gaから選ばれる1種又は2
種以上、Mcとしては例えばGe(ゲルマニウム)、Z
r(ジルコニウム)、Sn(錫)、Si(ケイ素)から
選ばれる1種又は2種以上を用いるのが好ましい。Co
含有量nを、0.02≦n≦0.28としたのは、ある
程度の量以上含まれていないと、Coの効果が現れない
し、逆に多過ぎると波長1550nm帯でのアイソレーシ
ョンの最小値Kmin が高くならないことによる。なおM
bによる置換は、主としてLPE法による成膜の際の基
板との格子定数を合わせるために行われ、Mcによる置
換は、Coの価数を制御するために行われる。それぞれ
の含有量は、0≦l≦0.5、0≦m≦0.23とする
のがよい。
R 'in the B film is preferably one or more selected from Y, Tb and Gd, and a very small portion thereof may be substituted with Bi. Mb and Mc may not be contained in the B film, but Mb is, for example, one or two selected from Al, In, and Ga.
Or more, as the Mc, for example, Ge (germanium), Z
It is preferable to use one or more selected from r (zirconium), Sn (tin), and Si (silicon). Co
The reason why the content n is set to 0.02 ≦ n ≦ 0.28 is that the effect of Co does not appear unless a certain amount or more is contained, and if the content n is too large, the minimum isolation in the 1550 nm band is minimized. This is because the value K min does not increase. Note that M
Substitution with b is mainly performed to match the lattice constant with the substrate at the time of film formation by the LPE method, and substitution with Mc is performed to control the valence of Co. The respective contents are preferably 0 ≦ l ≦ 0.5 and 0 ≦ m ≦ 0.23.

【0017】[0017]

【実施例】非磁性ガーネット基板上に、LPE法により
Bi置換希土類鉄ガーネット単結晶膜(A膜)を育成し
た。フラックスにはBi2 3 −B2 3 −PbOを用
いた。育成した試料(膜番号A−1からA−4の4種)
の組成と磁気光学特性及び使用した基板を表2の上半分
に示す。なお膜番号A−5の試料は、クラックが入り育
成不能であった。
EXAMPLE A Bi-substituted rare earth iron garnet single crystal film (A film) was grown on a nonmagnetic garnet substrate by the LPE method. The flux was used Bi 2 O 3 -B 2 O 3 -PbO. Grown samples (four kinds of film numbers A-1 to A-4)
Are shown in the upper half of Table 2. The sample with film number A-5 was cracked and could not be grown.

【0018】表2に示すように、Bi含有量が多くなる
ほどファラデー回転係数の絶対値は大きくなる。但し、
Bi含有量xが多過ぎると(x>1.9)、基板との熱
膨張差のためにクラックが入り単結晶が育成できなくな
る。これらの膜を用いた光アイソレータでは、Kmin
良くても33dB程度である。A−1の膜組成は、Bi
量が少ないためにファラデー回転係数が小さく、その
分、膜厚を厚くするか、複数枚構成とする必要がある。
しかしLPE法では膜厚を厚くすることが難しいため
に、できればBi量xを1.15以上とすることが望ま
しい。
As shown in Table 2, as the Bi content increases, the absolute value of the Faraday rotation coefficient increases. However,
If the Bi content x is too large (x> 1.9), cracks will occur due to the difference in thermal expansion with the substrate, making it impossible to grow a single crystal. In an optical isolator using these films, K min is about 33 dB at best. The film composition of A-1 is Bi
Since the amount is small, the Faraday rotation coefficient is small, and accordingly, it is necessary to increase the film thickness or to configure a plurality of films.
However, since it is difficult to increase the film thickness by the LPE method, it is desirable to set the Bi amount x to 1.15 or more if possible.

