JPH10272960A - Awake degree estimating device - Google Patents
Awake degree estimating deviceInfo
- Publication number
- JPH10272960A JPH10272960A JP9081441A JP8144197A JPH10272960A JP H10272960 A JPH10272960 A JP H10272960A JP 9081441 A JP9081441 A JP 9081441A JP 8144197 A JP8144197 A JP 8144197A JP H10272960 A JPH10272960 A JP H10272960A
- Authority
- JP
- Japan
- Prior art keywords
- time
- blink
- driver
- long
- wink
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/84—Data processing systems or methods, management, administration
Landscapes
- Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Emergency Alarm Devices (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は運転者の瞬きの時間
に着目して該運転者の覚醒度、ひいては覚醒度低下を簡
易にして確実に検出して警告を発し、運転注意力を喚起
するに好適な覚醒度推定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention focuses on the time of a driver's blinking, detects the driver's arousal level, and furthermore, detects a decrease in the arousal level in a simple and reliable manner, issues a warning, and alerts the driver's attention. The present invention relates to a wakefulness estimating device suitable for the present invention.
【0002】[0002]
【関連する背景技術】近時、種々の情報に基づいて運転
者の覚醒度を推定し、覚醒度の低下が検出されたときに
警報を発する等して運転注意力を喚起するシステムが種
々開発されている。この種の覚醒度を推定する手法の1
つに、運転者の瞬きを評価の指標としたものがあり、例
えば特開昭61−175129号公報には単位時間当た
りの瞬き回数を計数して覚醒度の低下を判定する手法が
開示されている。しかし単位時間当たりの瞬き回数を覚
醒度評価の指標とした場合、瞬きの個人差に起因する誤
差が生じ易く、その推定精度を高めることができないと
言う問題があった。[Related Background Art] Recently, various systems for estimating a driver's arousal level based on various information and issuing a warning when a decrease in the arousal level is detected, for example, to arouse driving attention have been developed. Have been. One of the methods to estimate this kind of arousal
Finally, there is a method in which a driver's blink is used as an evaluation index. For example, Japanese Patent Application Laid-Open No. 61-175129 discloses a method of counting the number of blinks per unit time and determining a decrease in arousal level. I have. However, when the number of blinks per unit time is used as an index for arousal level evaluation, errors due to individual differences in blinks are likely to occur, and the accuracy of estimation cannot be improved.
【0003】そこで本出願人は、先に特願平8−913
24号にて出願し、また社団法人自動車技術会発行の学
術講演会前刷集961(1996-5)において論文[52.
自動車運転時の覚醒度評価手法(9632415)]として発
表したように、運転者の瞬き時間に着目して、覚醒度の
低下を推定する手法を提唱した。この瞬き時間に着目し
た覚醒度の推定手法は、瞬き時間の頻度分布に基づい
て、標準的な瞬きの分布時間幅とその分布幅の中心時間
とから長い瞬きを判定する為の閾値(瞬き時間)を設定
し、所定の期間内における瞬きの総数と上記閾値を越え
る長い瞬きの発生回数との比率を求め、この比率を評価
することで覚醒度の低下を判定するものである。Therefore, the present applicant has previously filed Japanese Patent Application No. 8-913.
No. 24, and a paper [52.
A method of estimating a decrease in arousal level by focusing on the driver's blink time was proposed as announced as a method for evaluating arousal level during driving (9632415). A method of estimating the degree of awakening focusing on the blink time is based on a frequency distribution of the blink time, and a threshold (blink time) for determining a long blink from a standard blink time distribution width and a center time of the distribution width. ) Is set, and the ratio of the total number of blinks within a predetermined period to the number of occurrences of long blinks exceeding the above-described threshold is obtained, and a decrease in arousal level is determined by evaluating this ratio.
【0004】このような手法によれば、瞬き時間や瞬き
の頻度等の個人差を吸収して、その覚醒度を精度良く評
価することができると言う利点がある。According to such a method, there is an advantage that it is possible to absorb individual differences such as a blink time and a blink frequency and to accurately evaluate the arousal level.
【0005】[0005]
【発明が解決しようとする課題】しかしながら瞬き時間
の頻度分布を求め、その頻度分布に従って長い瞬きに対
する判定閾値を設定して上述した如く覚醒度を推定する
に際しては、仮え同一人であると雖も、体調や周囲環境
等によって瞬きの頻度等が変化するので、その推定精度
を高めるには或る程度の長い期間に亘って瞬きの情報を
収集する必要がある。しかも収集した瞬きの情報からそ
の頻度分布を求め、これを解析する上での処理負担が大
きいことが否めない。この為、より簡単に、しかも高精
度に覚醒度を推定することができ、自動車に搭載するシ
ステム(覚醒度推定装置)の簡素化を図ることが強く望
まれている。However, when the frequency distribution of the blinking time is determined, and a determination threshold value for a long blink is set in accordance with the frequency distribution and the arousal level is estimated as described above, it is assumed that the same person is present. However, since the frequency of blinking changes depending on the physical condition, the surrounding environment, and the like, it is necessary to collect blink information over a certain long period in order to improve the estimation accuracy. Moreover, it is unavoidable that the processing load in obtaining the frequency distribution from the collected blink information and analyzing the frequency distribution is large. For this reason, there is a strong demand that the arousal level can be estimated more easily and with high accuracy, and that a system (arousal level estimation device) mounted on a vehicle is simplified.
【0006】本発明はこのような事情を考慮してなされ
たもので、その目的は、簡易にして効率良く、しかも確
実に覚醒度の低下を検出して運転注意力を喚起すること
ができ、しかもシステム構成の簡素化を図ることのでき
る覚醒度推定装置を提供することにある。The present invention has been made in view of such circumstances, and has as its object the purpose of being able to easily and efficiently detect a decrease in arousal level and reliably alert the driver to driving, Moreover, it is an object of the present invention to provide a waking degree estimating apparatus that can simplify the system configuration.
【0007】[0007]
【課題を解決するための手段】上述した目的を達成する
べく本発明に係る覚醒度推定装置は、例えばカメラによ
って撮像される運転者の顔面画像から該運転者の瞬きの
時間(瞬目持続時間;t)を検出する瞬き時間検出手段
と、運転者の覚醒時に検出される上記瞬き時間[t]に
基づいて該運転者に固有な瞬きの基準時間[To]を求
める基準時間算出手段と、この基準時間[To]を所定
の割合[r%]だけ増大させて長い瞬きを評価するため
の瞬き評価時間[Ts]を設定する評価時間設定手段
と、設定された瞬き評価時間[Ts]に従って前記瞬き
時間[t]から長い瞬きを検出する長い瞬き検出手段
と、所定の時間内における瞬きの総数[Ntotal]と長
い瞬きの回数[Nlong]とから長い瞬きの生起比率[L
rate]を求める生起比率算出手段と、上記長い瞬きの生
起比率[Lrate]に基づいて運転者の覚醒度[Y1]を
評価する生起比率覚醒度判定手段とを具備したことを特
徴としている。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, a waking degree estimating apparatus according to the present invention uses a driver's blink image (blink duration time) based on a driver's face image captured by a camera, for example. Blinking time detecting means for detecting t), reference time calculating means for calculating a blinking reference time [To] specific to the driver based on the blinking time [t] detected when the driver wakes up, Evaluation time setting means for increasing the reference time [To] by a predetermined ratio [r%] to set a blink evaluation time [Ts] for evaluating a long blink, and according to the set blink evaluation time [Ts]. A long blink detection means for detecting a long blink from the blink time [t], and a long blink occurrence ratio [L] based on the total number of blinks [Ntotal] and the number of long blinks [Nlong] within a predetermined time.
rate], and an occurrence ratio alertness determining unit for evaluating the driver's alertness [Y1] based on the long blink occurrence rate [Lrate].
【0008】特に生起比率覚醒度判定手段においては、
覚醒度[Y1]と長い瞬きの生起比率[Lrate]との関
係を示す眠気予測モデルを回帰分析して求められる次の
予測式 Y1 = A1 + B1・Lrate (A1,B1は予測係数) に基づいて眠気予測値[Y1]を算出し、この眠気予測
値を所定の閾値で弁別して覚醒度を評価することを特徴
としている。[0008] In particular, in the occurrence ratio alertness determination means,
Based on the following prediction formula Y1 = A1 + B1 · Lrate (A1 and B1 are prediction coefficients) obtained by regression analysis of a sleepiness prediction model showing the relationship between the arousal level [Y1] and the occurrence ratio of long blinks [Lrate]. The sleepiness prediction value [Y1] is calculated by using the threshold value, and the sleepiness prediction value is discriminated by a predetermined threshold value to evaluate the arousal level.
