JPH10268983A - Parallel redundant power source system and its device - Google Patents

Parallel redundant power source system and its device

Info

Publication number
JPH10268983A
JPH10268983A JP9074996A JP7499697A JPH10268983A JP H10268983 A JPH10268983 A JP H10268983A JP 9074996 A JP9074996 A JP 9074996A JP 7499697 A JP7499697 A JP 7499697A JP H10268983 A JPH10268983 A JP H10268983A
Authority
JP
Japan
Prior art keywords
power supply
power
power source
parallel
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9074996A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
弘志 鈴木
Mitsuo Onishi
美津夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9074996A priority Critical patent/JPH10268983A/en
Publication of JPH10268983A publication Critical patent/JPH10268983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Sources (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize the high efficiency of AC input/DC power source at the time of normally operating a power source system by parallelly connecting plural DC power source so as to keeping the operation of a system without stopping the operation of a loading side even when a fault is generated at one of these power sources to stop output. SOLUTION: One of the DC power source 4 with a half output current capacity with respect to a load consumption current capacity is respectively connected to independent AC inputs 1 and 2. In addition, a DC power source with the half output current capacity of a load consumption current capacity is connected to respective AC inputs 1 and 2. The output of each DC power source 3 is connected to one wire to feed power for an electronic circuit group 5. Then, the feeding of power never stops even when a fault is generated at one place of an AC power source/DC power source. For example, when a fault is generated at AC input 1, a DC power source 4 connected to the AC input 2 feeds a power source of a half load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高信頼化コンピュー
タ(フォールトトレラントコンピュータ)等に使用され
る並列接続された電源システムの並列冗長電源方式及び
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a parallel redundant power supply system and apparatus for a power supply system connected in parallel used in a highly reliable computer (fault tolerant computer) and the like.

【0002】[0002]

【従来の技術】コンピュータの高信頼化を実現するため
に、実施例として独立した2個以上のAC電源を接続
し、1台で負荷が消費する電流を全て出力することので
きるDC電源をAC電源各々に1つづつ接続し、そのD
C電源の出力をORし負荷にDC電力を供給する方式及
び装置。
2. Description of the Related Art In order to realize a highly reliable computer, two or more independent AC power supplies are connected as an embodiment, and a DC power supply capable of outputting all the current consumed by a load by one unit is used as an AC power supply. Connect one to each power supply
A method and apparatus for ORing the output of a C power supply and supplying DC power to a load.

【0003】または、独立した2個以上のAC電源に
(A/2*B)+1個(A=負荷総消費電流、B=1台
のDC電源 出力電流)のDC電源を各々のAC電源に接
続し、各DC電源の出力を全てORし負荷にDC電力を
給電する方式及び装置。
Alternatively, (A / 2 * B) +1 (A = total load consumption current, B = one DC power supply output current) DC power supplies are applied to two or more independent AC power supplies. A system and an apparatus for connecting and ORing the outputs of all DC power supplies to supply DC power to a load.

【0004】[0004]