【0019】同様にして、非磁性ガーネット基板上に、
LPE法によりCoを含む希土類鉄ガーネット単結晶
(B膜)を育成した。フラックスにはB2 3 −PbO
を用いた(但し、B−2のみフラックスにBi2 3
2 3 −PbOを用いた)。育成した試料(B−1か
らB−13の13種)の組成と磁気光学特性及び使用し
た基板を表2の下半分に示す。B−1〜B−6はCo3+
置換膜、B−7〜B−11はCo2+置換膜、B−12と
B−13はCo3+とCo2+の同時置換膜と考えられる。
Similarly, on a non-magnetic garnet substrate,
A rare earth iron garnet single crystal (B film) containing Co was grown by the LPE method. The flux is B 2 O 3 -PbO
(However, only the flux of Bi- 2 O 3
With B 2 O 3 -PbO). The lower half of Table 2 shows the compositions, magneto-optical properties, and substrates of the grown samples (13 types from B-1 to B-13). B-1 to B-6 are Co 3+
The substituted films, B-7 to B-11, are considered to be Co 2+ substituted films, and B-12 and B-13 are considered to be Co 3+ and Co 2+ simultaneous substituted films.

【0020】表2に示すように、Co置換希土類鉄ガー
ネット膜は、表2のCo置換量の範囲ではファラデー回
転係数はプラスの符号をもつ。Kmin は良くても24d
BでありBi置換膜に比べて非常に悪い。またファラデ
ー回転係数の波長変化率FWCの符号はマイナスである。
ファラデー回転係数の波長変化率FWC は、Co置換量が
0.02/f.u.のB−7では−0.14%/nmで、その
絶対値はA膜の場合とほとんど変わらないが、Co置換
量が0.05/f.u.以上になると、ファラデー回転係数
の波長変化率FWC の絶対値は増大し、Co置換でない従
来のBi置換希土類鉄ガーネットのそれに比べて著しく
劣化する。
As shown in Table 2, the Co-substituted rare earth iron garnet film has a positive Faraday rotation coefficient within the range of the Co substitution amount shown in Table 2. K min is at best 24d
B, which is much worse than the Bi-substituted film. The sign of the wavelength change rate FWC of the Faraday rotation coefficient is minus.
The wavelength change rate FWC of the Faraday rotation coefficient is -0.14% / nm in B-7 where the amount of Co substitution is 0.02 / fu, and its absolute value is almost the same as that of the A film. Exceeds 0.05 / fu, the absolute value of the wavelength change rate FWC of the Faraday rotation coefficient increases, and is significantly deteriorated as compared with that of the conventional Bi-substituted rare-earth iron garnet that is not Co-substituted.

【0021】[0021]

【表2】 [Table 2]

【0022】そこで、上記のように育成した種々のA膜
とB膜とを組み合わせて45度ファラデー素子を作製
し、それを用いて光アイソレータを組み立てた時のアイ
ソレーションの最低値Kmin を測定した。実験結果の一
例を表3に示す。
Therefore, a 45 ° Faraday element is manufactured by combining the various A films and B films grown as described above, and the minimum value K min of the isolation when an optical isolator is assembled using the Faraday device is measured. did. Table 3 shows an example of the experimental results.

【0023】[0023]

【表3】 [Table 3]

【0024】実験例において、A−1膜は単膜ではファ
ラデー回転角が小さいために2枚構成としている。各実
験例において、A−1〜A−4については、それぞれ同
じ膜厚のものを使用し、B−1〜B−13の膜厚を変え
ることで合成ファラデー回転角を45度に調整してい
る。従って、A膜とB膜の各組み合わせは、必ずしも最
適膜厚比率になっているわけではない。*を付した組み
合わせではアイソレーションの最低値Kmin が35dB
以上になっており、特に**を付した組み合わせではK
min が42〜44dBが得られ、A膜単独の場合に比べ
10dB程度以上も向上した。
In the experimental example, the A-1 film has a two-layer structure because a single film has a small Faraday rotation angle. In each of the experimental examples, the same film thickness is used for A-1 to A-4, and the synthetic Faraday rotation angle is adjusted to 45 degrees by changing the film thickness of B-1 to B-13. I have. Therefore, each combination of the A film and the B film does not always have the optimum thickness ratio. In the combinations marked with *, the minimum isolation K min is 35 dB
In particular, the combination marked with **
A min of 42 to 44 dB was obtained, which was improved by about 10 dB or more compared to the case of using the A film alone.