【0009】また本発明に係る覚醒度推定装置は、上述
した構成に加えて、更に所定の時間内における前記瞬き
時間の平均[BLdur]を求める瞬き平均時間算出手段
と、この瞬きの平均時間[BLdur]に基づいて運転者
の覚醒度[Y2]を評価する平均時間覚醒度判定手段
と、この平均時間覚醒度判定手段および前記生起比率覚
醒度判定手段の各判定結果を総合判定して前記運転者の
覚醒度低下を検出する覚醒度低下検出手段とを具備した
ことを特徴としている。The awakening degree estimating apparatus according to the present invention, in addition to the above-described configuration, further includes a blink average time calculating means for calculating an average [BLdur] of the blink time within a predetermined time, and an average blink time [BLdur]. BLdur], an average time arousal level determining means for evaluating the driver's arousal level [Y2], and comprehensively determining each of the determination results of the average time arousal level determining means and the occurrence ratio arousal level determining means. A low alertness detecting means for detecting a low alertness of a person.
【0010】特に平均時間覚醒度判定手段においては、
眠気予測モデルを用いた回帰分析により求められる覚醒
度と瞬き時間の平均[BLdur]との関係を示す予測式 Y2 = A2 + B2・BLdur (A2,B2は予測係数) に基づいて眠気予測値[Y2]を算出し、この眠気予測
値を所定の閾値で弁別して覚醒度を評価するようにし、
覚醒度低下検出手段においては、上記眠気予測値[Y
1],[Y2]を総合的に評価することで運転者の覚醒度
低下を精度良く(信頼性良く)推定するようにしたこと
を特徴としている。[0010] In particular, in the average time awakening degree determination means,
A drowsiness prediction value based on a prediction formula Y2 = A2 + B2 · BLdur (A2, B2 is a prediction coefficient) indicating a relationship between a degree of arousal obtained by regression analysis using a drowsiness prediction model and an average blink time [BLdur] [ Y2] is calculated, and the drowsiness predicted value is discriminated by a predetermined threshold to evaluate the arousal level,
In the alertness reduction detecting means, the sleepiness predicted value [Y
1] and [Y2] are comprehensively evaluated to accurately (reliably) estimate a decrease in the driver's arousal level.
【0011】[0011]
【発明の実施の形態】以下、図面を参照して本発明に係
る覚醒度推定装置の一実施形態について説明する。図1
は車両1に搭載される実施例装置の構成を概念的に示す
もので、図中2は運転者Dの顔面、特に目の領域を撮像
するTVカメラである。また図中3は種々の情報を画像
として表示して運転者Dに提示するディスプレイ(多重
情報表示装置)、4は音声メッセージや警報音等を出力
するスピーカである。これらのTVカメラ2,ディスプ
レイ3,スピーカ4は、例えば運転席前方のインストル
メントパネルに組み込まれる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of an awakening degree estimating apparatus according to the present invention will be described with reference to the drawings. FIG.
FIG. 1 conceptually shows the configuration of an embodiment device mounted on the vehicle 1. In FIG. 2, reference numeral 2 denotes a TV camera for imaging the face of the driver D, particularly the eye area. In the figure, reference numeral 3 denotes a display (multiplex information display device) for displaying various information as images and presenting it to the driver D, and reference numeral 4 denotes a speaker for outputting a voice message, an alarm sound and the like. The TV camera 2, the display 3, and the speaker 4 are incorporated in, for example, an instrument panel in front of a driver's seat.
【0012】この実施例に係る覚醒度推定装置は、TV
カメラ2により撮像される運転者の顔面画像から該運転
者の瞬きを検出して運転者の覚醒度を推定し、覚醒度の
低下時に前記ディスプレイ3を介してメッセージを表示
し、またスピーカ4から警報を発して運転注意力の喚起
を促す役割を担う。この装置は、例えばマイクロプロセ
ッサを主体とする電子制御ユニット(ECU)により実
現され、概略的には図2に示すように構成される。The awakening degree estimating apparatus according to this embodiment has a TV
A blink of the driver is detected from the face image of the driver captured by the camera 2 to estimate the degree of awakening of the driver. When the degree of awakening decreases, a message is displayed via the display 3 when the degree of awakening is reduced. Plays the role of alerting and driving the driver's attention. This device is realized by, for example, an electronic control unit (ECU) mainly composed of a microprocessor, and is schematically configured as shown in FIG.
【0013】即ち、実施例装置は図2にその機能的なブ
ロック構成を示すように、TVカメラ2にて撮像入力さ
れる運転者の顔面画像を画像処理部10にて認識処理
し、例えば所定の周期で目の領域の部分画像を抽出して
いる。瞬き検出部11は上記画像の経時的変化から、特
に瞼の開閉を検出することで瞬きを検出している。瞬き
時間計算部12は、上記瞬き検出部11にて瞬きが検出
される都度、その閉眼開始から終了までの閉眼時間で示
される瞬きの時間(瞬目時間)[t]を計測している
(瞬き時間検出手段)。このような瞬き時間の検出処理
は、タイマ13の管理の下で、所定の期間に亘って繰り
返し実行される。That is, as shown in the functional block diagram of FIG. 2, the embodiment apparatus recognizes a driver's face image captured and input by the TV camera 2 in the image processing unit 10 and performs, for example, a predetermined process. The partial image of the eye region is extracted in the cycle of. The blink detection unit 11 detects blinking by detecting, particularly, the opening and closing of the eyelids from the temporal change of the image. Each time a blink is detected by the blink detection unit 11, the blink time calculation unit 12 measures a blink time (blink time) [t] indicated by an eye closing time from the start to the end of closing the eye (the blink time). Blink time detecting means). Such blink time detection processing is repeatedly executed over a predetermined period under the management of the timer 13.
【0014】瞬き基準時間計算部14は、例えば運転開
始初期時のように「運転を開始する(開始した)」と言
う意識が強く働いており、運転者Dが十分に覚醒状態に
あると看做し得るときに、前記瞬き時間検出手段(瞬き
時間計算部12)により所定の期間に亘って求められる
瞬き時間[t]に基づいて、その運転者Dに固有な覚醒
時における瞬きの基準時間[To]を求めている(基準
時間算出手段)。この基準時間[To]は、前記所定の
期間、例えば運転開始時の5分間における瞬き時間
[t]の平均値等として算出される。The blink reference time calculation unit 14 has a strong sense of "starting (starting)" as in, for example, the initial stage of driving, and it is determined that the driver D is sufficiently awake. When it can be considered, based on the blink time [t] obtained over a predetermined period by the blink time detecting means (blink time calculation unit 12), the reference time of the blink at the time of awakening unique to the driver D [To] is obtained (reference time calculating means). The reference time [To] is calculated as the average value of the blink time [t] in the predetermined period, for example, 5 minutes at the start of operation.
【0015】長い瞬きの時間設定部15は、運転者Dの
瞬きの中から、特に覚醒度の低下に伴う長い瞬きを検出
する為の瞬き評価時間[Ts]を設定するもので、前記
基準時間[To]を所定の割合[r(%)]だけ増大させ
ることで、 Ts = To + To・r/100 として上記評価時間[Ts]を定めている(評価時間設
定手段)。上記割合は、例えば5%,10%,15%,2
0%として与えられるもので、実際には後述するシミュ
レーション実験結果等に基づいて10%等に選択設定さ
れる。即ち、この長い瞬きの時間設定部15では、覚醒
度が低下すると、一般的には時間の長い瞬きが発生し易
くなることに鑑み、この長い瞬きを覚醒度低下の判定指
標として用いるべく、長い瞬きを検出するための瞬き評
価時間[Ts]を設定している。The long blink time setting section 15 sets a blink evaluation time [Ts] for detecting a long blink from the driver D's blink, particularly with a decrease in arousal level. By increasing [To] by a predetermined ratio [r (%)], the evaluation time [Ts] is determined as Ts = To + To · r / 100 (evaluation time setting means). The above ratio is, for example, 5%, 10%, 15%, 2
It is given as 0%, and is actually set to 10% or the like based on the results of a simulation experiment described later. That is, the long blink time setting unit 15 considers that when the degree of awakening decreases, generally a long-time blink tends to occur. A blink evaluation time [Ts] for detecting blink is set.
【0016】長い瞬き検出部16は、上述した如く設定
された瞬き評価時間[Ts]に従って、前記瞬き時間検
出手段によって順次検出される運転者Dの瞬きの時間
[t]から、上記瞬き評価時間[Ts]を越える瞬きを
長い瞬きとして検出している。そして長い瞬き生起比率
計算部17では、例えば前記長い瞬き検出部16にて評
価された瞬きの全回数[Ntotal]と、該長い瞬き検出
部16による検出結果として求められる長い瞬きの数
[Nlong]とをそれぞれ計数している。そして所定の期
間における上記瞬きの総数[Ntotal]と、その瞬きの
中の長い瞬きの回数[Nlong]とから、長い瞬きの生起
比率[Lrate(%)]を Lrate = 100・Nlong / Ntotal として求めている。The long blink detecting section 16 calculates the blink evaluation time from the blink time [t] of the driver D sequentially detected by the blink time detecting means in accordance with the blink evaluation time [Ts] set as described above. Blinks exceeding [Ts] are detected as long blinks. In the long blink occurrence ratio calculation unit 17, for example, the total number of blinks [Ntotal] evaluated by the long blink detection unit 16 and the number of long blinks [Nlong] obtained as a detection result by the long blink detection unit 16 Are counted respectively. Then, based on the total number of blinks [Ntotal] in a predetermined period and the number of long blinks [Nlong] in the blink, a long blink occurrence ratio [Lrate (%)] is obtained as Lrate = 100 · Nlong / Ntotal. ing.