【発明が解決しようとする課題】先の実施例のようにD
C電源1台の障害が発生した場合においても、負荷消費
電流を100%出力し続ける給電システムを構築するた
めに、負荷が消費する全ての電流を出力することのでき
る電源を2台並列接続すると、AC電源及びDC電源が
正常に動作しているとき、各DC電源は負荷の消費電流
の半分づつを出力することとなり、DC電源は最大出力
電流の半分以下しか出力しないこととなる。一般にDC
電源の効率は電源の最大出力電流を出力している時に最
大となり、出力電流が減少すると電源効率も低下する特
性がある。このため、このような方式でDC電力を給電
すると装置の電力効率が低下し、AC電源電流が増加し
てしまう。(装置の電力効率の低下) また、1つのAC電源またはDC電源に障害が発生した
場合は全ての負荷が残りのAC電源またはDC電源に集
中するため、DC電源の出力電流、効率は最大となり、
正常時と障害発生時ではAC電源電流及びDC出力電流
の変動が大きくなる。(装置のAC入力電流変動率の増
大)さらに、この実施例では1つのDC電源の出力電流
は負荷の消費電流に等しくこの電源を2台並列に接続す
る必要があり負荷消費電流に対し接続される電源は2倍
の容量となる。このため、電源体積が増大し装置に対す
る実装体積が増加する。(DC電源の体積増大) また、装置のAC保護回路及びAC系の配線は負荷電流
容量の2倍を許容しなくてはならず、AC保護回路、配
線系が大容量、大型化してしまう。(AC系保護回路、
配線の大型化) 加えて、各DC電源の出力には障害発生時に最大負荷消
費電流の全てが流れる、このため全てのDC電源の出力
段の接続部には最大負荷消費電流を許容する部品を使用
する必要が有り、DC配線およびDC電源の小型化の弊
害となる。(DC電源接続部品の大型化)
However, as in the previous embodiment, D
Even if a failure occurs in one C power supply, two power supplies capable of outputting all the current consumed by the load are connected in parallel in order to construct a power supply system that continuously outputs 100% of the load consumption current. When the AC power supply and the DC power supply are operating normally, each DC power supply outputs half of the current consumed by the load, and the DC power supply outputs less than half of the maximum output current. Generally DC
The efficiency of the power supply is maximum when the maximum output current of the power supply is being output, and when the output current decreases, the power supply efficiency also decreases. For this reason, when DC power is supplied in such a manner, the power efficiency of the device decreases, and the AC power supply current increases. (Decrease in power efficiency of the device) Further, if a failure occurs in one AC power supply or DC power supply, the output current and efficiency of the DC power supply become maximum because all loads concentrate on the remaining AC power supply or DC power supply. ,
The fluctuations of the AC power supply current and the DC output current are large between normal times and fault occurrences. (Increase in the AC input current fluctuation rate of the device) Further, in this embodiment, the output current of one DC power supply is equal to the current consumption of the load, and it is necessary to connect two of these power supplies in parallel. The power supply becomes twice the capacity. For this reason, the power supply volume increases and the mounting volume for the device increases. (Increase in volume of DC power supply) In addition, the AC protection circuit and the wiring of the AC system of the device must allow twice the load current capacity, and the capacity and size of the AC protection circuit and the wiring system become large. (AC protection circuit,
In addition, all of the maximum load current consumption flows in the output of each DC power supply in the event of a failure. Therefore, components that allow the maximum load current consumption are connected to the connection sections of the output stages of all DC power supplies. It has to be used, which is an adverse effect on downsizing of DC wiring and DC power supply. (Upsizing of DC power connection parts)

【0005】[0005]

【課題を解決するための手段】消費電流の半分を出力す
るDC電源を3台並列に接続する。この3台の内2台は
1つのAC電源を入力とする電源であり、残りの1台は
2つのAC電源を入力とし、この2つのAC電源を電源
内部の切換回路によりどちらか一方を選択しAC電流源
として使用するDC電源とする。独立した2つのAC入
力と3台のDC電源の接続は、1つのAC入力にはDC
電源1台とAC入力の切換回路が内蔵されたAC2入力
を持つDC電源の片方の入力に接続する。残りのAC電
源には同様にDC電源の1台とAC入力が2重化された
DC電源の残りの片方の入力に接続する。この3台のD
C電源と独立した2つのAC入力を接続し、3台のDC
電源出力をOR接続し負荷にDC電力を給電する給電シ
ステムを構築する。
[0007] Three DC power supplies that output half of the current consumption are connected in parallel. Two of these three units are power supplies that receive one AC power supply, and the other one receives two AC power supplies, and either of these two AC power supplies is selected by a switching circuit inside the power supply. And a DC power supply used as an AC current source. The connection between two independent AC inputs and three DC power supplies is
One power supply and one input of a DC power supply having an AC2 input with a built-in AC input switching circuit are connected. Similarly, the other AC power supply is connected to one DC power supply and the other input of the duplicated DC power supply. These three D
Connect two independent AC inputs to the AC power supply and connect three DC
A power supply system is constructed in which power supply outputs are OR-connected to supply DC power to a load.

