JPH10273337A - Glass material for wavelength transformation - Google Patents

Glass material for wavelength transformation

Info

Publication number
JPH10273337A
JPH10273337A JP7841397A JP7841397A JPH10273337A JP H10273337 A JPH10273337 A JP H10273337A JP 7841397 A JP7841397 A JP 7841397A JP 7841397 A JP7841397 A JP 7841397A JP H10273337 A JPH10273337 A JP H10273337A
Authority
JP
Japan
Prior art keywords
chloride
glass material
glass
wavelength
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7841397A
Other languages
Japanese (ja)
Inventor
Masaharu Ishiwatari
正治 石渡
Akira Okubo
晶 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7841397A priority Critical patent/JPH10273337A/en
Publication of JPH10273337A publication Critical patent/JPH10273337A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glass material useful e.g. as a fluorescent substance for display units, capable of such transformation of a wavelength into a shorter one using red to infrared rays as exciting light as to remain impossible for conventional wavelength transformation glass materials by incorporating cadmium-based chloride glass with neodymium ions as luminescent ions in specific proportions based on the whole cations. SOLUTION: This glass material is obtained by incorporating a cadmium- based glass material (e.g. a glass material obtained from anhydrous cadmium chloride, anhydrous barium chloride, anhydrous strontium chloride, sodium chloride and potassium chloride), if necessary, prepared by substituting part of cadmium with alkali metal or alkaline earth metal, with neodymium ions as luminescent ions at 0.1 to 2.0 mol.% (0.1 to 2.0 mol% in terms of NdCl2 ), pref. 0.5 to 1.5 mol.% based upon the whole cations (100 mol.%). As a result, an ultraviolet to violet light having a shorter wavelength of <=450 nm is obtained by using an exciting light with 780 to 830 nm wavelength in a red to infrared band.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は730〜830nm未
満の赤色光あるいは赤外光を350〜440nmの紫外光
から可視青色光に変換する波長変換材料に関する。本発
明の波長変換ガラス材はディスプレイ用蛍光体、青紫色
固体レーザー媒質等として幅広い応用が可能である。
The present invention relates to a wavelength conversion material for converting red or infrared light having a wavelength of less than 730 to 830 nm from ultraviolet light having a wavelength of 350 to 440 nm into visible blue light. The wavelength conversion glass material of the present invention can be widely applied as a phosphor for a display, a blue-violet solid laser medium, and the like.

【0002】[0002]

【従来技術とその問題点】コンパクトディスク、光磁気
ディスクなどの光記録媒体において、記録密度を向上す
るためには波長の短いレーザほど有利であり、半導体レ
ーザの短波長化が進められている。更に、アップコンバ
ージョン蛍光体を利用して赤色〜赤外域の半導体レーザ
光をより波長の短い青色〜緑色レーザに変換する試みも
なされている。
2. Description of the Related Art In an optical recording medium such as a compact disk or a magneto-optical disk, a laser having a shorter wavelength is more advantageous for improving the recording density, and the wavelength of a semiconductor laser is being shortened. Further, attempts have been made to convert semiconductor laser light in the red to infrared region into a blue to green laser having a shorter wavelength by using an up-conversion phosphor.

【0003】この種のアップコンバージョン蛍光体とし
ては結合エネルギーの低いフッ化物を母体としたものに
希土類蛍光イオンをドープさせたものが多数知られてい
る。例えば、フッ化ランタンにネオジウムイオンを含有
させた単結晶蛍光体からは788nmおよび591nmの2
波長励起によって380nmの紫色レーザ光が得られてい
る(Appl Phys.Lett.,52,16,1300-1302,1988)。しか
し、結晶体は加工性に難点があり、ファイバー等に成形
することが困難であり、また大きな単結晶を得るのも難
しい。さらに結晶は配位子場の対称性が高いため発光遷
移確率が低く、また、吸収幅が狭いため半導体レーザの
ように励起光の波長が変動し易いレーザで励起する場合
には吸収効率の変動が大きいという問題点がある。
[0003] As this kind of up-conversion phosphor, there are known a large number of phosphors having a base material of fluoride having a low binding energy and doped with rare earth fluorescent ions. For example, from a single crystal phosphor containing neodymium ion in lanthanum fluoride, two wavelengths of 788 nm and 591 nm are used.
A 380-nm purple laser beam is obtained by wavelength excitation (Appl Phys. Lett., 52, 16, 1300-1302, 1988). However, the crystal has difficulty in workability, it is difficult to form into a fiber or the like, and it is also difficult to obtain a large single crystal. In addition, the crystal has a high ligand field symmetry, so the emission transition probability is low, and the absorption width is narrow, so that the excitation efficiency varies when pumping with a laser, such as a semiconductor laser, where the wavelength of the excitation light tends to fluctuate. Is large.