【0017】尚、長い瞬きの数[Nlong]と、それ以外
の標準的な瞬きの回数[Nnormal]とをそれぞれ計数
し、 Lrate = 100・Nlong /(Nlong + Nnormal) として長い瞬きの生起比率[Lrate]を求めるようにし
ても良いことは言うまでもない。The number of long blinks [Nlong] and the number of other standard blinks [Nnormal] are counted, and the rate of occurrence of long blinks [Lrate = 100 · Nlong / (Nlong + Nnormal)] Lrate] may be obtained.
【0018】さて生起比率覚醒度判定部18は、後述す
るように眠気予測モデルを用いた回帰分析により求めら
れる、覚醒度と上記長い瞬きの生起比率[Lrate(%)]
との関係を示す予測式 Y1 = A1 + B1・Lrate (A1,B1は予測係数) に基づいて眠気予測値[Y1]を算出するものである。
上記予測係数A1,B1は、例えば覚醒度のレベルを次の
ように5段階に定義し、種々のシミュレーション実験結
果に基づいて前述した瞬き評価時間[Ts]を設定する
上での増大割合[r%]を、後述するように10%とし
た場合、例えば A1 = 1.238 , B1 = 0.046 として与えられる。つまり前記予測式は、 Y1 = [1.238] + [0.046] Lrate として与えられ、運転者Dの瞬き中における長い瞬きの
生起比率[Lrate(%)]を前述した如く算出して上記予
測式を演算することで眠気予測値[Y1]が求められ
る。The occurrence ratio arousal level determination unit 18 determines the arousal level and the occurrence ratio of the long blink [Lrate (%)] obtained by regression analysis using a drowsiness prediction model as described later.
The drowsiness predicted value [Y1] is calculated based on the prediction formula Y1 = A1 + B1 · Lrate (A1, B1 is a prediction coefficient) showing the relationship with
For example, the prediction coefficients A1 and B1 are defined as five levels of arousal level as follows, and the rate of increase [r] in setting the above-described blink evaluation time [Ts] based on various simulation experiment results. %] Is set to 10% as described later, for example, given as A1 = 1.238, B1 = 0.046. That is, the prediction formula is given as Y1 = [1.238] + [0.046] Lrate, and the long blink occurrence ratio [Lrate (%)] during the blink of the driver D is calculated as described above. The drowsiness predicted value [Y1] is obtained by calculating the prediction formula.
【0019】尚、上記覚醒度の5段階レベルは、例えば レベル1…全く眠くなさそう(視線の動きが早く頻繁で
ある。瞬きが安定し、動きが活発。) レベル2…やや眠そう(視線の動きが遅い。唇が開
く。) レベル3…眠そう(瞬きがゆっくりで頻繁。口の動きが
ある。) レベル4…かなり眠そう(意識的な瞬きがあり、瞬きも
視線の動きも遅い。) レベル5…非常に眠そう(瞼を閉じる。頭が前後に傾
く。) として設定される。従って眠気予測値[Y1]が、例え
ば[3]を越えるような場合、以下に示すように覚醒度
が低く、眠そうであると推定(判定)される。The above five levels of arousal level are, for example, level 1 ... seemingly sleepless (movement of the line of sight is fast and frequent; blinking is stable and movement is active) level 2 ... slightly sleepy (line of sight) Slow movement. Lips open.) Level 3 ... sleepy (blinks are slow and frequent. There is movement of the mouth.) Level 4 ... quite sleepy (conscious blinks, blinks and gaze are slow. .) Level 5: Set to be very sleepy (closes eyelids, head tilts back and forth). Therefore, when the drowsiness predicted value [Y1] exceeds, for example, [3], it is estimated (determined) that the awakening degree is low and the user is likely to sleep, as shown below.
【0020】しかして前記生起比率覚醒度判定部18に
て、長い瞬きの生起比率[Lrate]に基づいて求められ
た眠気予測値[Y1]は、覚醒度低下判定部19に与え
られて覚醒度低下の判定に供される。そしてこの覚醒度
低下判定部19にて覚醒度の低下が検出された場合、前
述したディスプレイ3やスピーカ4を用いた警告が発せ
られ、運転者Dに対して運転注意力の喚起が行われるこ
とになる。The predicted drowsiness value [Y1] obtained based on the occurrence ratio [Lrate] of long blinks by the occurrence ratio arousal level determination unit 18 is given to the arousal level decrease determination unit 19 and It is used to determine the decrease. When the alertness decrease determination unit 19 detects a decrease in alertness, the above-described warning using the display 3 and the speaker 4 is issued, and the driver D is alerted to driving attention. become.
【0021】一方、瞬き平均時間計算部21は、前記瞬
き時間検出手段によって順次検出される運転者Dの瞬き
時間[t]に基づき、所定期間における上記瞬き時間
[t]の平均値、つまり平均瞬き時間[BLdur]を求
めている。尚、この瞬き平均時間計算部21は、前記瞬
き基準時間計算部14と実質的に同じ演算を実行するも
のであるから、瞬き基準時間計算部14が持つ機能とし
て実現することも可能である。On the other hand, the blink average time calculation section 21 calculates the average value of the blink time [t] in a predetermined period, that is, the average, based on the blink time [t] of the driver D sequentially detected by the blink time detecting means. Blink time [BLdur] is required. Since the blink average time calculation unit 21 performs substantially the same operation as the blink reference time calculation unit 14, the blink average time calculation unit 21 can be realized as a function of the blink reference time calculation unit 14.
【0022】しかして瞬き平均時間計算部21にて求め
られた平均瞬き時間[BLdur]を入力する平均時間覚
醒度判定部22は、後述するように眠気予測モデルを用
いた回帰分析により求められる、覚醒度と平均瞬き時間
[BLdur(sec/回)]との関係を示す予測式 Y2 = A2 + B2・BLdur (A2,B2は予測係数) に基づいて眠気予測値[Y2]を算出している。上記予
測係数A2,B2は、例えば覚醒度のレベルが前述した5
段階に定義されているとき、種々のシミュレーション実
験結果に基づいて、例えば A2 = −4.378 , B2 = 0.029 として与えられる。Thus, the average time awakening degree determination unit 22 that inputs the average blink time [BLdur] obtained by the blink average time calculation unit 21 is obtained by regression analysis using a drowsiness prediction model as described later. A drowsiness prediction value [Y2] is calculated based on a prediction formula Y2 = A2 + B2 · BLdur (A2, B2 is a prediction coefficient) indicating a relationship between the arousal level and the average blink time [BLdur (sec / time)]. . The prediction coefficients A2 and B2 are, for example, the arousal level of 5 as described above.
When defined in stages, based on various simulation experiment results, it is given as, for example, A2 = -4.378, B2 = 0.029.
【0023】このようにして平均時間覚醒度判定部22
にて平均瞬き時間[BLdur]に基づいて求められた眠
気予測値[Y2]もまた、前記覚醒度低下判定部19に
与えられて覚醒度低下の判定に供される。そしてこの覚
醒度低下判定部19にて覚醒度の低下が検出された場
合、前述したディスプレイ3やスピーカ4を用いた警告
が発せられ、運転者Dに対して運転注意力の喚起が行わ
れることになる。In this manner, the average time arousal level determination section 22
The sleepiness predicted value [Y2] obtained based on the average blink time [BLdur] is also provided to the arousal level decrease determination unit 19 to be used for determining the arousal level decrease. When the arousal level decrease determination unit 19 detects a decrease in the arousal level, the above-described warning using the display 3 and the speaker 4 is issued, and the driver D is alerted to driving attention. become.
【0024】特にこの覚醒度低下判定部19では、前述
した長い瞬きの生起比率[Lrate]に基づいて求められ
た眠気予測値[Y1]と、瞬き時間の平均値[BLdur]
に基づいて求められた眠気予測値[Y2]とを後述する
ように総合判定することで運転者Dの覚醒度の低下を検
出し、その検出結果に基づいて警告を発するものとなっ
ている。In particular, the awakening degree decrease determination section 19 predicts a drowsiness value [Y1] obtained based on the long blink occurrence rate [Lrate] and an average blink time [BLdur].
The drowsiness prediction value [Y2] obtained based on the above is comprehensively determined as described later to detect a decrease in the arousal level of the driver D, and a warning is issued based on the detection result.
【0025】尚、上述した機能ブロックに示される覚醒
度低下の判定処理は、実際的にはマイクロプロセッサの
下で、図3に示す制御ルーチンに従って実行される。即
ち、運転開始初期時に、例えば5分間に亘って瞬きの時
間[t]を計測し(ステップS1,S2,S3)、その瞬
き時間の平均を基準時間[To]として算出する(ステ
ップS4)。しかる後、1単位の計測対象期間を5分間
として、その後の瞬きの時間[t]を計測する(ステッ
プS5,S6)。Note that the processing for determining a decrease in arousal level shown in the above-described functional blocks is actually executed under a microprocessor according to a control routine shown in FIG. That is, at the beginning of the operation start, the blinking time [t] is measured for, for example, 5 minutes (steps S1, S2, S3), and the average of the blinking time is calculated as the reference time [To] (step S4). Thereafter, one unit of measurement period is set to 5 minutes, and the subsequent blink time [t] is measured (steps S5 and S6).