【0006】この電源構成を実現することで、正常動作
中でもAC電源電流を抑制し、高効率の電源システムを
構築でき、実装体積も抑えられる。また、AC電源/D
C電源の1ヶ所に障害が発生しても負荷の消費電流分の
電力給電を確保しながらAC入力電流の増加を以前より
抑えられる。
By realizing this power supply configuration, the AC power supply current can be suppressed even during normal operation, a high-efficiency power supply system can be constructed, and the mounting volume can be reduced. AC power supply / D
Even if a failure occurs at one point of the C power supply, an increase in the AC input current can be suppressed more than before, while ensuring power supply corresponding to the current consumption of the load.

【0007】[0007]

【発明の実施の形態】図1には電源境界を持たない負荷
構成の場合を、図2には電源境界を持つ負荷構成の場合
を、図3には一般的なDC電源にAC外部切換回路を実
装し同様な効果を持たせた実施例を、図4には図1から
図3の実施例よりさらに効率を改善するための実施例を
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a load configuration having no power supply boundary, FIG. 2 shows a load configuration having a power supply boundary, and FIG. FIG. 4 shows an embodiment for improving the efficiency further than the embodiments shown in FIGS. 1 to 3.

【0008】図1の実施例の場合、1、2に示される独
立したAC入力に4の負荷消費電流容量に対して半分の
出力電流容量を持つDC電源を各々1台づつ接続し、さ
らにAC入力1、2を切換、選択的に使用するAC切換
回路を内蔵し、負荷消費電流容量の半分の出力電流容量
を持つDC電源3を各1、2のAC入力に接続する。各
DC電源の出力は1つの配線に接続し5の電子回路群へ
給電する。
In the case of the embodiment shown in FIG. 1, one DC power supply having half the output current capacity with respect to the load consumption current capacity of 4 is connected to independent AC inputs 1 and 2 respectively. An AC switching circuit for switching and selectively using the inputs 1 and 2 is built in, and a DC power supply 3 having an output current capacity half of the load current consumption capacity is connected to each of the AC inputs 1 and 2. The output of each DC power supply is connected to one wiring and supplies power to five electronic circuit groups.

【0009】この構成では、AC電源/DC電源の1ヶ
所に障害が発生した場合においても負荷への給電は停止
することが無い。例えば、AC入力1に障害が発生して
も、AC入力2に接続されたDC電源4が負荷の半分の
電流を給電し、DC電源3はAC入力1からの給電が停
止したことを検出しAC入力をAC入力1からAC入力
2に電源内部で切替えるためにDC電源3の定電圧回路
の給電は停止することなく行われ、この結果DC電源3
は負荷へ消費電流の残りの半分を給電し、この2台の電
源により負荷消費電流の100%供給することが可能と
なる。また、各々のDC電源の内、1台のDC電源に障
害が発生した場合でも、残りの2台のDC電源から負荷
の消費電流の50%づつを給電し負荷消費電流を100
%供給することが可能である。
With this configuration, even when a failure occurs in one of the AC power supply and the DC power supply, the power supply to the load does not stop. For example, even if a failure occurs in the AC input 1, the DC power supply 4 connected to the AC input 2 supplies half the current of the load, and the DC power supply 3 detects that the power supply from the AC input 1 has stopped. In order to switch the AC input from the AC input 1 to the AC input 2 inside the power supply, the power supply to the constant voltage circuit of the DC power supply 3 is performed without stopping, and as a result, the DC power supply 3
Supplies the other half of the current consumption to the load, and the two power supplies can supply 100% of the current consumption. Further, even if one of the DC power supplies fails, the remaining two DC power supplies supply 50% of the current consumption of the load to reduce the load current consumption by 100%.
% Can be supplied.

【0010】このように、本方式では、電源システムの
何れか1ヶ所の障害が発生しても負荷消費電流を100
%給電することが可能である。
As described above, in this method, even if a failure occurs in any one of the power supply systems, the load consumption current is reduced by 100%.
% Power supply.