【0004】このためガラス質の蛍光体が検討されてい
る。蛍光体として用いる透明ガラス材料は結晶に比べて
可視光発生における損失や散乱が少ない材料を作製し易
い。またファイバー等の任意の形態に成形し易い。さら
に、励起光の波長の揺らぎに伴う吸収効率の変動が小さ
い。このため温度や電流等の影響により出力波長が変動
し易い半導体レーザを励起源として用いた場合でも安定
した出力が得られる等の利点がある。
For this reason, vitreous phosphors have been studied. As for the transparent glass material used as the phosphor, it is easy to produce a material having less loss and scattering in the generation of visible light than crystals. Also, it is easy to mold into any form such as fiber. Further, the fluctuation of the absorption efficiency due to the fluctuation of the wavelength of the excitation light is small. For this reason, there is an advantage that a stable output can be obtained even when a semiconductor laser whose output wavelength tends to fluctuate due to the influence of temperature, current or the like is used as an excitation source.

【0005】赤色〜赤外光を緑色〜青色の短波長に変換
するガラス材として、従来、フッ化インジウム系のガラ
スにプラセオジウム(Pr)イオンをドープしたガラス材が
知られている。このガラス材では588nmの励起により
480nmの青色蛍光が得られている(Phys.Rev.B50,162
19〜16223,1994 )。また、フッ化ジルコニウム系のガ
ラスにホルミウム(Ho)イオンをドープしたガラス材によ
って室温での緑色レーザを発振した例(Electron.Let
t.,26.261-263,1990)などが報告されている。しかし、
これらは汎用されている半導体レーザで得られる赤色〜
赤外域の励起光、特に高出力のものが容易に得られる7
80〜830nm未満の励起光を用いるものではない。
[0005] As a glass material for converting red to infrared light into a short wavelength of green to blue, a glass material in which praseodymium (Pr) ions are doped into indium fluoride glass has been known. In this glass material, blue fluorescence of 480 nm was obtained by excitation of 588 nm (Phys. Rev. B50, 162).
19-16223, 1994). In addition, an example in which a green laser is oscillated at room temperature by a glass material in which zirconium fluoride-based glass is doped with holmium (Ho) ions (Electron.Let
t., 26.261-263, 1990). But,
These are red to red that can be obtained with widely used semiconductor lasers.
Excitation light in the infrared region, especially high-power one, can be easily obtained 7
It does not use excitation light of 80 to less than 830 nm.

【0006】また、アルカリ土類ハロゲン化物ガラスを
母材とし、HoイオンおよびYbイオンを含有させるこ
とにより、青色発光を得るガラス材も知られている(特
開平6-219777号)が、このガラス材は830〜1000
nmのレーザ光を励起光源とするものであり、前述のガラ
ス材と同様に780〜830nm未満の励起光を用いるも
のではない。
There is also known a glass material which emits blue light by using an alkaline earth halide glass as a base material and containing Ho ions and Yb ions (Japanese Patent Application Laid-Open No. 6-219777). The material is 830-1000
The laser light of nm is used as the excitation light source, and the excitation light of 780 to less than 830 nm is not used similarly to the above-mentioned glass material.

【0007】[0007]

【発明の解決課題】本発明は、従来の波長変換ガラス材
では得られない短波長への変換を可能にした波長変換ガ
ラス材を提供するものであって、780〜830nmの赤
色〜赤外域励起光によって450nm以下の短波長レーザ
光を得ることができる波長変換材料を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention provides a wavelength conversion glass material which can be converted into a short wavelength which cannot be obtained by a conventional wavelength conversion glass material. It is an object of the present invention to provide a wavelength conversion material capable of obtaining a short-wavelength laser beam of 450 nm or less by light.