【0026】その後、上述した如く5分間ずつ検出され
る瞬き時間[t]に従って、前記基準時間[To]を1
0%長くして設定した瞬き評価時間[Ts]の下で検出
される長い瞬き[Long10]の生起比率[Lrate]を計算
し(ステップS8)、更にそのときの平均瞬き時間[B
Ldur]を計算する(ステップS9)。そして生起比率
[Lrate]と平均瞬き時間[BLdur]とが得られたな
らば、次に前述した予測式に従って眠気予測値[Y1],
[Y2]とをそれぞれ計算し(ステップS10,S1
1)、例えばこれによって求められる眠気予測値(覚醒
度)をディスプレイ3に表示する(ステップS12)。
この眠気予測値(覚醒度)のディスプレイ表示は、例え
ば前述した如く5段階に設定したレベルに従って、その
覚醒度を棒グラフ表示したり、更にはその情報の表示色
を変更する等して行われる。Thereafter, the reference time [To] is set to 1 according to the blink time [t] detected every 5 minutes as described above.
The occurrence rate [Lrate] of a long blink [Long10] detected under the blink evaluation time [Ts] set to be 0% longer is calculated (step S8), and the average blink time [B] at that time is calculated.
Ldur] is calculated (step S9). Then, when the occurrence ratio [Lrate] and the average blink time [BLdur] are obtained, the sleepiness prediction value [Y1],
[Y2] are calculated (steps S10 and S1).
1) For example, the drowsiness predicted value (arousal level) obtained thereby is displayed on the display 3 (step S12).
The display of the predicted drowsiness value (degree of arousal) is performed by, for example, displaying the degree of arousal in a bar graph or changing the display color of the information in accordance with the five levels set as described above.
【0027】その上で、上述した如く求められた眠気予
測値[Y1],[Y2]を評価し(ステップS13)、例
えばそのレベル(予測値)が[3]を越える場合には、
運転者Dを覚醒させて運転注意力を促すべく警報を発す
る(ステップS14)。また覚醒度のレベルが[3]以
下の場合には、前述したステップS5からの処理を繰り
返し実行することで、次の5分間における瞬きの情報に
基づく覚醒度の推定処理を再度実行する。Then, the sleepiness predicted values [Y1] and [Y2] obtained as described above are evaluated (step S13). For example, when the level (predicted value) exceeds [3],
A warning is issued to awaken the driver D to encourage driving attention (step S14). If the level of the arousal level is equal to or less than [3], the processing from step S5 described above is repeatedly executed, whereby the estimating process of the arousal level based on the blink information for the next five minutes is executed again.
【0028】さて上述した長い瞬き[Long10]の生起比
率[Lrate]、および平均瞬き時間[BLdur]に基づ
く眠気予測値[Y1],[Y2]の算出と、その評価につ
いて今少し詳しく説明する。覚醒度の評価指標として
は、例えば脳波や心電,呼吸等の生理的指標の経時的変
化、ハンドル角によって示されるステアリング操作特性
等のパフォーマンス指標の経時的変化が用いられる。そ
こでこれらの各指標と、そのときに第三者によって客観
的に評価された運転者Dの眠気との関係を調べたとこ
ろ、図4に示す如きシミュレーション実験結果が得られ
た。Now, the calculation of the sleepiness predicted values [Y1] and [Y2] based on the occurrence ratio [Lrate] of the long blink [Long10] and the average blink time [BLdur] and the evaluation thereof will be described in more detail. As the evaluation index of the arousal level, for example, a temporal change of a physiological index such as an electroencephalogram, an electrocardiogram, or respiration, and a temporal change of a performance index such as a steering operation characteristic indicated by a steering wheel angle are used. Then, when the relationship between each of these indices and the drowsiness of the driver D, which was objectively evaluated by a third party at that time, was examined, a simulation experiment result as shown in FIG. 4 was obtained.
【0029】図4においてCz(α/β)およびPz(α/β)
は、運転者Dの頭頂Cz部位およびPz部位において求め
られる脳波のα波とβ波のスペクトルパワー値の比率で
ある。またBlink-Noは運転者Dの眼球運動から求められ
る、例えば5秒間における瞬き数であり、Blink-Dur は
平均瞬き時間、またHRは運転者Dの1分間当たりの心
拍数、Resp は呼吸数である。更にSpeed は車両の走行
速度、Steer はハンドル角の平均値、Steer-SD はハン
ドル角の偏差である。またSleepiness は第三者によっ
て評価される運転者Dの眠気、MWSは運転者D自身に
よる眠気の主観評価である。In FIG. 4, Cz (α / β) and Pz (α / β)
Is the ratio of the spectral power values of the α waves and β waves of the brain waves obtained at the top Cz region and the Pz region of the driver D. Blink-No is the number of blinks in 5 seconds, for example, obtained from the eye movements of driver D, Blink-Dur is the average blink time, HR is the heart rate of driver D per minute, and Resp is the respiration rate. It is. Speed is the running speed of the vehicle, Steer is the average value of the steering wheel angle, and Steer-SD is the deviation of the steering wheel angle. Sleepiness is the driver's D sleepiness evaluated by a third party, and MWS is the driver's D subjective sleepiness evaluation.
【0030】この図4に例示されるシミュレーション実
験結果に現れているように、運転者Dの眠気(Sleepine
ss)は運転時間の経過に伴って増大すること、そして眠
気が瞬きの回数(Blink-No)と瞬き時間(Blink-Dur)
との間に強い関係を持っていることが示される。つまり
時間の経過に伴って眠気が増すに従って瞬き回数が少な
くなり、また瞬き時間が増大化する傾向にある。ちなみ
に運転時間の経過に伴って前記Cz(α/β),Pz(α/β)
も増加の傾向を示し、逆にHRやRespは減少の傾向を示
す。尚、時間経過に伴う運転者Dの眠気の増大は、一般
的には運転操作の単調さや慣れ、更には疲労に起因する
ものである。As shown in the simulation experiment results illustrated in FIG. 4, the driver D sleepiness (Sleepine
ss) increases with driving time, and drowsiness counts the number of blinks (Blink-No) and blinking time (Blink-Dur)
It shows that you have a strong relationship with That is, as the drowsiness increases with the passage of time, the number of blinks tends to decrease, and the blink time tends to increase. Incidentally, as the operation time elapses, the above Cz (α / β) and Pz (α / β)
Also show a tendency to increase, and HR and Resp show a tendency to decrease. The increase in drowsiness of the driver D with the passage of time is generally caused by the monotonousness and familiarity of the driving operation, and furthermore, by fatigue.
【0031】そこで本発明では、運転者Dと非接触に覚
醒度(眠気変動)を評価することを目的として、特に瞬
きの時間に着目し、その予測精度を向上させ、且つ個人
差を低減するべく検討を進めた。具体的には覚醒度の低
下に伴って増加する長い瞬きに着目し、所定期間におけ
る長い瞬きの生起比率と覚醒度との関係について調べ
た。特にその前処理として長い瞬きを判定する上での瞬
き評価時間[Ts]を、覚醒時における平均的な瞬き時
間を基準時間[To]とし、この基準時間[To]に対す
る瞬き時間の増大割合を5%,10%,15%,20%に
それぞれ設定して前記瞬き評価時間[Ts]を定めた。Therefore, in the present invention, in order to evaluate the arousal level (drowsiness fluctuation) without contact with the driver D, attention is paid particularly to the time of blinking, the prediction accuracy is improved, and individual differences are reduced. Investigation was proceeded. Specifically, attention was paid to long blinks that increased with a decrease in arousal level, and the relationship between the occurrence ratio of long blinks and arousal level in a predetermined period was examined. In particular, the blink evaluation time [Ts] for judging a long blink as pre-processing is defined as an average blink time at the time of awakening as a reference time [To], and an increase ratio of the blink time with respect to the reference time [To] is calculated. The blink evaluation time [Ts] was set at 5%, 10%, 15%, and 20%, respectively.
【0032】そしてこれらの各瞬き評価時間[Ts]の
下で所定時間(例えば5分間)における複数の運転者D
(被検者:Subj.1,〜12)の長い瞬きの生起比率[Lrat
e]を[Long5],[Long10],[Long15],[Long20]と
してそれぞれ求めた。更に各運転者Dの前記所定時間に
おける平均瞬き時間[BLdur]も同時に求めた。そし
て長い瞬きの生起比率[Long5],[Long10],[Long1
5],[Long20]と、平均瞬き時間[BLdur]とについ
て、そのサンプル中心時間を、例えば60秒周期として
与えられるLag値に従ってずらしながら眠気(覚醒度)
との関係分析を行い、その関係係数が最も大きくなる条
件での関係係数Rを求めたところ、図5に示すような結
果が得られた。A plurality of drivers D for a predetermined time (for example, 5 minutes) under each of the blink evaluation times [Ts].