【0011】さらに、DC電源3を用いこの構成にする
ことでAC電源・DC電源が全て正常に動作している場
合のDC電源効率及び装置の電力効率を改善することが
可能となる。これは、1台のDC電源の効率を80%と
し電源システムが正常な場合、以前の接続方式では電源
システムが正常な場合負荷の消費電流はDC電源2台に
分配され、1台のDC電源の出力電流は電源の最大出力
電流の半分しか出力しない。しかしDC電源の制御回路
部分での消費電流は電源の出力電流が減少してもほとん
ど減少せず、このためDC電源の出力電流が減少するこ
とでDC電源の効率は約66.7%に低下する。しかし
図1の実施例では1台のDC電源の出力電流が先の場合
の電源の半分でよく、同一効率の電源を使用した場合、
電源内部で消費される電流量はは少なくてすみこの方式
ではDC電源効率を約72.5%まで改善でき、電源シ
ステムが正常な場合のDC電源の効率が同一のものでも
電力効率を数%高めることができ、この結果AC入力電
流を以前よりも抑えることが可能となり装置の電力消費
を抑えられる。また、AC電源/DC電源の1ヶ所の障
害が発生した場合はどちらの方式でもDC電源の最大効
率80%となり、本方式では効率の変動が以前よりも
5.8%改善し装置のAC入力電流変動も改善すること
が可能となる。
Further, by using the DC power supply 3 and adopting this configuration, it is possible to improve the DC power supply efficiency and the power efficiency of the apparatus when both the AC power supply and the DC power supply are operating normally. This is because if the efficiency of one DC power supply is 80% and the power supply system is normal, if the power supply system is normal in the previous connection method, the current consumption of the load is distributed to two DC power supplies and one DC power supply is used. Output current is only half of the maximum output current of the power supply. However, the current consumption in the control circuit portion of the DC power supply hardly decreases even when the output current of the power supply decreases, so that the efficiency of the DC power supply decreases to about 66.7% due to the decrease in the output current of the DC power supply. I do. However, in the embodiment of FIG. 1, the output current of one DC power supply may be half of the power supply of the previous case, and when a power supply of the same efficiency is used,
The amount of current consumed inside the power supply is small, and this method can improve the DC power supply efficiency to about 72.5%. Even when the DC power supply efficiency is the same when the power supply system is normal, the power efficiency is several%. As a result, the AC input current can be reduced more than before, and the power consumption of the device can be reduced. In addition, when a failure occurs at one point of the AC power supply / DC power supply, the maximum efficiency of the DC power supply is 80% in either method, and the fluctuation of the efficiency is improved by 5.8% in the present method, and the AC input of the device is improved. Current fluctuations can also be improved.

【0012】さらに、以前の方式では負荷に接続される
DC電源の総電力は負荷の消費電力の2倍となっていた
が、本方式では1.5倍に抑えられ、電源の構成部品/
ヒートシンク等の部品を小型化できDC電源の体積を小
型化できる。この結果、DC電源全体の実装体積が小型
化できる。
Further, in the previous method, the total power of the DC power supply connected to the load was twice as large as the power consumption of the load.
Components such as a heat sink can be reduced in size, and the volume of the DC power supply can be reduced. As a result, the mounting volume of the entire DC power supply can be reduced.

【0013】また、DC電源の出力電流は正常時/障害
発生時ともに負荷電流の半分しか出力せず、この結果D
C出力段の接続部品の許容電流容量も半分に抑えられ
る。
Further, the output current of the DC power supply outputs only half of the load current in both normal and fault situations.
The permissible current capacity of the connection components of the C output stage is also reduced to half.