【0008】[0008]

【課題の解決手段】すなわち、本発明によれば、(1)カ
ドミウム系塩化物ガラス材において、発光イオンとして
ネオジム(Nd)イオンを陽イオン全体に対して0.1〜2モ
ル%含有することを特徴とする波長変換ガラス材が提供
される。本発明の上記ガラス材は、(2)カドミウムの一
部がアルカリ金属ないしアルカリ土類金属によって置換
されたカドミウム系塩化物ガラスを用いる波長変換ガラ
スを含む。
According to the present invention, (1) a cadmium-based chloride glass material contains 0.1 to 2 mol% of neodymium (Nd) ions as luminescent ions with respect to the whole cations. A wavelength conversion glass material characterized by the following is provided. The glass material of the present invention includes (2) a wavelength conversion glass using a cadmium chloride glass in which a part of cadmium is replaced by an alkali metal or an alkaline earth metal.

【0009】[0009]

【発明の実施形態】本発明の波長変換ガラス材は、フッ
化物ガラスよりも結合エネルギーの低いカドミウム(Cd)
系塩化物ガラスをガラス母材として用い、希土類蛍光イ
オンとしてネオジウム(Nd)を含有させることにより、7
30〜830nmの赤色〜赤外光を350〜440nmの紫
外光から可視青色光に高効率で変換できるようにしたも
のである。
DETAILED DESCRIPTION OF THE INVENTION The wavelength conversion glass material of the present invention is cadmium (Cd) having a lower binding energy than fluoride glass.
By using neodymium (Nd) as a rare earth fluorescent ion using a base chloride glass as a glass base material,
The red-to-infrared light of 30 to 830 nm can be converted from ultraviolet light of 350 to 440 nm into visible blue light with high efficiency.

【0010】Cd系塩化物ガラスは従来からよく知られ
た代表的な塩化物ガラスである(Mat.Res.Bull.Vol.18,
631-636,1983、特開60-246242号など)。このガラスは
従来のフッ化物ガラスに比べてフォノンエネルギーが低
いため、アップコンバージョン蛍光体の母材として期待
され、これに発光活性イオンとしてエルビウム(Er)イオ
ンをドープしたものが従来から検討されている(Appl.P
hys.Lett.65(15),10 October 1994、Appl.Phys.Lett.61
(22),30 November 1992)。しかし、Ndイオンをドー
プして赤色〜赤外光を紫外光〜青色光に変換したCd系
塩化物ガラスを母材とする波長変換ガラス材は知られて
いない。
Cd-based chloride glass is a typical well-known chloride glass (Mat. Res. Bull. Vol. 18,
631-636, 1983, JP-A-60-246242). Since this glass has a lower phonon energy than conventional fluoride glass, it is expected as a base material for up-conversion phosphors, and erbium (Er) ions doped as luminescent active ions have been studied. (Appl.P
hys. Lett. 65 (15), 10 October 1994, Appl. Phys. Lett. 61
(22), 30 November 1992). However, a wavelength conversion glass material using a Cd-based chloride glass as a base material in which red to infrared light is converted into ultraviolet to blue light by doping with Nd ions is not known.

【0011】本発明のガラス材において、母材として用
いるCd系塩化物ガラスとは、ガラスを形成する陽イオ
ンの主成分がCdイオンであり、ガラスを形成する陰イ
オンの主成分が塩素イオンであるものを云う。上記Cd
系塩化物ガラスは、カドミウムの一部をアルカリ金属な
いしアルカリ土類金属、鉛で置換したものであっても良
い。これらを含有することによりガラス母材の安定性を
高めることができる。一例として、Ba:約12〜36
モル%、Sr:約2〜26モル%、K:約5〜20モル%、N
a:約2〜4モル%、Rb:約5〜12モル%、Li:約1
〜2モル%、鉛:約2〜14モル%を各々含有する例を実施
例に示した。
In the glass material of the present invention, the Cd-based chloride glass used as a base material is such that the main component of the cation forming the glass is Cd ion and the main component of the anion forming the glass is chlorine ion. Say something. The above Cd
The base chloride glass may be one in which part of cadmium is replaced by an alkali metal, an alkaline earth metal, or lead. By containing these, the stability of the glass base material can be increased. As an example, Ba: about 12 to 36
Mol%, Sr: about 2 to 26 mol%, K: about 5 to 20 mol%, N
a: about 2 to 4 mol%, Rb: about 5 to 12 mol%, Li: about 1
Examples containing about 2 mol% and about 2-14 mol% of lead are shown in Examples.