(Subject: Subj.1, ~ 12) Long blink rate [Lrat
e] were obtained as [Long5], [Long10], [Long15], and [Long20], respectively. Further, the average blink time [BLdur] of each driver D in the predetermined time was also determined at the same time. And the occurrence ratio of long blinks [Long5], [Long10], [Long1
5], [Long20] and the average blink time [BLdur], while shifting the sample center time according to the Lag value given as, for example, a 60-second cycle, so that drowsiness (degree of arousal) is obtained.
Was analyzed to determine the relation coefficient R under the condition that the relation coefficient was the largest, and the result as shown in FIG. 5 was obtained.
【0033】この図5に示す関係係数Rに関する分散分
析の結果によれば、上記瞬き評価時間の異なる4種類の
長い瞬きの生起比率と平均瞬き時間とからなる5つの指
標の間で、複数の運転者D(Subj)に亘る平均値に有意
な差が認められる。特に長い瞬きの生起比率[Long20]
における関係係数Rが小さく、またLag値に関する分散
分析では、上記各指標間で格別有意な差が生じないこと
が確認できた。但し、これらの各指標は、生理学的には
意味の異なるデータである。According to the results of the analysis of variance regarding the relation coefficient R shown in FIG. 5, a plurality of five indices consisting of the occurrence ratios of the four types of long blinks having different blink evaluation times and the average blink time indicate a plurality of indices. There is a significant difference in the average value over driver D (Subj). Especially the occurrence ratio of long blink [Long20]
And the analysis of variance with respect to the Lag value confirmed that there was no significant difference between the above indexes. However, each of these indices is data having a physiologically different meaning.
【0034】ちなみに図5に示す分散分析結果は、各指
標(長い瞬きの生起比率)を300秒間の平均として求
め、また眠気の表情を60秒間の平均として求めた場合
のものである。従ってこの分散分析結果は、眠気予測の
時間特性に関して、例えば0秒から300秒における指
標の平均にて、120秒から180秒時点での眠気の平
均を予測していることを意味し、その予想遅れが120
秒であることを示している。従って周期60秒で示され
るLag値が[−1]で与えられる場合、実際には300
秒の指標が得られた時点で、240秒の時点における眠
気を予測していることになり、その予測遅れは60秒で
あることが示される。しかし実際の眠気の平均周期15
0秒の半分以下の遅れなので、実用的には眠気の変動を
ほぼリアルタイムに予測し得ることになる。By the way, the results of the analysis of variance shown in FIG. 5 are obtained when each index (the ratio of occurrence of long blinks) is obtained as an average for 300 seconds, and the expression of sleepiness is obtained as an average for 60 seconds. Therefore, the result of the analysis of variance implies that, with respect to the time characteristic of sleepiness prediction, for example, the average of the indices from 0 to 300 seconds predicts the average of sleepiness from 120 seconds to 180 seconds. Delay is 120
Seconds. Therefore, when a Lag value indicated by a cycle of 60 seconds is given by [−1], it is actually 300
At the time when the second index is obtained, sleepiness at the time of 240 seconds is predicted, which indicates that the prediction delay is 60 seconds. However, the average period of actual sleepiness is 15
Since the delay is less than half of 0 second, practically, the change of drowsiness can be predicted almost in real time.
【0035】さて図5に示す分析結果とその考察結果に
基づいて、長い瞬きの生起比率(指標)と覚醒度(眠
気)とを予測モデル化し、シミュレーションによって得
られた複数の運転者Dからのサンプルデータから、その
関係を示す予測式を Y1 = A1 + B1・Lrate Y2 = A2 + B2・BLdur なる1次式で近似し、その関係が最も高くなるときの予
測係数A1,B1,A2,B2と、そのときの関係係数Rの平
均、および AIC = 2n logeσ + 2p (但し、nはデータ数,pは回帰係数の数である) で示される赤池の情報量基準AICの平均を求めたとこ
ろ、例えば図6に示す結果が得られた。Now, based on the analysis results and the consideration results shown in FIG. 5, the occurrence ratio (index) of long blinks and the arousal level (sleepiness) are modeled by prediction, and a plurality of drivers D obtained by simulation obtain the simulation results. From the sample data, a prediction expression indicating the relationship is approximated by a linear expression of Y1 = A1 + B1 · Lrate Y2 = A2 + B2 · BLdur, and the prediction coefficients A1, B1, A2, B2 when the relationship is the highest. And the average of AIC = 2n logeσ + 2p (where n is the number of data and p is the number of regression coefficients). For example, the result shown in FIG. 6 was obtained.
【0036】即ち、予測モデルを用いた回帰分析により
求められる覚醒度と長い瞬きの生起比率[Lrate]との
関係を Y1 = A1 + B1・Lrate (A1,B1は予測係数) なる予測式で表現し、また覚醒度と瞬き時間との関係を Y2 = A2 + B2・Lrate (A2,B2は予測係数) なる予測式で表現し、シミュレーションによって求めら
れた複数のサンプルデータに基づいて、その関係係数R
が最も高くなるときの予測係数A1,B1,A2,B2をそれ
ぞれ求め、そのときの関係係数Rと情報量基準AICと
を求めた。この結果、この例においては情報量基準AI
Cが最も小さくなる予測モデルは、瞬き評価時間[T
s]を基準時間[To]の10%増大として設定したとき
の長い瞬きの生起比率[Long10]であることが確認でき
た。また最も大きな関係係数Rが得られる予測モデル
は、瞬き時間[Blink-Dur]に着目したときであること
が確認できた。That is, the relationship between the arousal level obtained by regression analysis using a prediction model and the occurrence ratio [Lrate] of long blinks is expressed by a prediction formula of Y1 = A1 + B1 · Lrate (A1 and B1 are prediction coefficients). The relationship between the arousal level and the blink time is expressed by a prediction formula of Y2 = A2 + B2 · Lrate (where A2 and B2 are prediction coefficients), and based on a plurality of sample data obtained by the simulation, the relation coefficient is obtained. R
, The prediction coefficients A1, B1, A2, and B2 were determined, and the relation coefficient R and the information amount reference AIC at that time were determined. As a result, in this example, the information amount reference AI
The prediction model that minimizes C is the blink evaluation time [T
s] was set as a 10% increase in the reference time [To], it was confirmed that the occurrence ratio of long blinks [Long10] was obtained. In addition, it was confirmed that the prediction model in which the largest relation coefficient R was obtained was a case where attention was paid to the blink time [Blink-Dur].
【0037】そこで本発明では上述した知見に基づき、
前述したように運転者Dの長い瞬きの生起比率[Lrat
e]を求め、覚醒度と生起比率との関係を示す予測モデ
ルに基づく予測式に従って上記生起比率[Lrate]に相
当する眠気予測値[Y1]を求めている。そしてこの眠
気予測値[Y1]を評価することで、運転者Dの覚醒度
の低下を判定している。更に運転者Dの平均瞬き時間
[BLdur]を求め、覚醒度と平均瞬き時間との関係を
示す予測モデルに基づく予測式に従って上記平均瞬き時
間[BLdur]に相当する眠気予測値[Y2]を求めてい
る。そしてこの眠気予測値[Y1]を評価することで、
運転者Dの覚醒度の低下を判定している。In the present invention, based on the above findings,
As described above, the occurrence rate of long blinks of driver D [Lrat
e], and a sleepiness prediction value [Y1] corresponding to the occurrence ratio [Lrate] is obtained according to a prediction formula based on a prediction model indicating the relationship between the arousal level and the occurrence ratio. By evaluating the drowsiness predicted value [Y1], a decrease in the awakening degree of the driver D is determined. Further, the average blink time [BLdur] of the driver D is determined, and the sleepiness prediction value [Y2] corresponding to the average blink time [BLdur] is determined according to a prediction formula based on a prediction model indicating a relationship between the arousal level and the average blink time. ing. Then, by evaluating the sleepiness prediction value [Y1],
It is determined that the driver D has a lower arousal level.
【0038】図7は複数の運転者D(被検者:Subj.1,
〜12)の眠気表情からから求められる眠気の実測値と、
上述した如く長い瞬きの生起比率[Lrate]から求めら
れる眠気予測値[Y1]との関係を対比して示したもの
である。尚、図7において太線で示す特性は眠気予測値
[Y1]を示しており、細線で示される特性は実際の眠
気の変動を示している。この図7に示されるように、前
述した如く求められる眠気予測値[Y1]は、実際の眠
気を先取りしてその眠気(覚醒度)の変化を良好に予測
していることが分かる。しかも運転者Dの個人性をほぼ
良好に吸収して眠気を予測していると言える。FIG. 7 shows a plurality of drivers D (subject: Subj.1,
~ 12) The measured value of drowsiness obtained from the drowsiness expression,
As described above, the relationship with the sleepiness predicted value [Y1] obtained from the long blink occurrence ratio [Lrate] is shown in comparison. In FIG. 7, the characteristics indicated by the thick lines indicate the drowsiness predicted value [Y1], and the characteristics indicated by the thin lines indicate the actual changes in drowsiness. As shown in FIG. 7, it can be seen that the sleepiness predicted value [Y1] obtained as described above satisfactorily predicts a change in sleepiness (arousal level) in advance of actual sleepiness. In addition, it can be said that drowsiness is predicted by absorbing the individuality of the driver D almost satisfactorily.