【0014】図1の場合、5の電子回路群で負荷ショー
ト等の電源系の障害が発生すると全ての電子回路群及び
DC電源の出力が停止する。これを改善するために、図
1の電子回路群を独立したDC給電系を持つ2つの電子
回路群に分ける。この場合のDC電源の接続を図2の実
施例に示す。
In the case of FIG. 1, when a failure in the power supply system such as a load short circuit occurs in the electronic circuit group 5, the output of all the electronic circuit groups and the DC power supply is stopped. In order to improve this, the electronic circuit group of FIG. 1 is divided into two electronic circuit groups having independent DC power supply systems. The connection of the DC power supply in this case is shown in the embodiment of FIG.

【0015】図2の実施例の場合、9の電子回路群は1
0部分で同一機能の2つの電子回路群7と8に分離し各
電子回路群への給電は独立/分離したDC電源から給電
する。(電源境界を有する)この構成では電子回路群7
にはこの回路群が消費する電流の50%(全電子回路群
の消費電流の25%)を出力できるDC電源を3台接続
する。この3台のDC電源は独立した2つのAC電源に
接続されAC1側にはDC電源4を1台とDC電源3の
2つのAC入力の内の片方を接続する。AC2側も同様
にDC電源4を1台とDC電源3の残りのAC入力に接
続する。
In the case of the embodiment of FIG.
The 0 part is separated into two electronic circuit groups 7 and 8 having the same function, and power is supplied to each electronic circuit group from an independent / separated DC power supply. In this configuration (with a power supply boundary) the electronic circuit group 7
Are connected to three DC power supplies capable of outputting 50% of the current consumed by this circuit group (25% of the current consumption of all electronic circuit groups). The three DC power supplies are connected to two independent AC power supplies. One DC power supply 4 and one of the two AC inputs of the DC power supply 3 are connected to the AC1 side. Similarly, on the AC 2 side, one DC power supply 4 is connected to the remaining AC input of the DC power supply 3.

【0016】電子回路群8へも電子回路群7と同様の電
源構成および接続を行う。
A power supply configuration and connection similar to those of the electronic circuit group 7 are made to the electronic circuit group 8.

【0017】この構成に電源を接続することで、電子回
路群7、8は各々はAC入力の片方またはDC電源の1
箇所に障害が発生しても図1の実施例の改善点を全て満
足しながら電子回路群7または電子回路群8への給電を
継続できる。さらに電子回路群7での電源ショート等の
障害が発生しても障害が電子回路群7だけに抑えられ電
子回路群8への影響がなく動作し、機能の半分が動作し
システムが停止するような障害には至らない。
By connecting a power supply to this configuration, each of the electronic circuit groups 7 and 8 can be connected to one of the AC inputs or one of the DC power supplies.
Even if a failure occurs at a location, power supply to the electronic circuit group 7 or the electronic circuit group 8 can be continued while satisfying all the improvements of the embodiment of FIG. Furthermore, even if a failure such as a power short-circuit occurs in the electronic circuit group 7, the failure is suppressed only to the electronic circuit group 7 and operates without affecting the electronic circuit group 8, so that half of the functions operate and the system stops. No obstacles.

【0018】図3は図1の実施例の6切換回路部をDC
電源の外部に接続する方式である。この方式では負荷消
費電流の半分を出力する同一DC電源3台を負荷に対し
て並列に接続する。但しDC電源の1台のAC入力には
11切換回路の出力と接続し、この切換回路の入力にA
C1とAC2を入力し切換回路内部で選択的にAC1ま
たはAC2を選択し1台のDC電源へAC電力を給電す
る。この方式ではACの片系に障害が発生した場合、1
1の切換回路に接続されたDC電源へは切換回路により
正常なAC入力からAC電力を給電する。残りのDC電
源の内1台は正常なAC入力に接続されているために出
力電流を供給し続け、この2台のDC電源により電子回
路群5の負荷消費電流を出力し続ける。また11の切換
回路の障害が発生しても3台のDC電源の内2台が電流
を出力し続け、負荷消費電流を供給する。
FIG. 3 is a circuit diagram showing the 6 switching circuit of the embodiment shown in FIG.
This is a method of connecting to the outside of the power supply. In this method, three identical DC power supplies that output half of the load consumption current are connected in parallel to the load. However, one AC input of the DC power supply is connected to the output of the 11 switching circuit, and A is connected to the input of this switching circuit.
C1 and AC2 are input, AC1 or AC2 is selectively selected inside the switching circuit, and AC power is supplied to one DC power supply. In this method, if a failure occurs in one AC system, 1
The DC power supply connected to the first switching circuit is supplied with AC power from a normal AC input by the switching circuit. Since one of the remaining DC power supplies is connected to the normal AC input, it continues to supply the output current, and the two DC power supplies continue to output the load consumption current of the electronic circuit group 5. Even if a fault occurs in the eleven switching circuits, two of the three DC power supplies continue to output current and supply load consumption current.