【0012】本発明の波長変換ガラス材は、発光に関与
する活性イオンとしてNdイオンを含む。Ndイオンの
含有量は陽イオン全体(100モル%)に対して、0.1〜2.
0モル%(塩化Ndとして0.1〜2.0モル%)が適当である。
Ndイオンがこの範囲を上回ると溶融体が均一にならず
透明なガラス体が得られない。また、Ndイオンがこの
範囲より少ないと紫外〜青色(350〜440nm)の十分な蛍光
が得られない。均質なガラス透明体が容易に製造でき、
かつ十分な強度の紫外〜青色(350〜440nm)蛍光が得られ
るNdイオンドープ量の範囲は0.5〜1.5モル%(塩化
ネオジウムとして0.5〜1.5モル%)である。なお、Nd
イオンと共に他の希土類イオンを加えると、青・紫色蛍
光強度が低下するので好ましくない。
The wavelength conversion glass material of the present invention contains Nd ions as active ions involved in light emission. The content of Nd ions is 0.1 to 2.2 with respect to the whole cations (100 mol%).
0 mol% (0.1 to 2.0 mol% as Nd chloride) is appropriate.
If the Nd ion exceeds this range, the melt does not become uniform and a transparent glass body cannot be obtained. If the Nd ion content is less than this range, sufficient fluorescence from ultraviolet to blue (350 to 440 nm) cannot be obtained. A homogeneous transparent glass body can be easily manufactured,
The range of the Nd ion doping amount that can provide ultraviolet to blue (350 to 440 nm) fluorescence with sufficient intensity is 0.5 to 1.5 mol% (0.5 to 1.5 mol% as neodymium chloride). Note that Nd
It is not preferable to add other rare earth ions together with the ions, since the blue / purple fluorescence intensity decreases.

【0013】[0013]

【実施例および比較例】実施例1 (A)ガラス材の製造 常法により合成した無水塩化ネオジウムと、良く乾燥さ
せた無水塩化カドミウム、無水塩化バリウム、無水塩化
ストロンチウム、塩化ナトリウムおよび塩化カリウムを
表1の割合に調合したものをグラッシーカーボン坩堝に
入れ、アルゴン雰囲気下で600℃に加熱して完全に溶
融させた。溶融後、450℃に温度を下げた後、ガス化
させた四塩化炭素と一酸化炭素をこの溶融体に2時間吹
き込んで水分を除去した。引き続き、アルゴンガスを3
時間吹き込んで過飽和の塩素等を除いた後に、この溶融
体を石英管に吸い上げて冷却固化させ真空封入した。こ
れを石英管ごと炉の中に入れて再溶融した後、直ちにガ
ラス転移点まで冷却し、この温度で2時間アニールした
後、徐冷して透明なガラスサンプルを得た。
EXAMPLES AND COMPARATIVE EXAMPLES Example 1 (A) Production of Glass Material Anhydrous neodymium chloride synthesized by a conventional method and well-dried anhydrous cadmium chloride, anhydrous barium chloride, anhydrous strontium chloride, sodium chloride and potassium chloride were prepared. The mixture prepared in the ratio of 1 was placed in a glassy carbon crucible and heated to 600 ° C. in an argon atmosphere to be completely melted. After the melting, the temperature was lowered to 450 ° C., and gasified carbon tetrachloride and carbon monoxide were blown into the melt for 2 hours to remove water. Subsequently, argon gas was
After supersaturated chlorine and the like were removed by blowing for a time, the melt was sucked into a quartz tube, cooled, solidified, and sealed in a vacuum. This was put into a furnace together with the quartz tube and re-melted, immediately cooled to the glass transition point, annealed at this temperature for 2 hours, and gradually cooled to obtain a transparent glass sample.