【0039】また図8は上記複数の運転者D(被検者:
Subj.1,〜12)における眠気の実測値と、前述した如く
平均瞬き時間[BLdur]から求められる眠気予測値
[Y2]との関係を対比して示している。この図8にお
いても、太線で示す特性は眠気予測値[Y2]を示して
おり、細線で示される特性は実際の眠気の変動を示して
いる。そしてこの図7に示されるように、平均瞬き時間
[BLdur]に基づいて求められる眠気予測値[Y2]に
ついては、前述した眠気予測値[Y1]に比較して若干
予測精度が劣るものの、或る程度、実際の眠気を先取り
してその眠気(覚醒度)の変化を良好に予測しているこ
とが分かる。FIG. 8 shows the plurality of drivers D (examinee:
The relationship between the measured drowsiness value in Subj. 1 to 12) and the drowsiness predicted value [Y2] obtained from the average blink time [BLdur] as described above is shown in comparison. In FIG. 8 as well, the characteristic shown by the thick line indicates the drowsiness predicted value [Y2], and the characteristic shown by the thin line indicates the actual change in drowsiness. As shown in FIG. 7, the predicted drowsiness value [Y2] obtained based on the average blink time [BLdur] has a slightly lower prediction accuracy than the aforementioned drowsiness predicted value [Y1]. It can be seen that the change in sleepiness (arousal level) is predicted well in advance of actual sleepiness.
【0040】しかしながら図7および図8に示されるよ
うに、前述した如く求められる眠気予測値[Y1],[Y
2]は、全体的にはその覚醒度の低下を予測し得ると雖
も、特定の運転者D(個人)については、予測精度が不
十分なことがある。具体的には図7に示す比較例ではSu
bj.1 で示される運転者Dと、Subj.8 で示される運転者
Dとにおいて、長い瞬きの生起比率[Lrate]から求め
られる眠気予測値[Y1]は実際の眠気を十分に予測し
ていない。また図8に示す比較例では、Subj.5,Subj.
7,Subj.10,Subj.11 で示される運転者Dにおいて、平
均瞬き時間[BLdur]から求められる眠気予測値[Y
2]は、実際の眠気を十分に予測していない。However, as shown in FIGS. 7 and 8, the drowsiness predicted values [Y1] and [Y
2] can predict the decrease in the arousal level as a whole, but the prediction accuracy of the specific driver D (individual) may be insufficient. Specifically, in the comparative example shown in FIG.
For the driver D indicated by bj.1 and the driver D indicated by Subj.8, the sleepiness prediction value [Y1] obtained from the long blink occurrence ratio [Lrate] sufficiently predicts actual sleepiness. Absent. In the comparative example shown in FIG.
7, a drowsiness predicted value [Y obtained from the average blink time [BLdur] in the driver D represented by Subj.10 and Subj.11
2] does not fully predict actual drowsiness.
【0041】このような特定の運転者Dに対する予測不
十分性は、その運転者Dの瞬きの特異性によるものであ
り、この特異性は長い瞬きの生起比率[Lrate]から求
められる眠気予測値[Y1]と、平均瞬き時間[BLdu
r]から求められる眠気予測値[Y2]とで逆の傾向を示
す。換言すれば瞬きの特異性は、長い瞬きの生起比率
[Lrate]に基づく眠気の予測精度と、平均瞬き時間
[BLdur]に基づく眠気の予測精度に対して逆に作用
しており、むしろ一方の予測精度が悪い場合には、他方
の予測精度を高める傾向を示している。The insufficient prediction for the specific driver D is due to the specificity of the blink of the driver D. The specificity is a predicted drowsiness value obtained from a long blink occurrence rate [Lrate]. [Y1] and the average blink time [BLdu
r] shows the opposite tendency with the sleepiness prediction value [Y2]. In other words, the specificity of the blink has an adverse effect on the prediction accuracy of drowsiness based on the occurrence ratio [Lrate] of long blinks and the prediction accuracy of drowsiness based on the average blink time [BLdur]. When the prediction accuracy is low, the other prediction accuracy tends to be increased.
【0042】従って前述した如く、運転者Dの長い瞬き
の生起比率[Lrate]と平均瞬き時間[BLdur]とか
らそれぞれ求められる眠気予測値[Y1],[Y2]を総
合的に判定してその覚醒度の低下(眠気)を予測する本
装置によれば、非常に高い予測精度で、しかも種々の個
人性を効果的に吸収して運転者Dの覚醒度低下を判定す
ることが可能となる。特に前述した如く簡単な処理によ
って、物理的な意味を異にする長い瞬きの生起比率[L
rate]と平均瞬き時間[BLdur]とを求め、しかも1
次式で示される予測式に従って簡単に眠気予測値[Y
1],[Y2]を算出することができるので、その処理負
担が軽く、システム構成の簡素化を図ることも可能とな
る。しかも処理速度の高速化を図ることも可能となり、
検出の時間遅れも少なく押さえることができる。Accordingly, as described above, the drowsiness predicted values [Y1] and [Y2] obtained from the long blink occurrence ratio [Lrate] and the average blink time [BLdur] of the driver D are comprehensively determined and determined. According to the present apparatus for predicting a decrease in arousal level (sleeping), it is possible to determine a decrease in arousal level of the driver D with very high prediction accuracy and effectively absorbing various personalities. . In particular, as described above, the occurrence ratio of long blinks [L
rate] and the average blink time [BLdur].
The sleepiness prediction value [Y
Since [1] and [Y2] can be calculated, the processing load is light and the system configuration can be simplified. Moreover, the processing speed can be increased,
The time delay of the detection can be reduced.
【0043】つまり個人性を吸収しながら予測精度を高
め、その上で処理の単純化と処理速度の高速化を図り、
更にシステム構成の簡素化とコストの低減を図ることが
できる。従って個々の車両に搭載される覚醒度推定装置
として実用上多大なる利点がある。尚、本発明は上述し
た実施例に限定されるものではない。例えば長い瞬きを
検出する上での瞬き評価時間[Ts]の基準時間[To]
に対する増大割合[r%]は、更に多くのシミュレーシ
ョン実験結果等に基づいて設定すれば良いものであり、
前述した例に限定されない。即ち、より高い関係が得ら
れるように上記瞬き評価時間[Ts]を設定すれば良
い。また簡易型の覚醒度推定装置を実現する場合には、
前述した平均瞬き時間[BLdur]に基づく覚醒度の推
定を省略することも可能である。That is, the prediction accuracy is improved while absorbing the individuality, and the processing is simplified and the processing speed is increased.
Further, the system configuration can be simplified and the cost can be reduced. Therefore, there is a great advantage in practical use as an awakening degree estimation device mounted on each vehicle. Note that the present invention is not limited to the above-described embodiment. For example, the reference time [To] of the blink evaluation time [Ts] for detecting a long blink
The increase ratio [r%] with respect to may be set based on more simulation experiment results and the like.
It is not limited to the example described above. That is, the blink evaluation time [Ts] may be set so as to obtain a higher relationship. Also, when realizing a simple type of arousal estimating device,
The estimation of the arousal level based on the average blink time [BLdur] described above can be omitted.
【0044】また平均瞬き時間[BLdur]に代えて運
転者の他の行動的特徴、例えば視線の移動を示す眼球の
水平移動や、頭部の後傾・前傾、更にはあくびやため
息、唇の弛緩等の挙動を検出し、これらの情報に基づく
予測モデルから覚醒度を推定して前述した長い瞬きの生
起比率に基づく覚醒度の評価結果と総合判定するように
しても良い。更には上述した覚醒度低下の推定結果を用
いて、車両のブレーキ機構を作動させて減速させたり、
道路上の白線認識や他車との車間距離制御等に基づく自
動走行モードを起動することも可能である。その他、本
発明はその要旨を逸脱しない範囲で種々変形して実施す
ることができる。In place of the average blink time [BLdur], other behavioral characteristics of the driver, such as horizontal movement of the eyeball indicating movement of the line of sight, backward and forward leaning of the head, and yawning, sighing, and lips It is also possible to detect behavior such as relaxation of the subject, estimate the arousal level from a prediction model based on the information, and make a comprehensive judgment with the evaluation result of the arousal level based on the occurrence ratio of long blinks described above. Furthermore, by using the estimation result of the arousal level decrease described above, the vehicle brake mechanism is operated to decelerate,
It is also possible to activate an automatic driving mode based on recognition of a white line on the road or control of the distance between other vehicles. In addition, the present invention can be variously modified and implemented without departing from the gist thereof.