【0025】因に、現在1550nmで用いられている4
5度ファラデー素子は、Tb1.85Bi1.15Fe4.75Al
0.2512のLPE膜であり、それを用いた光アイソレー
タのアイソレーションの最低値Kmin は33dBであ
る。
The reason is that 4 is currently used at 1550 nm.
The fifth-degree Faraday element is composed of Tb 1.85 Bi 1.15 Fe 4.75 Al
It is an LPE film of 0.25 O 12 , and the minimum value K min of the isolation of the optical isolator using the LPE film is 33 dB.

【0026】[0026]

【発明の効果】本発明は上記のように、Coを含まない
Bi置換希土類鉄ガーネット単結晶からなるA膜とCo
を含む希土類鉄ガーネット単結晶からなるB膜を、合成
ファラデー回転角が45度となり、且つ両方の膜のファ
ラデー回転角の波長依存性が極力打ち消し合うように構
成したファラデー素子であるから、波長1550nm帯で
のアイソレーションの最小値Kmin を35dB以上にで
き、1550nm帯での波長多重伝送に対応できる広帯域
光アイソレータを実現することが可能となる。
As described above, the present invention provides an A film made of a Bi-substituted rare earth iron garnet single crystal containing no Co and a Co film.
Is a Faraday element composed of a rare earth iron garnet single crystal containing B film so that the synthetic Faraday rotation angle becomes 45 degrees and the wavelength dependence of the Faraday rotation angle of both films is canceled as much as possible. The minimum value K min of the isolation in the band can be made 35 dB or more, and it is possible to realize a wideband optical isolator that can support wavelength multiplex transmission in the 1550 nm band.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Bi置換量とファラデー回転係数の波長変化率
FWC との関係を示す図。
FIG. 1 shows the wavelength change rate of Bi substitution amount and Faraday rotation coefficient.
The figure which shows the relationship with FWC.

【図2】A−4膜とB−4膜のファラデー回転係数θF
の波長依存性を示す図。
FIG. 2 shows a Faraday rotation coefficient θ F of the A-4 film and the B-4 film.
FIG. 4 is a diagram showing the wavelength dependence of the wavelength.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成式がR3-x Bix Fe5-y May
12 但し、Rはイットリウムを含む希土類元素、Maはコバ
ルトを含まない3価の陽性元素、 0.6≦x≦1.9 0≦y≦0.5 で示される液相エピタキシャル磁性ガーネット単結晶か
らなるA膜と、 組成式がR′3-k Bik Fe5-l-m-n Mbl Mcm Co
n 12 但し、R′はイットリウムを含む希土類元素、Mbは3
価の陽性元素、Mcは4価の陽性元素、 0≦k≦0.3 0≦l≦0.5 0≦m≦0.23 0.02≦n≦0.28 で示される液相エピタキシャル磁性ガーネット単結晶か
らなるB膜を、それらの合成ファラデー回転角が45度
となる厚みに重ね合わせ、且つA膜のファラデー回転角
の波長依存性とB膜のファラデー回転角の波長依存性が
打ち消し合って波長1550nm帯でのアイソレーション
の最小値Kmin が35dB以上となるように組み合わせ
た、波長1550nm帯で使用するファラデー素子。
1. A composition formula R 3-x Bi x Fe 5 -y Ma y O
12 where R is a rare earth element containing yttrium, Ma is a trivalent positive element not containing cobalt, and a liquid phase epitaxial magnetic garnet single crystal represented by 0.6 ≦ x ≦ 1.90 ≦ y ≦ 0.5. and A film made, composition formula R '3-k Bi k Fe 5-lmn Mb l Mc m Co
n O 12 where R 'is a rare earth element containing yttrium and Mb is 3
Liquid positive epitaxial element, Mc is a tetravalent positive element, liquid phase epitaxial magnetism represented by 0 ≦ k ≦ 0.30 ≦ l ≦ 0.50 ≦ m ≦ 0.23 0.02 ≦ n ≦ 0.28 The B films made of garnet single crystals are superimposed on each other so that their combined Faraday rotation angles become 45 degrees, and the wavelength dependence of the Faraday rotation angle of the A film and the wavelength dependence of the Faraday rotation angle of the B film cancel each other out. A Faraday element used in the 1550 nm band, which is combined so that the minimum value K min of the isolation in the 1550 nm band is 35 dB or more.
【請求項2】 A膜におけるBi量xが、1.15≦x
≦1.9である請求項1記載のファラデー素子。
2. The Bi amount x in the A film is 1.15 ≦ x
The Faraday element according to claim 1, wherein ≤ 1.9.
【請求項3】 A膜におけるRがY、Tb、Gd、La
から選ばれる1種又は2種以上、MaがAl、In、G
aから選ばれる1種又は2種以上であり、B膜における
R′がY、Tb、Gdから選ばれる1種又は2種以上、
MbがAl、In、Gaから選ばれる1種又は2種以
上、McがGe、Zr、Sn、Siから選ばれる1種又
は2種以上である請求項1又は2記載のファラデー素
子。
3. R in the A film is Y, Tb, Gd, La.
One or more kinds selected from the group consisting of Al, In, G
a or two or more selected from a, and R ′ in the B film is one or two or more selected from Y, Tb and Gd;
The Faraday element according to claim 1, wherein Mb is one or more selected from Al, In, and Ga, and Mc is one or two or more selected from Ge, Zr, Sn, and Si.
【請求項4】 波長1530nm〜1570nmである波長
1550nm帯で使用する請求項1乃至3記載のファラデ
ー素子。
4. The Faraday element according to claim 1, wherein the Faraday element is used in a wavelength band of 1550 nm, which is a wavelength of 1530 nm to 1570 nm.
JP9313997A 1996-10-29 1997-03-27 Faraday element Pending JPH10273397A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9313997A JPH10273397A (en) 1997-03-27 1997-03-27 Faraday element
US08/959,214 US5965287A (en) 1996-10-29 1997-10-28 Magneto-optical element material and Faraday element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9313997A JPH10273397A (en) 1997-03-27 1997-03-27 Faraday element