【0014】(B)蛍光測定 上記製造工程で得たガラスサンプル(No.1〜No.10)を所
定長さに切断後、面研磨して円柱状(長さ5mm、直径2.5m
m)に整えた後、808nmのパルスレーザ光(ハ゜ルス幅10ns、
ヒ゛ーム径1mm2 、2mJ/ハ゜ルス)を研磨面の一方から照射してア
ップコンバージヨン蛍光を測定した。各試料について、
808nm励起による蛍光のピーク波長を表1に示した。
いずれの試料についても388nm、417nmにおいて利
得が得られている。また、試料No.1について、300〜
680nmの波長域における蛍光スペクトルを図1に示し
た。このスペクトル図に示されるように、紫外域(約361
nm、388nm)および紫色域(約417nm、420nm、436nm)において
蛍光が確認された。なお、750nmのパルスレーザ光を
用いた場合にも殆ど同様の蛍光スペクトルが得られた。
さらに、試料No.1について、720〜840nm波長域で
の透過スペクトルを測定し、このグラフを図2に示し
た。同図に示されるように、このサンプルガラスには約
750nmおよび約810nm付近に大きな吸収域があり、
この波長の赤外光を励起光として利用することにより最
大の蛍光強度が得られることがわかる。
(B) Fluorescence Measurement The glass sample (No. 1 to No. 10) obtained in the above manufacturing process is cut into a predetermined length, and the surface is polished to form a columnar shape (length 5 mm, diameter 2.5 m).
m), and a pulse laser beam of 808 nm (pulse width 10 ns,
A beam diameter of 1 mm 2 , 2 mJ / pulse) was irradiated from one of the polished surfaces to measure up-conversion fluorescence. For each sample,
Table 1 shows the peak wavelength of the fluorescence at 808 nm excitation.
Gain was obtained at 388 nm and 417 nm for all samples. For sample No. 1, 300 to
FIG. 1 shows the fluorescence spectrum in the wavelength range of 680 nm. As shown in this spectrum diagram, the ultraviolet region (about 361
nm, 388 nm) and in the purple region (about 417 nm, 420 nm, 436 nm). In addition, almost the same fluorescence spectrum was obtained when the pulse laser beam of 750 nm was used.
Further, the transmission spectrum of Sample No. 1 in the wavelength range of 720 to 840 nm was measured, and this graph is shown in FIG. As shown in the figure, this sample glass has a large absorption area around about 750 nm and about 810 nm.
It can be seen that the maximum fluorescence intensity can be obtained by using infrared light of this wavelength as excitation light.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 実施例1と同様にして以下の組成からなるガラス材を製
造した。(50-x)CdCl2・22BaCl2・8SrC
2・10KCl・xNdCl3このガラス材に実施例1
と同様に808nmのレーザー光を照射し、塩化Ndのモル
%に対する436nmおよび436nmの蛍光強度を測定し
た。この結果を図3に示した。436nmの青色蛍光は塩
化Ndが約0.5モル%において最大の強度を示す。一
方、388nmの紫色蛍光は塩化Ndの濃度に比例して蛍
光強度が高くなるが、塩化Ndの固溶限界は約2モル%で
あるので、これが蛍光強度の上限である。なお、360
nm付近と420nm付近の蛍光強度は388nmの上記蛍光
と同様の傾向を示した。
Example 2 A glass material having the following composition was produced in the same manner as in Example 1. (50-x) CdCl 2 · 22BaCl 2 · 8SrC
l 2 · 10KCl · xNdCl 3 Example 1
In the same manner as in the above, a laser beam of 808 nm was irradiated, and the fluorescence intensities at 436 nm and 436 nm with respect to mol% of Nd chloride were measured. The result is shown in FIG. The blue fluorescence at 436 nm shows the maximum intensity at about 0.5 mol% Nd chloride. On the other hand, the violet fluorescence at 388 nm has an increased fluorescence intensity in proportion to the concentration of Nd chloride. However, since the solid solution limit of Nd chloride is about 2 mol%, this is the upper limit of the fluorescence intensity. Note that 360
The fluorescence intensity around nm and 420 nm showed the same tendency as the above fluorescence at 388 nm.

【0017】比較例 ZBLANガラス(53ZrF4・20BaF2・LaF3・3A1F3・20NaF・3Nd
F3)にNdイオンを3モル%程含有させたガラス材を作
製し、本実施例と同様にして蛍光を測定したが350〜
440nmの波長域において全く蛍光を確認できなかっ
た。
[0017] Comparative Example ZBLAN glass (53ZrF 4 · 20BaF 2 · LaF 3 · 3A1F 3 · 20NaF · 3Nd
A glass material containing about 3 mol% of Nd ions in F 3 ) was prepared, and the fluorescence was measured in the same manner as in this example.
No fluorescence could be confirmed in the wavelength range of 440 nm.