【0045】[0045]
【発明の効果】以上説明したように本発明によれば、運
転者の瞬き時間を検出し、覚醒時における瞬き時間に基
づいて該運転者に固有な瞬きの基準時間を求め、この基
準時間を所定の割合だけ増大させて設定した瞬き評価時
間に従って前記運転者の長い瞬きを検出し、所定の時間
内における瞬きの総数と長い瞬きの回数とから求められ
る長い瞬きの生起比率に基づいて前記運転者の覚醒度を
評価するので、簡易にして効果的に個人性を吸収して、
その覚醒度を高精度の推定することができる。As described above, according to the present invention, the blink time of the driver is detected, and the reference time of the blink specific to the driver is obtained based on the blink time at the time of awakening. A long blink of the driver is detected according to a blink evaluation time set by increasing by a predetermined ratio, and the driving is performed based on a long blink occurrence ratio obtained from the total number of blinks and the number of long blinks within a predetermined time. To evaluate the degree of awakening of the person, so it is simple and effective to absorb personality,
The degree of arousal can be estimated with high accuracy.
【0046】特に覚醒度と長い瞬きの生起比率との関係
を示す眠気予測モデルによる予測式の回帰分析に基づい
て眠気予測値を算出し、この眠気予測値を所定の閾値で
弁別して覚醒度を評価するので、その推定精度を十分に
高めながらシステム構成の簡略化と、その処理速度の高
速化を図り得る。更には請求項3に記載するように、更
に所定の時間内における瞬き時間の平均を求め、平均瞬
き時間に基づいて運転者の覚醒度を評価する手段を備
え、この平均瞬き時間から求められた覚醒度と、前記長
い瞬きの生起比率から求められた覚醒度とを総合判定し
て前記運転者の覚醒度低下を検出するので、物理的意味
の異なる2種類の指標を用いた高精度な覚醒度推定を、
簡単に行いうる等の実用上多大なる効果が奏せられる。In particular, a sleepiness prediction value is calculated based on a regression analysis of a prediction formula based on a sleepiness prediction model showing a relationship between the degree of arousal and the occurrence ratio of long blinks. Since the evaluation is performed, the system configuration can be simplified and the processing speed can be increased while sufficiently increasing the estimation accuracy. Furthermore, as described in claim 3, means is further provided for obtaining an average of the blinking time within a predetermined time, and evaluating the degree of awakening of the driver based on the average blinking time. Since the arousal level and the arousal level obtained from the occurrence ratio of the long blinks are comprehensively determined to detect a decrease in the arousal level of the driver, high-precision awakening using two types of indicators having different physical meanings Degree estimation
Practically great effects such as easy operation can be obtained.
【図1】本発明の一実施形態に係る覚醒度推定装置を搭
載した車両の構成を概念的に示す図。FIG. 1 is a view conceptually showing a configuration of a vehicle equipped with a waking degree estimation device according to an embodiment of the present invention.
【図2】図1に示す覚醒度推定装置の機能的なブロック
構成を示す図。FIG. 2 is a diagram showing a functional block configuration of a waking degree estimation device shown in FIG. 1;
【図3】図2に示す覚醒度推定装置における覚醒度推定
処理の流れを示す図。FIG. 3 is a diagram showing a flow of a wakefulness estimation process in the wakefulness estimation device shown in FIG. 2;
【図4】物理的意味の異なる複数の覚醒度の指標と、客
観的に評価された眠気との関係とのシミュレーション実
験結果を示す図。FIG. 4 is a diagram showing a simulation experiment result of a relationship between a plurality of arousal indices having different physical meanings and objectively evaluated drowsiness.
【図5】複数の運転者(被検者:Subj.1,〜12)におけ
る長い瞬きの生起比率および平均瞬き時間と眠気(覚醒
度)との関係係数が最も大きくなるときの関係係数Rを
示す図。FIG. 5 is a graph showing the relationship between the occurrence ratio of long blinks and the relationship coefficient R when the relationship coefficient between the average blink time and drowsiness (degree of arousal) is greatest among a plurality of drivers (subjects: Subj. 1 to 12). FIG.
【図6】長い瞬きの生起比率(指標)と覚醒度(眠気)
とを予測モデル化したときの予測式と、関係係数Rの平
均、情報量基準AICとの関係を示す図。FIG. 6: Occurrence ratio of long blinks (index) and arousal level (drowsiness)
The figure which shows the relationship between the prediction formula at the time of making a prediction model, the average of the relationship coefficient R, and the information amount reference AIC.
【図7】複数の運転者D(被検者:Subj.1,〜12)の眠
気の実測値と長い瞬きの生起比率から求められる眠気予
測値との関係を対比して示す図。FIG. 7 is a diagram showing a comparison between a measured drowsiness value of a plurality of drivers D (subjects: Subj. 1 to 12) and a drowsiness prediction value obtained from the occurrence ratio of long blinks;
【図8】複数の運転者D(被検者:Subj.1,〜12)の眠
気の実測値と平均瞬き時間から求められる眠気予測値と
の関係を対比して示す図。FIG. 8 is a diagram showing a comparison between a measured drowsiness value of a plurality of drivers D (subjects: Subj. 1 to 12) and a drowsiness predicted value obtained from an average blink time.
1 車両 2 TVカメラ 3 ディスプレイ 4 スピーカ 10 画像処理部 11 瞬き検出部 12 瞬き時間計算部 13 タイマ 14 瞬き基準時間計算部 15 長い瞬きの時間設定部 16 長い瞬き検出部 17 長い瞬き生起比率計算部 18 生起比率覚醒度判定部 19 覚醒度低下判定部 21 瞬き平均時間計算部 22 平均時間覚醒度判定部 DESCRIPTION OF SYMBOLS 1 Vehicle 2 TV camera 3 Display 4 Speaker 10 Image processing unit 11 Blink detection unit 12 Blink time calculation unit 13 Timer 14 Blink reference time calculation unit 15 Long blink time setting unit 16 Long blink detection unit 17 Long blink occurrence ratio calculation unit 18 Occurrence ratio arousal level determination unit 19 Arousal level decrease determination unit 21 Blink average time calculation unit 22 Average time arousal level determination unit
Claims (4)
出手段と、運転者の覚醒時における上記瞬き時間に基づ
いて該運転者に固有な瞬きの基準時間を求める基準時間
算出手段と、この基準時間を所定の割合だけ増大させて
長い瞬きを評価するための瞬き評価時間を設定する評価
時間設定手段と、設定された瞬き評価時間に従って前記
瞬き時間から長い瞬きを検出する長い瞬き検出手段と、
所定の時間内における瞬きの総数と長い瞬きの回数とか
ら長い瞬きの生起比率を求める生起比率算出手段と、上
記長い瞬きの生起比率に基づいて前記運転者の覚醒度を
評価する生起比率覚醒度判定手段とを具備したことを特
徴とする覚醒度推定装置。1. A blink time detecting means for detecting a blink time of a driver; a reference time calculating means for calculating a reference time of a blink specific to the driver based on the blink time when the driver is awake; Evaluation time setting means for setting a blink evaluation time for evaluating a long blink by increasing a reference time by a predetermined ratio; and long blink detection means for detecting a long blink from the blink time according to the set blink evaluation time. ,
An occurrence ratio calculating means for obtaining an occurrence ratio of a long blink from the total number of blinks and the number of long blinks within a predetermined time; and an occurrence ratio arousal degree for evaluating the arousal degree of the driver based on the occurrence ratio of the long blink. A wakefulness estimating device comprising: a determination unit.
と長い瞬きの生起比率との関係を示す眠気予測モデルに
よる予測式の回帰分析に基づいて求められる眠気予測値
を所定の閾値で弁別して覚醒度を評価することを特徴と
する請求項1に記載の覚醒度推定装置。2. The method according to claim 1, wherein the arousal ratio arousal level determination unit determines a drowsiness predicted value obtained based on a regression analysis of a prediction formula based on a drowsiness prediction model indicating a relationship between the arousal level and a long blink occurrence ratio with a predetermined threshold value. The arousal level estimating device according to claim 1, wherein the arousal level is separately evaluated.