Publications (1)

Publication Number Publication Date
JPH10273397A true JPH10273397A (en) 1998-10-13

Family

ID=14074203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9313997A Pending JPH10273397A (en) 1996-10-29 1997-03-27 Faraday element

Country Status (1)

Country Link
JP (1) JPH10273397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162494A1 (en) * 1999-02-24 2001-12-12 FDK Corporation Faraday rotation angle varying device
WO2012073671A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162494A1 (en) * 1999-02-24 2001-12-12 FDK Corporation Faraday rotation angle varying device
US6417952B1 (en) 1999-02-24 2002-07-09 Fdk Corporation Faraday rotation angle varying device
WO2012073671A1 (en) * 2010-11-29 2012-06-07 住友金属鉱山株式会社 Bismuth-substituted rare earth iron garnet crystal film and optical isolator
JP2012116673A (en) * 2010-11-29 2012-06-21 Sumitomo Metal Mining Co Ltd Bismuth-substituted rare earth iron garnet crystal film and optical isolator
US9322111B2 (en) 2010-11-29 2016-04-26 Sumitomo Metal Mining Co., Ltd. Bismuth-substituted rare-earth iron garnet crystal film and optical isolator

Similar Documents

Publication Publication Date Title
US4263374A (en) Temperature-stabilized low-loss ferrite films
US6288827B1 (en) Faraday rotator
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
JP2000249997A (en) Faraday rotational angle varying device
US5479290A (en) Faraday&#39;s rotator and optical isolator
US4269651A (en) Process for preparing temperature-stabilized low-loss ferrite films
JPH10273397A (en) Faraday element
US5965287A (en) Magneto-optical element material and Faraday element using the same
EP1162635B1 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
US7006289B2 (en) Magnetooptical isolator material
JP3476557B2 (en) Faraday rotator
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
JP2924282B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
US6770223B1 (en) Article comprising a faraday rotator that does not require a bias magnet
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film
JPH04304418A (en) Faraday rotator
JP3698933B2 (en) Magneto-optic garnet single crystal
JPH10186296A (en) Magneto-optical element material
JPH0527207A (en) Faraday rotator
JP3724519B2 (en) Bismuth-substituted rare earth iron garnet single crystal film
JP3724519B6 (en) Bismuth-substituted rare earth iron garnet single crystal film