【0018】[0018]

【発明の効果】本発明の波長変換ガラス材は、赤色〜赤
外光を励起光として従来の波長変換ガラス材では得られ
ない短波長への変換が可能であり、780〜830nmの
赤色〜赤外光を450nm以下の紫外〜紫色の短波長光に
変換することができる。
The wavelength conversion glass material of the present invention can use red to infrared light as excitation light to convert it into short wavelengths that cannot be obtained with conventional wavelength conversion glass materials. The external light can be converted to ultraviolet to purple short wavelength light of 450 nm or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 表1に示す試料No.1の300〜680nmにおける蛍
光スペクトル図。
FIG. 1 is a fluorescence spectrum diagram of Sample No. 1 shown in Table 1 at 300 to 680 nm.

【図2】 表1に示す試料No.1の720〜840nmにおける透
過スペクトル図。
FIG. 2 is a transmission spectrum diagram of Sample No. 1 shown in Table 1 at 720 to 840 nm.

【図3】 実施例2の蛍光強度を示すグラフ。FIG. 3 is a graph showing the fluorescence intensity of Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カドミウム系塩化物ガラス材において、
発光イオンとしてネオジム(Nd)イオンを陽イオン全体に
対して0.1〜2モル%含有することを特徴とする波長変
換ガラス材。
1. A cadmium-based chloride glass material,
1. A wavelength conversion glass material comprising neodymium (Nd) ions as luminescent ions in an amount of 0.1 to 2 mol% based on the whole cations.
【請求項2】 カドミウムの一部がアルカリ金属ないし
アルカリ土類金属によって置換されたカドミウム系塩化
物ガラスを用いる請求項1に記載の波長変換ガラス材。
2. The wavelength conversion glass material according to claim 1, wherein a cadmium chloride glass in which part of cadmium is replaced by an alkali metal or an alkaline earth metal is used.
JP7841397A 1997-03-28 1997-03-28 Glass material for wavelength transformation Withdrawn JPH10273337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7841397A JPH10273337A (en) 1997-03-28 1997-03-28 Glass material for wavelength transformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7841397A JPH10273337A (en) 1997-03-28 1997-03-28 Glass material for wavelength transformation

Publications (1)

Publication Number Publication Date
JPH10273337A true JPH10273337A (en) 1998-10-13

Family

ID=13661360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7841397A Withdrawn JPH10273337A (en) 1997-03-28 1997-03-28 Glass material for wavelength transformation

Country Status (1)

Country Link
JP (1) JPH10273337A (en)

Similar Documents

Publication Publication Date Title
Auzel et al. Rare earth doped vitroceramics: new, efficient, blue and green emitting materials for infrared up‐conversion
US3717583A (en) Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm.
US6347177B1 (en) Optical fiber for light amplifier
US6413891B1 (en) Glass material suitable for a waveguide of an optical amplifier
Lakshminarayana et al. Spectral analysis of RE3+ (RE= Er, Nd, Pr and Ho): GeO2–B2O3–ZnO–LiF glasses
Taherunnisa et al. Optimized NIR and MIR emission properties of Tm3+/Ho3+ ions in lead sulfo phosphate glasses
JP2001514443A (en) Amplification by dysprosium-doped low phonon energy glass waveguide
JP2951358B2 (en) Up conversion glass
CN1391536A (en) Fluorotellurite amplifier glasses
JP5170502B2 (en) Fluoride bulk single crystal material for upconversion
JPH10273337A (en) Glass material for wavelength transformation
JP4663111B2 (en) Optical amplifier and optical gain medium
CN1269915A (en) Glass for high and flat gain 1.55 micros optical amplifiers
JPH0986958A (en) Glass material for converting wavelength
JP3301034B2 (en) Glass composition
JP3415088B2 (en) Optical fiber for optical amplifier
JPH08208268A (en) Laser glass and optical fiber
JPH0797572A (en) Ir light-exciting emitter
Kowal et al. Rare earth-doped barium gallo-germanate glasses for broadband near-infrared luminescence
RU2190704C2 (en) Monocrystalline laser material
JPH1041577A (en) Upconversion laser
JPH08217490A (en) Wavelength-changing glass material
JPH05254880A (en) Yb ion-doped aluminate laser glass comprising nd ion as sensitizer
JPH10273336A (en) Halide glass material for light amplification
JPH07133135A (en) Infrared-visible wavelength changing glass material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601