【0019】この構成・接続形態を取ることで図1の改
善点を全て満足できる。さらにこの構成ではDC電源3
台は同一の物が使用でき保守交換作業も改善することが
可能となる。
By taking this configuration and connection form, all the improvements shown in FIG. 1 can be satisfied. Further, in this configuration, the DC power supply 3
The same table can be used and the maintenance and replacement work can be improved.

【0020】図4の実施例では図1、2のDC電源の出
力電流が負荷総消費電流の半分であったものをそれ未満
(50%未満)の電源を使用して構築する方式である。
この方式においてもAC片系障害、1台のDC電源障害
が発生しても切換回路6によるACの切換及び残りのD
C電源により負荷消費電流を100%供給することが可
能であり、電源系の1箇所の障害が発生しても電子回路
群5が停止することはない。この構成では機能的に図1
の機能と同様であるが、図4のように4台のDC電源で
構築した場合、1台のDC電源の出力電流は負荷消費電
流の34%分を出力すればよく、AC切換回路を持つD
C電源は2台必要となる。この電源構成において1台の
DC電源の効率を図1の実施例と同様に80%とする
と、本構成では正常時に効率が74.6%となり、DC
電源3台の構成時よりもさらに効率改善を計れる。この
方式では、電力効率がさらに改善されるばかりでなく、
1つのDC電源の出力電流がさらに小さくできDC電源
本体の体積がさらに小型化でき、実装位置の制約が少な
くなり、実装位置の自由度が増す。
In the embodiment of FIG. 4, the output current of the DC power supply of FIGS. 1 and 2 is half of the total load consumption current by using a power supply less than that (less than 50%).
Even in this system, even if one AC system failure or one DC power supply failure occurs, switching of AC by the switching circuit 6 and the remaining D
100% of the load consumption current can be supplied by the C power supply, and the electronic circuit group 5 does not stop even if a failure occurs at one point in the power supply system. In this configuration, FIG.
However, when the DC power supply is constructed with four DC power supplies as shown in FIG. 4, the output current of one DC power supply may output 34% of the load consumption current, and has an AC switching circuit. D
Two C power supplies are required. Assuming that the efficiency of one DC power supply is 80% in this power supply configuration as in the embodiment of FIG.
Efficiency can be further improved compared to the configuration with three power supplies. This not only improves power efficiency, but also
The output current of one DC power supply can be further reduced, the volume of the DC power supply body can be further reduced, the restrictions on the mounting position are reduced, and the degree of freedom of the mounting position is increased.

【0021】但し、図4の実施例の場合、A=負荷総消
費電流、B=1台のDC電源 最大出力電流とするとD
C電源の総数CはC=(A/B)+1個必要となり、そ
のうち3のAC入力切換回路を内蔵したDC電源の総数
DはD=C−2となる。
However, in the case of the embodiment of FIG. 4, if A = total load current consumption and B = the maximum output current of one DC power supply,
The total number C of the C power supplies requires C = (A / B) +1, and among them, the total number D of the DC power supplies including three AC input switching circuits is D = C−2.

【0022】[0022]

【発明の効果】1)電源システムの正常動作時、AC入
力/DC電源の高効率が計れる。
As described above, 1) during normal operation of the power supply system, high efficiency of AC input / DC power supply can be obtained.

【0023】2)AC入力/DC電源の障害時も高効率
な電源システムが構築できる。
2) A highly efficient power supply system can be constructed even when an AC input / DC power supply fails.

【0024】3)電源システムが正常動作時とAC入力
の片方もしくはDC電源の1つに障害が発生した時のよ
うに正常時/障害発生でも電源システムの効率変動が抑
えられる。
3) Efficiency fluctuations of the power supply system can be suppressed even when the power supply system is operating normally or when a failure occurs in one of the AC inputs or one of the DC power supplies when the power supply system operates normally and when one of the DC power supplies fails.

【0025】4)1つのDC電源の出力電力が半分とな
り、このため電源システムでの出力電力が75%以下と
なり電源システムの小型化が可能となる。
4) The output power of one DC power supply is halved, so that the output power of the power supply system is 75% or less, and the power supply system can be downsized.

【0026】5)1つのDC電源の出力電流(電力)を
負荷消費電流の半分以下にすることができDC出力段の
許容電流容量を小さくできる(DC配線系のコンパクト
化)
5) The output current (power) of one DC power supply can be reduced to half or less of the load consumption current, and the allowable current capacity of the DC output stage can be reduced (compact DC wiring system).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を用いた電源システム構成図である。FIG. 1 is a configuration diagram of a power supply system using the present invention.

【図2】本発明を用い電源境界と併用した電源システム
構成図である。
FIG. 2 is a configuration diagram of a power supply system using the present invention together with a power supply boundary.

【図3】本発明を用いAC切換回路を外部に設けた電源
システム構成図である。
FIG. 3 is a configuration diagram of a power supply system using the present invention and provided with an AC switching circuit outside.

【図4】本発明を用い電源効率を更に高める為の電源シ
ステム構成図である。
FIG. 4 is a configuration diagram of a power supply system for further improving power supply efficiency using the present invention.

【符号の説明】[Explanation of symbols]

1…AC入力1、 2…AC
入力2、3…AC入力切換回路を内蔵したDC電源、
4…DC電源、5…負荷回路(電子回路群)、
6…AC入力切換回路、7…電源境界を持つ電子
回路群1、8…電源境界を持つ電子回路群2、
9…負荷回路(電子回路群)、10…電源境界、
11…AC外部切換回路。
1 ... AC input 1, 2 ... AC
Input 2, 3, DC power supply with built-in AC input switching circuit,
4: DC power supply, 5: load circuit (electronic circuit group),
6: AC input switching circuit, 7: Electronic circuit group 1 having power supply boundary, 8 ... Electronic circuit group 2 having power supply boundary,
9: load circuit (electronic circuit group), 10: power supply boundary,
11 ... AC external switching circuit.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】複数のDC電源を並列に接続し、このDC
電源の内1台に障害が発生し出力が停止しても負荷側の
動作を停止することなくシステム運用し続ける方式と並
列冗長電源方式を有する装置。
A plurality of DC power supplies are connected in parallel.
An apparatus having a system in which the system continues to operate without stopping the operation on the load side even if a failure occurs in one of the power supplies and the output stops, and a parallel redundant power supply system.
【請求項2】独立した2以上のAC入力を持つ電源シス
テムにおいて、複数のDC電源を並列に接続し、このD
C電源の内1台に障害が発生し出力が停止しても負荷側
の動作を停止することなくシステム運用し続ける方式と
並列冗長電源方式を有する装置。
2. In a power supply system having two or more independent AC inputs, a plurality of DC power supplies are connected in parallel.
Even if a failure occurs in one of the C power supplies and the output stops, the system has a system that continues to operate the system without stopping the operation on the load side and a parallel redundant power supply system.
【請求項3】独立した2以上のAC入力を有し複数のD
C電源を並列に接続した電源システムにおいて、一つの
AC入力障害が発生した場合でも負荷側の動作を停止す
ることなくシステム運用し続ける方式と並列冗長電源方
式を有する装置。
3. A plurality of Ds having two or more independent AC inputs.
In a power supply system in which C power supplies are connected in parallel, even if one AC input failure occurs, an apparatus having a method of continuing system operation without stopping operation on the load side and a device having a parallel redundant power supply method.
【請求項4】複数のDC電源を並列に接続し、このDC
電源の内1台に障害が発生した場合においても負荷側の
動作を停止することなくシステム運用し続けながら当該
の電源を交換することを可能とする方式と並列冗長電源
方式を有する装置。
4. A plurality of DC power supplies are connected in parallel.
An apparatus having a system capable of replacing the power supply while maintaining system operation without stopping operation on the load side even when a failure occurs in one of the power supplies, and a parallel redundant power supply method.
【請求項5】複数のDC電源を並列に接続し、並列冗長
接続された電源システムにおいて高効率出力を実現する
方式と並列冗長電源方式を有する装置。
5. An apparatus having a system in which a plurality of DC power supplies are connected in parallel to realize a high-efficiency output in a power supply system connected in parallel and redundant, and a parallel redundant power supply system.
【請求項6】複数のDC電源を並列に接続し、並列冗長
接続された電源システムにおいて小スペース/低コスト
を実現する方式と並列冗長電源方式を有する装置。
6. An apparatus having a system in which a plurality of DC power supplies are connected in parallel to realize a small space / low cost in a power supply system connected in parallel and redundant, and a parallel redundant power supply system.
【請求項7】電源境界が複数個存在する装置におけるフ
ォールトトレラント機能を実現する手段としての方式と
並列冗長電源方式を有する装置。
7. An apparatus having a method as a means for realizing a fault-tolerant function in an apparatus having a plurality of power supply boundaries and a parallel redundant power supply method.
JP9074996A 1997-03-27 1997-03-27 Parallel redundant power source system and its device Pending JPH10268983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9074996A JPH10268983A (en) 1997-03-27 1997-03-27 Parallel redundant power source system and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9074996A JPH10268983A (en) 1997-03-27 1997-03-27 Parallel redundant power source system and its device

Publications (1)

Publication Number Publication Date
JPH10268983A true JPH10268983A (en) 1998-10-09

Family

ID=13563403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9074996A Pending JPH10268983A (en) 1997-03-27 1997-03-27 Parallel redundant power source system and its device

Country Status (1)

Country Link
JP (1) JPH10268983A (en)

Similar Documents

Publication Publication Date Title
US5737202A (en) Redundant power supply system
US6608403B2 (en) Power supply system with AC redundant power sources and DC redundant power supplies
US10038318B2 (en) Power supply
US20050185352A1 (en) Generation and distribution of a dual-redundant logic supply voltage for an electrical system
US7671490B2 (en) System for high reliability power distribution within an electronics equipment cabinet
US20110102996A1 (en) Power architecture to provide power supply redundancy
JP2005224097A (en) Redundant input power supply system
US8310100B2 (en) System and method for a redundant power solution
US7464280B2 (en) Power module for a plurality of processors
US6628010B2 (en) Parallel power system and an electronic apparatus using the power system
JP2002034177A (en) Two-system input power supply unit
JP2005229795A (en) Power distribution system utilizing redundant ac power supply and redundant dc power supply
JP4676153B2 (en) Power supply module mounted on a reliable board
US20040119339A1 (en) Adaptive power supply system with multiple input voltages
JPH10268983A (en) Parallel redundant power source system and its device
US20020153777A1 (en) Method and system for maintaining full power during a power interruption in a multiple power supply system
JP3169916B2 (en) Battery power supply control system
CN111158452B (en) Redundant single-input power supply system
JP2002229686A (en) Method and system for realizing fault resistance against power fault
JPH0150303B2 (en)
JP7394864B2 (en) Phase Redundant Voltage Regulator Sharing of Redundant Regulator Phases within a Device
JP2003241859A (en) Power supply system and rack-mounted computer system including the same
US10601245B2 (en) Power redundant system and operation method for the same
JP2003009424A (en) Power supply system
US6529032B1 (en) Methods and apparatus for full I/O functionality and blocking of backdrive current