て、所定の時間内における前記瞬き時間の平均を求める
瞬き平均時間算出手段と、この瞬きの平均時間に基づい
て運転者の覚醒度を評価する平均時間覚醒度判定手段
と、この平均時間覚醒度判定手段および前記生起比率覚
醒度判定手段の各判定結果を総合判定して前記運転者の
覚醒度低下を検出する覚醒度低下検出手段とを具備した
ことを特徴とする覚醒度推定装置。3. The awakening degree estimating device according to claim 1, wherein: a blinking average time calculating means for calculating an average of the blinking times within a predetermined time; and a driver's awakening degree based on the blinking average time. Average time arousal degree determination means to be evaluated, arousal degree decrease detection means for comprehensively determining each determination result of the average time arousal degree determination means and the occurrence ratio arousal degree determination means and detecting the driver's arousal degree decrease, A wakefulness estimation device characterized by comprising:
と瞬きの平均時間との関係を示す眠気予測モデルによる
予測式の回帰分析に基づいて求められる眠気予測値を所
定の閾値で弁別して覚醒度を評価することを特徴とする
請求項3に記載の覚醒度推定装置。4. The average time arousal level determination means discriminates a drowsiness predicted value obtained based on a regression analysis of a prediction formula based on a drowsiness prediction model indicating a relationship between the arousal level and the average time of blinking with a predetermined threshold value. The arousal level estimation device according to claim 3, wherein the arousal level is evaluated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08144197A JP3480483B2 (en) | 1997-03-31 | 1997-03-31 | Arousal level estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08144197A JP3480483B2 (en) | 1997-03-31 | 1997-03-31 | Arousal level estimation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10272960A true JPH10272960A (en) | 1998-10-13 |
JP3480483B2 JP3480483B2 (en) | 2003-12-22 |
Family
ID=13746492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08144197A Expired - Fee Related JP3480483B2 (en) | 1997-03-31 | 1997-03-31 | Arousal level estimation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3480483B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003061939A (en) * | 2001-08-28 | 2003-03-04 | Pioneer Electronic Corp | Information providing system, information providing method, information providing program, server in information providing system, and terminal of information providing system |
JP2007195615A (en) * | 2006-01-24 | 2007-08-09 | Toyota Motor Corp | System and device for vigilance estimation |
JP2008073450A (en) * | 2006-09-25 | 2008-04-03 | Toyota Motor Corp | State estimating device for person and state estimating method for person |
JP2008512153A (en) * | 2004-09-13 | 2008-04-24 | バイオコニセイフ | Method and apparatus for generating personal alert level indications |
JP2008135001A (en) * | 2007-09-14 | 2008-06-12 | System Product Co Ltd | Moving object discrimination device and moving object discrimination method and moving object discrimination program |
WO2008088070A1 (en) * | 2007-01-19 | 2008-07-24 | Asahi Kasei Kabushiki Kaisha | Awake state judging model making device, awake state judging device, and warning device |
JP2008186181A (en) * | 2007-01-29 | 2008-08-14 | Denso Corp | Wakefulness maintenance device |
WO2010032424A1 (en) | 2008-09-18 | 2010-03-25 | 学校法人中部大学 | Sleepiness signal detector |
JP2010142410A (en) * | 2008-12-18 | 2010-07-01 | Toyota Motor Corp | Awakening degree determining apparatus |
JP2010191853A (en) * | 2009-02-20 | 2010-09-02 | Nissan Motor Co Ltd | Arousal level estimation device |
JPWO2011118393A1 (en) * | 2010-03-23 | 2013-07-04 | アイシン精機株式会社 | Awakening level determination device, awakening level determination method, and program |
KR101468116B1 (en) * | 2013-09-11 | 2014-12-08 | 포항공과대학교 산학협력단 | Apparatus for reducing driver's fatigue |
JP2018518205A (en) * | 2015-03-03 | 2018-07-12 | ルノー エス.ア.エス.Renault S.A.S. | Apparatus and method for predicting alertness level of driver of powered vehicle |
WO2021112048A1 (en) * | 2019-12-02 | 2021-06-10 | 株式会社デンソー | Driving analysis device, and driving analysis method |
JP2021096784A (en) * | 2019-12-19 | 2021-06-24 | 矢崎エナジーシステム株式会社 | Driver state estimation device |
-
1997
- 1997-03-31 JP JP08144197A patent/JP3480483B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4514372B2 (en) * | 2001-08-28 | 2010-07-28 | パイオニア株式会社 | Information providing system, information providing method, information providing program, server device in information providing system, and terminal device in information providing system |
JP2003061939A (en) * | 2001-08-28 | 2003-03-04 | Pioneer Electronic Corp | Information providing system, information providing method, information providing program, server in information providing system, and terminal of information providing system |
JP2008512153A (en) * | 2004-09-13 | 2008-04-24 | バイオコニセイフ | Method and apparatus for generating personal alert level indications |
JP4845886B2 (en) * | 2004-09-13 | 2011-12-28 | バイオコニセイフ | Method and apparatus for generating personal alert level indications |
JP2007195615A (en) * | 2006-01-24 | 2007-08-09 | Toyota Motor Corp | System and device for vigilance estimation |
JP2008073450A (en) * | 2006-09-25 | 2008-04-03 | Toyota Motor Corp | State estimating device for person and state estimating method for person |
US8400313B2 (en) | 2007-01-19 | 2013-03-19 | Asahi Kasei Kabushiki Kaisha | Vehicle driver sleep state classification generating device based on Hidden Markov Model, sleep state classification device and warning device |
WO2008088070A1 (en) * | 2007-01-19 | 2008-07-24 | Asahi Kasei Kabushiki Kaisha | Awake state judging model making device, awake state judging device, and warning device |
EP2363067A1 (en) * | 2007-01-19 | 2011-09-07 | Asahi Kasei Kabushiki Kaisha | Arousal state classification model generating device, arousal state classifying device, and warning device |
US7982618B2 (en) | 2007-01-29 | 2011-07-19 | Denso Corporation | Wakefulness maintaining apparatus and method of maintaining wakefulness |
JP4518083B2 (en) * | 2007-01-29 | 2010-08-04 | 株式会社デンソー | Awakening maintenance device |
JP2008186181A (en) * | 2007-01-29 | 2008-08-14 | Denso Corp | Wakefulness maintenance device |
JP2008135001A (en) * | 2007-09-14 | 2008-06-12 | System Product Co Ltd | Moving object discrimination device and moving object discrimination method and moving object discrimination program |
WO2010032424A1 (en) | 2008-09-18 | 2010-03-25 | 学校法人中部大学 | Sleepiness signal detector |
US8356899B2 (en) | 2008-09-18 | 2013-01-22 | Chubu University Educational Foundation | Sleepiness signal detector |
JP2010142410A (en) * | 2008-12-18 | 2010-07-01 | Toyota Motor Corp | Awakening degree determining apparatus |
JP2010191853A (en) * | 2009-02-20 | 2010-09-02 | Nissan Motor Co Ltd | Arousal level estimation device |
JPWO2011118393A1 (en) * | 2010-03-23 | 2013-07-04 | アイシン精機株式会社 | Awakening level determination device, awakening level determination method, and program |
JP5585648B2 (en) * | 2010-03-23 | 2014-09-10 | アイシン精機株式会社 | Awakening level determination device, awakening level determination method, and program |
KR101468116B1 (en) * | 2013-09-11 | 2014-12-08 | 포항공과대학교 산학협력단 | Apparatus for reducing driver's fatigue |
JP2018518205A (en) * | 2015-03-03 | 2018-07-12 | ルノー エス.ア.エス.Renault S.A.S. | Apparatus and method for predicting alertness level of driver of powered vehicle |
WO2021112048A1 (en) * | 2019-12-02 | 2021-06-10 | 株式会社デンソー | Driving analysis device, and driving analysis method |
JP2021089480A (en) * | 2019-12-02 | 2021-06-10 | 株式会社デンソー | Driving analyzer and driving analyzing method |
JP2021096784A (en) * | 2019-12-19 | 2021-06-24 | 矢崎エナジーシステム株式会社 | Driver state estimation device |
Also Published As
Publication number | Publication date |
---|---|
JP3480483B2 (en) | 2003-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101078466B1 (en) | Awake state judging model making device, awake state judging device, warning device, vehicle, awake state judging model making method, awake state judging method, computer readable medium recording the awake state judging model making method, and computer readable medium recording the awake state judging method | |
JP3183161B2 (en) | Arousal level estimation device | |
Mårtensson et al. | Driver sleepiness classification based on physiological data and driving performance from real road driving | |
JP5326521B2 (en) | Arousal state determination device and arousal state determination method | |
EP2285265B1 (en) | Method and device for the detection of microsleep events | |
De Rosario et al. | Controlled inducement and measurement of drowsiness in a driving simulator | |
JP3480483B2 (en) | Arousal level estimation device | |
JP4697185B2 (en) | Arousal level determination device and arousal level determination method | |
US7948387B2 (en) | Drowsiness determination apparatus, program, and method | |
JP4727688B2 (en) | Awakening level estimation device | |
JP5007975B2 (en) | Dozing detection device | |
JP5287875B2 (en) | Biological state estimation device and vehicle control device | |
JP4867215B2 (en) | Physiological / psychological state determination device, physiological / psychological state determination method, reference data generation device, and reference data generation method. | |
JP2008531142A (en) | Awakening measurement | |
WO2011055505A1 (en) | Alertness assessment device, method, and program | |
JP3509839B2 (en) | Arousal level estimation device | |
JPH04250171A (en) | Human machine system | |
JP2001245871A (en) | Doze judging device using saturation percentage of oxygen in artery blood in judging doze | |
Byrnes et al. | On Using Drivers' Eyes to Predict Accident-Causing Drowsiness Levels | |
Asirvadam et al. | Fractal dimension and power spectrum of electroencephalography signals of sleep inertia state | |
John et al. | Driver Drowsiness Detection From Multiple Facial Features Using Mobile Devices | |
Numata et al. | Analysis of drivers' behavior before and after crashes in simulated expressway driving to predict sleepiness levels for doze alarm activation | |
Kitazaki | Evaluation of Driver Drowsiness While Using Automated Driving Systems on Driving Simulator, Test Course and Public Roads | |
Holzmann et al. | Determination of the driver drowsiness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030910 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081010 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091010 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091010 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |