JPH10267461A - Evaporator for overhead cooler - Google Patents

Evaporator for overhead cooler

Info

Publication number
JPH10267461A
JPH10267461A JP6837297A JP6837297A JPH10267461A JP H10267461 A JPH10267461 A JP H10267461A JP 6837297 A JP6837297 A JP 6837297A JP 6837297 A JP6837297 A JP 6837297A JP H10267461 A JPH10267461 A JP H10267461A
Authority
JP
Japan
Prior art keywords
heat transfer
pair
transfer tube
header pipes
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6837297A
Other languages
Japanese (ja)
Inventor
Nobuo Ichimura
信雄 市村
Akiyo Tsurushima
章代 鶴嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corp filed Critical Calsonic Corp
Priority to JP6837297A priority Critical patent/JPH10267461A/en
Publication of JPH10267461A publication Critical patent/JPH10267461A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve good improvement in heat exchange efficiency while ensuring that the vertical thinness of the structure remains good. SOLUTION: Laterally on the two sides of a pair of header gropes 4a, 4b erected each pipe in parallel with the other pipe groups of heating tube elements are provided in a pair 5a, 5b. Each group of heating tube elements 5a, 5b is comprised of a plurality of heating tube elements 8, 8, each shaped flat with a passageway turned back inside, and corrugated type fins 9, 9, the elements and fins being laid one over another in alternate layers. The two ends of the turned-back passageway are put in tight communication with the inside of the pair of header pipes 4a, 4b. Of this pair of header pipes 4a, 4b, the inside of one 4a is divided by a partition plate 18 into two, that is, an inlet chamber 19 and an outlet chamber 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明に係るオーバヘッド
クーラ用エバポレータは、自動車用空気調和装置に組み
込んで、自動車室内の後部の冷房や除湿を行なうのに用
いる。
BACKGROUND OF THE INVENTION The evaporator for an overhead cooler according to the present invention is incorporated in an air conditioner for a vehicle, and is used for cooling and dehumidifying a rear portion of a vehicle compartment.

【0002】[0002]

【従来の技術】従来から、自動車室内の後部の冷房や除
湿を行なう為に、冷風の吹き出し装置を、コンソールボ
ックス内等に取り付ける他、天井の高い自動車の場合に
は、自動車室内の前席の天井部分で乗員の邪魔にならな
い範囲に取り付ける、所謂オーバヘッドクーラが用いら
れている。この様なオーバヘッドクーラは、エバポレー
タと吹き出し部とを、上記天井部分に固定して成る。こ
の様なオーバヘッドクーラを構成するエバポレータとし
て、従来から図6に示す様なオーバヘッドクーラ用エバ
ポレータ1が用いられている。
2. Description of the Related Art Conventionally, in order to cool and dehumidify the rear part of a vehicle interior, a blower for blowing cool air is installed in a console box or the like. A so-called overhead cooler is used, which is mounted in a ceiling portion of the vehicle so as not to obstruct the occupant. Such an overhead cooler has an evaporator and a blowing section fixed to the ceiling. As an evaporator constituting such an overhead cooler, an overhead cooler evaporator 1 as shown in FIG. 6 has been conventionally used.

【0003】このオーバヘッドクーラ用エバポレータ1
は、1乃至複数本の伝熱管2、2と、複数枚のプレート
型のフィン3、3と、上記各伝熱管2、2に冷媒を分配
する為の図示しない分配部と、上記各伝熱管2、2から
冷媒を合流させる為の図示しない合流部と、これら分配
部と合流部とにそれぞれ設けた、図示しない送り込み口
及び送り出し口とから成る。上記各伝熱管2、2は、そ
れぞれ湾曲部と直線部とを交互に配置した蛇行形状に形
成して、各伝熱管2、2の両端開口部を上記分配部と合
流部とにそれぞれ連通させている。又、上記各伝熱管
2、2の中間に設けた直線部に、これら各伝熱管2、2
によりそれぞれの両面を貫通させる様に、上記複数枚の
プレート型のフィン3、3を設けている。この様に構成
する事で、このオーバヘッドクーラ用エバポレータ1
は、横方向(図5の左右方向)に長い構造とする事がで
きる。尚、この様に構成されるオーバヘッドクーラ用エ
バポレータの構成各部材は、アルミニウム合金又は銅合
金により造り、ろう付け又はかしめ等により一体に結合
している。
[0003] The overhead cooler evaporator 1
Includes one or more heat transfer tubes 2, 2, a plurality of plate-type fins 3, 3, a distribution unit (not shown) for distributing a refrigerant to each of the heat transfer tubes 2, 2, It comprises a not-shown merging portion for merging the refrigerant from 2, 2 and a not-shown feed port and a not-shown feed port provided at each of the distributing portion and the merging portion. Each of the heat transfer tubes 2 and 2 is formed in a meandering shape in which a curved portion and a straight portion are alternately arranged, and the opening portions at both ends of each of the heat transfer tubes 2 and 2 communicate with the distribution portion and the junction portion, respectively. ing. In addition, a straight section provided between the heat transfer tubes 2 and 2 has a heat transfer tube 2 and
The plurality of plate-shaped fins 3, 3 are provided so as to penetrate both surfaces thereof. With this configuration, the overhead cooler evaporator 1
Can have a structure that is long in the lateral direction (the left-right direction in FIG. 5). The constituent members of the overhead cooler evaporator thus constructed are made of an aluminum alloy or a copper alloy, and are integrally connected by brazing or caulking.

【0004】上述の様に構成されるオーバヘッドクーラ
用エバポレータ1は、蒸気圧縮式冷凍機に組み込んだ状
態で、次の様に作用する。即ち、図示しないコンデンサ
により凝縮液化された低温の液状の冷媒を、上記コンデ
ンサから、リキッドタンク及び膨張弁を介して、上記送
り込み口に向けて送り込む。この送り込み口を通じて上
記1対のヘッダタンクのうち一方のヘッダタンクの内部
に送り込まれた冷媒は、この一方のヘッダタンクに接続
された各伝熱管2、2の内部を、上記1対のヘッダタン
クのうち他方のヘッダタンクに向けて流れる。この場
合、上記冷媒は上記各伝熱管2、2の流路を流れる間
に、周囲の熱を奪って蒸発する。この結果、上記各伝熱
管2、2及びプレート型のフィン3、3の温度が低下す
る。そして、これら各伝熱管2、2及びプレート型のフ
ィン3、3の外側にブロアから空気調和用の空気を送り
込めば、この空気が冷却され、更に除湿される。従っ
て、この空気を上記吹き出し部より自動車室内の後部に
向かって冷風として吹き出せば、この後部の冷房や除湿
を行なえる。
[0004] The overhead cooler evaporator 1 constructed as described above operates as follows when assembled in a vapor compression refrigerator. That is, a low-temperature liquid refrigerant condensed and liquefied by a condenser (not shown) is sent from the condenser through the liquid tank and the expansion valve toward the inlet. The refrigerant sent into one of the header tanks of the pair of header tanks through the inlet passes through the inside of each of the heat transfer tubes 2 connected to the one of the header tanks. Flows toward the other header tank. In this case, the refrigerant takes off the surrounding heat and evaporates while flowing through the flow paths of the heat transfer tubes 2 and 2. As a result, the temperatures of the heat transfer tubes 2 and 2 and the plate-shaped fins 3 and 3 decrease. If air for air conditioning is sent from a blower to the outside of each of the heat transfer tubes 2 and 2 and the plate-type fins 3 and 3, this air is cooled and further dehumidified. Therefore, if this air is blown out as cold air from the blowing section toward the rear part of the vehicle compartment, the rear part can be cooled and dehumidified.

【0005】この様に構成され作用するオーバヘッドク
ーラ用エバポレータ1を、上述した様に横方向に長い構
造としたのは、空間効率上の面からである。即ち、この
オーバヘッドクーラ用エバポレータ1を配置する自動車
室内の前席の天井部分の空間は或る程度限られている
為、上記オーバヘッドクーラ用エバポレータ1の設置空
間を、上下方向に亙り十分に大きく確保する事は困難で
あ。従って、この空間に上記オーバヘッドクーラ用エバ
ポレータ1を配置するには、このオーバヘッドクーラ用
エバポレータ1の寸法を上下方向に短くせざるを得な
い。しかもこのオーバヘッドクーラ用エバポレータ1
を、上下方向に短くして所望の性能を確保する為には、
熱交換部分の面積を大きくしなければならず、必然的に
横方向に長い構造とせざるを得ない。
The reason why the overhead cooler evaporator 1 configured and operated as described above is structured to be long in the lateral direction as described above is from the viewpoint of space efficiency. That is, since the space of the ceiling portion of the front seat in the vehicle interior where the overhead cooler evaporator 1 is arranged is limited to a certain extent, the space for installing the overhead cooler evaporator 1 is sufficiently large in the vertical direction. It is difficult to do. Therefore, in order to dispose the overhead cooler evaporator 1 in this space, the dimension of the overhead cooler evaporator 1 must be reduced in the vertical direction. Moreover, this overhead cooler evaporator 1
In order to secure the desired performance by shortening
The area of the heat exchange portion must be increased, and the structure is inevitably long in the lateral direction.

【0006】[0006]

【発明が解決しようとする課題】ところが、上述の様に
構成され作用する、従来のオーバヘッドクーラ用エバポ
レータ1の場合、その熱交換性能を必ずしも十分に確保
できない場合がある。なぜなら、従来のオーバヘッドク
ーラ用エバポレータ1の構造の場合、このオーバヘッド
クーラ用エバポレータ1を構成するプレート型のフィン
3、3及び伝熱管2、2の接触部分の面積は、上記プレ
ート型のフィン3、3の面積に対してかなり小さいから
である。即ち、上記各伝熱管2、2とプレート型のフィ
ン3、3とは、上記各伝熱管2が上記プレート型のフィ
ン3、3を貫通する事で互いに接触しているのみであ
り、その接触部分は面積を確保する事が難しい。この様
に、従来のオーバヘッドクーラ用エバポレータ1は、熱
交換性能を必ずしも十分に確保できない場合がある為、
このオーバヘッドクーラ用エバポレータ1を用いたオー
バヘッドクーラが必要とする冷却性能を十分に確保でき
ない可能性がある。本発明のオーバヘッドクーラ用エバ
ポレータは、上述の様な事情に鑑みて、上下方向に薄い
構造としたままで、熱交換性能を十分に向上させるべく
考えたものである。
However, in the case of the conventional overhead cooler evaporator 1 constructed and operated as described above, its heat exchange performance may not always be sufficiently ensured. This is because, in the case of the conventional structure of the overhead cooler evaporator 1, the area of the contact portion between the plate-type fins 3, 3 and the heat transfer tubes 2, 2 constituting the overhead cooler evaporator 1 is equal to the plate-type fin 3, This is because the area is considerably smaller than the area of No. 3. That is, the heat transfer tubes 2 and 2 and the plate-type fins 3 and 3 are only in contact with each other by the heat transfer tubes 2 penetrating through the plate-type fins 3 and 3. It is difficult to secure the area of the part. As described above, the conventional overhead cooler evaporator 1 may not always ensure sufficient heat exchange performance.
There is a possibility that the cooling performance required by the overhead cooler using the overhead cooler evaporator 1 cannot be sufficiently secured. The overhead cooler evaporator of the present invention has been made in view of the above-described circumstances, and has been designed to sufficiently improve the heat exchange performance while keeping the vertically thin structure.

【0007】[0007]

【課題を解決するための手段】本発明のオーバヘッドク
ーラ用エバポレータは、冷媒を送り込む為の送り込み口
と、熱交換を完了した冷媒を送り出す為の送り出し口
と、これら送り込み口と送り出し口との間に接続され、
互いに平行に配置された1対のヘッダパイプと、それぞ
れがその両端をこれら1対のヘッダパイプの内部と密に
通じさせたU字形の折り返し流路を有し、且つ、互いに
平行に配置された複数の扁平状の伝熱管素子及び隣り合
う伝熱管素子同士の間に挟持されたコルゲート型のフィ
ンを備え、上記1対のヘッダパイプに関して両側に設け
られた1対の伝熱管素子群とから成る。更に、上記1対
のヘッダパイプのうちの少なくとも一方のヘッダパイプ
の内側に、その内部を密に仕切る仕切り板を設けてい
る。そして、このオーバヘッドクーラ用エバポレータ
は、上記冷媒を、上記各伝熱管素子群を構成する伝熱管
素子の内部を、上記1対のヘッダパイプの間を折り返し
つつ、或は、互いの伝熱管素子群の間を行き来しつつ流
す。
SUMMARY OF THE INVENTION An overhead cooler evaporator according to the present invention comprises a feed port for feeding a refrigerant, a feed port for sending a refrigerant that has completed heat exchange, and a space between the feed port and the feed port. Connected to
A pair of header pipes arranged in parallel with each other, each having a U-shaped folded flow path whose both ends are in close communication with the inside of the pair of header pipes, and arranged in parallel with each other It comprises a plurality of flat heat transfer tube elements and a corrugated fin sandwiched between adjacent heat transfer tube elements, and comprises a pair of heat transfer tube element groups provided on both sides of the pair of header pipes. . Further, a partition plate is provided inside at least one of the pair of header pipes to partition the inside of the header pipe densely. The overhead cooler evaporator transfers the refrigerant to the inside of each of the heat transfer tube elements constituting each of the heat transfer tube element groups, while turning the refrigerant between the pair of header pipes, or each other. Flowing back and forth between

【0008】[0008]

【作用】上述の様に構成される本発明のオーバヘッドク
ーラ用エバポレータは、1対のヘッダパイプの両側に1
対の伝熱管素子群を設けている為、このオーバヘッドク
ーラ用エバポレータの熱交換部分で空気の流れに対する
横方向の長さは、上記1対の伝熱管素子群の横方向の長
さを合わせた長さになる。従って、上記1対のヘッダパ
イプの存在により上記各伝熱管素子群を構成する各伝熱
管素子の端部の結合強度を向上できる事と相俟って、十
分な強度を確保しつつ、上記オーバヘッドクーラ用エバ
ポレータの空気の流れに対する横方向の長さを大きくで
きる。従ってこのオーバヘッドクーラ用エバポレータ
は、上下方向の寸法を小さくしても必要とする熱交換部
分の面積を十分に確保する事ができる。
The overhead cooler evaporator of the present invention constructed as described above has one pair of header pipes on both sides.
Since the pair of heat transfer tube element groups is provided, the horizontal length of the heat exchange portion of the overhead cooler evaporator with respect to the flow of air is equal to the horizontal length of the pair of heat transfer tube element groups. Length. Accordingly, the presence of the pair of header pipes can improve the coupling strength at the ends of the heat transfer tube elements constituting each of the heat transfer tube element groups. The length of the cooler evaporator in the lateral direction with respect to the flow of air can be increased. Therefore, the overhead cooler evaporator can sufficiently secure the required area of the heat exchange portion even if the vertical dimension is reduced.

【0009】又、本発明のオーバヘッドクーラ用エバポ
レータは、前述した従来のプレート型のフィンを用いた
オーバヘッドクーラ用エバポレータと異なり、伝熱管素
子とコルゲート型のフィンとを交互に配置した、所謂積
層型熱交換器としている為、上下方向に短い構造とした
ままで熱交換性能を十分に向上させる事ができる。
The overhead cooler evaporator according to the present invention is different from the above-mentioned conventional overhead cooler evaporator using plate-type fins in that a so-called laminated type in which heat transfer tube elements and corrugated fins are alternately arranged. Since the heat exchanger is used, the heat exchange performance can be sufficiently improved while keeping the structure short in the vertical direction.

【0010】更に、上記1対のヘッダパイプのうちの少
なくとも一方のヘッダパイプの内側に、その内部を密に
仕切る仕切り板を備えている為、上記冷媒を、上記伝熱
管素子の内部を上記1対のヘッダパイプの間を折り返し
つつ、或は、互いの伝熱管素子群の間を行き来させつ
つ、流す事ができる。従って、本発明のオーバヘッドク
ーラ用エバポレータは、熱交換部分の流路を長くして、
この流路を流れる冷媒の流速を上げる事ができる為、熱
交換性能を更に向上させる事ができる。
[0010] Further, since a partition plate is provided inside at least one of the pair of header pipes to partition the inside of the header pipe densely, the refrigerant is supplied to the inside of the heat transfer tube element. It can flow while turning between the pair of header pipes or moving back and forth between the heat transfer tube element groups. Therefore, the evaporator for an overhead cooler of the present invention lengthens the flow path of the heat exchange portion,
Since the flow rate of the refrigerant flowing through this flow path can be increased, the heat exchange performance can be further improved.

【0011】[0011]

【発明の実施の形態】図1〜5は、本発明の実施の形態
の1例を示している。本発明のオーバヘッドクーラ用エ
バポレータ1aは、互いに平行に配置した1対のヘッダ
パイプ4a、4bと、これら1対のヘッダパイプ4a、
4bに関して左右両側に設けた1対の伝熱管素子群5
a、5bと、上記1対のヘッダパイプ4a、4bのうち
一方(図1の手前側、図3〜4の下側)のヘッダパイプ
4aの上下(図1の上下)両端部にそれぞれ接続した送
り込み口を構成する入口管6及び送り出し口を構成する
出口管7とから成る。
1 to 5 show an example of an embodiment of the present invention. The overhead cooler evaporator 1a according to the present invention includes a pair of header pipes 4a and 4b arranged in parallel with each other, and a pair of header pipes 4a and 4b.
4b, a pair of heat transfer tube element groups 5 provided on both the left and right sides
a, 5b and upper and lower ends (upper and lower ends of FIG. 1) of one of the pair of header pipes 4a and 4b (front side in FIG. 1, lower side in FIGS. 3 to 4). It is composed of an inlet pipe 6 constituting the inlet and an outlet pipe 7 constituting the outlet.

【0012】上記各伝熱管素子群5a、5bは、上下方
向(図1の上下方向)に適当な間隔をあけて互いに平行
に配置された、それぞれが横方向(図1の左右方向)に
長い複数の扁平状の伝熱管素子8、8と、上下に隣り合
う伝熱管素子8、8同士の間に挟持されたコルゲート型
のフィン9、9とから構成する。又、上記1対のヘッダ
パイプ4a、4bの内部と上記伝熱管素子8、8の内部
とは、互いに密に連通させている。この為、上記各伝熱
管素子8、8の内部には、U字形の折り返し流路10を
形成し、この折り返し流路10の両端を上記1対のヘッ
ダパイプ4a、4bの内部と密に通じさせている。即
ち、上記各伝熱管素子8、8は、図5に示す様に、一方
向(図5の上下方向)に長い2枚の扁平な板材11、1
1を重ね合わせて成る。そして、これら各板材11、1
1は、長手方向(図5の上下方向)の一端(図5の上
端)に、互いに間隔をあけて1対の突出部12、12を
形成している。これら各突出部12、12の先端縁は、
円弧状に凹んでいる。又、各板材11、11の片面には
U字形の凹部13を、この凹部13の両端を上記突出部
12、12の先端縁にまで連続させた状態で形成してい
る。更に、上記凹部13の内側には、多数の突起14、
14を形成している。これら各突起14、14は、上記
凹部13によって形成される上記折り返し流路10の内
側を流れる冷媒の流れを乱し、この冷媒と上記板材1
1、11との間の熱交換効率を向上させると共に、先端
同士を互いにろう付けする事で、上記各伝熱管素子8、
8の耐圧性を向上させる。
The heat transfer tube element groups 5a and 5b are arranged in parallel with each other at appropriate intervals in the vertical direction (vertical direction in FIG. 1), and each is long in the horizontal direction (horizontal direction in FIG. 1). It comprises a plurality of flat heat transfer tube elements 8, 8 and corrugated fins 9, 9 sandwiched between vertically adjacent heat transfer tube elements 8, 8. The inside of the pair of header pipes 4a, 4b and the inside of the heat transfer tube elements 8, 8 are in close communication with each other. Therefore, a U-shaped folded flow path 10 is formed inside each of the heat transfer tube elements 8, 8, and both ends of the folded flow path 10 are closely connected to the inside of the pair of header pipes 4 a, 4 b. Let me. That is, as shown in FIG. 5, each of the heat transfer tube elements 8, 8 is composed of two flat plate members 11, 1 long in one direction (vertical direction in FIG. 5).
1 are superimposed. And each of these plate materials 11, 1
1 has a pair of protruding portions 12, 12 formed at one end (upper end in FIG. 5) in the longitudinal direction (upper direction in FIG. 5) with an interval therebetween. The leading edge of each of the protrusions 12 is
It is concave in an arc shape. A U-shaped recess 13 is formed on one surface of each of the plate members 11, 11 in a state where both ends of the recess 13 are continuous with the leading edges of the protruding portions 12, 12. Further, a number of protrusions 14 are provided inside the recess 13.
14 are formed. These projections 14, 14 disturb the flow of the refrigerant flowing inside the return channel 10 formed by the concave portion 13, and this refrigerant and the plate 1
The heat exchange efficiency between the heat transfer tube elements 8 and 1 is improved by improving the heat exchange efficiency between the heat transfer tube elements 1 and 11 and brazing the tips to each other.
8 is improved.

【0013】上記各板材11、11は、2枚1組とし、
互いの凹部13同士を対向させた状態で最中状に重ね合
わせ、各板材11、11の周縁部同士を互いに気密、液
密に接合する事により、伝熱管素子8とする。この様に
して成る各伝熱管素子8、8の内部には、上記凹部13
を組み合わせて成るU字形の折り返し流路10が形成さ
れる。尚、上記各伝熱管素子8、8は、それぞれ同形
状、同寸法で、前記各伝熱管素子群5a、5bを構成す
る伝熱管素子8、8の数は互いに等しい。
Each of the plate members 11, 11 is a set of two sheets,
The heat transfer tube element 8 is obtained by superimposing the recesses 13 in the middle in a state where the recesses 13 are opposed to each other, and joining the peripheral edges of the plate members 11 to each other in an air-tight and liquid-tight manner. The inside of each of the heat transfer tube elements 8, 8 formed in this manner is provided with the recess 13.
Are formed to form a U-shaped folded flow path 10. The heat transfer tube elements 8, 8 have the same shape and the same dimensions, and the number of the heat transfer tube elements 8, 8 constituting the heat transfer tube element groups 5a, 5b is equal to each other.

【0014】又、上記各伝熱管素子8、8にその内部を
密に通じさせる、前記1対のヘッダパイプ4a、4b
は、それぞれ円管状のヘッダ本体15、15の両端開口
を蓋体16、16により塞いで成る。又、上記各ヘッダ
本体15、15の直径方向反対側両側面には、図2に示
す様に、同数ずつのスリット状の接続孔17、17を、
互いに同位相で形成している。これら各接続孔17、1
7は、それぞれ上記各伝熱管素子8、8を構成するそれ
ぞれ1対ずつの板材11、11の突出部12、12を重
ね合わせたものを、ほぼ隙間なく挿入自在な形状及び大
きさを有する。又、上記1対のヘッダパイプ4a、4b
のうち、一方のヘッダパイプ4aの内側中間部には、仕
切り板18を設けて、上記一方のヘッダパイプ4aの内
部を、前記入口管6が連通する入口室19と、前記出口
管7が連通する出口室20とに二分割している。
Further, the pair of header pipes 4a, 4b, which allow the inside of each of the heat transfer tube elements 8, 8 to closely communicate with each other,
Are formed by closing the openings at both ends of the tubular header bodies 15 and 15 with lids 16 and 16, respectively. As shown in FIG. 2, the same number of slit-shaped connection holes 17, 17 are formed on both side surfaces of the header bodies 15, 15 on the opposite side in the diameter direction.
They are formed in phase with each other. These connection holes 17, 1
Reference numeral 7 denotes a shape and a size in which the projections 12, 12 of a pair of plate members 11, 11, which constitute the heat transfer tube elements 8, 8, respectively, are overlapped with almost no gap. The pair of header pipes 4a, 4b
Among them, a partition plate 18 is provided at an intermediate portion inside one of the header pipes 4a, and the inside of the one header pipe 4a is communicated with the inlet chamber 19 communicating with the inlet pipe 6 and the outlet pipe 7. And an exit chamber 20 which is divided into two.

【0015】それぞれが上述の様に構成される各部材
を、図1に示す様に組み合わせ、加熱炉にてろう付けに
より一体結合して、オーバヘッドクーラ用エバポレータ
1aを構成する。尚、上記構成各部材はそれぞれアルミ
ニウム合金により造り、結合すべき部材同士の少なくと
も何れか一方の部材のろう付けすべき部分には、予めろ
う材を積層しておく。
The members configured as described above are combined as shown in FIG. 1 and integrally joined by brazing in a heating furnace to form an overhead cooler evaporator 1a. The constituent members are made of an aluminum alloy, and a brazing material is previously laminated on a portion of at least one of the members to be joined to be brazed.

【0016】上述の様に構成される本発明のオーバヘッ
ドクーラ用エバポレータは、前述した従来のオーバヘッ
ドクーラ用エバポレータと同様に、蒸気圧縮式冷凍機に
組み込んで、図示しないコンデンサから送られて来て内
部で蒸発する冷媒と外部を流れる空気との間で熱交換を
行なう。そして、この熱交換により冷却された空気によ
り、自動車室内の後部の冷房や除湿を行う。
The overhead cooler evaporator of the present invention constructed as described above is incorporated in a vapor compression refrigerator as in the above-described conventional overhead cooler evaporator. Heat is exchanged between the refrigerant evaporating in the above and the air flowing outside. The air cooled by the heat exchange cools and dehumidifies the rear part of the vehicle interior.

【0017】即ち、このオーバヘッドクーラ用エバポレ
ータ1aは、上記コンデンサにより凝縮液化された低温
の液状の冷媒を、リキッドタンク及び膨張弁を介して上
記入口管6に送り込む。そして、この入口管6を通じて
上記一方のヘッダパイプ4aの入口室19に送り込まれ
た冷媒は、この入口室19に連通された、1対の伝熱管
素子群5a、5bを構成する複数の伝熱管素子8、8の
うち、各伝熱管素子群5a、5bの上半部の伝熱管素子
8、8の折り返し流路10を通じて、図3で矢印に示す
様に、上記1対のヘッダパイプ4a、4bのうち他方
(図1の奥側、図3〜4の上側)のヘッダパイプ4bに
向かって送られる。
That is, the overhead cooler evaporator 1a feeds the low-temperature liquid refrigerant condensed and liquefied by the condenser into the inlet pipe 6 via the liquid tank and the expansion valve. The refrigerant sent into the inlet chamber 19 of the one header pipe 4a through the inlet pipe 6 is connected to the plurality of heat transfer tubes constituting the pair of heat transfer tube element groups 5a and 5b, which are communicated with the inlet chamber 19. As shown by the arrows in FIG. 3, the pair of header pipes 4a, The header pipe 4b is sent toward the other header pipe 4b (the inner side in FIG. 1, the upper side in FIGS. 3 and 4).

【0018】この他方のヘッダパイプ4bに送り込まれ
た冷媒は、この他方のヘッダパイプ4b内で折り返す。
即ち、上記他方のヘッダパイプ4bの内側に送り込まれ
た冷媒は、この他方のヘッダパイプ4bの内部を流下す
る。そして、この他方のヘッダパイプ4bの下半部に連
通された、上記1対の伝熱管素子群5a、5bを構成す
る複数の伝熱管素子8、8のうち、各伝熱管素子群5
a、5bの下半部の伝熱管素子8、8の折り返し流路1
0を通じて、図4で矢印に示す様に、上記一方のヘッダ
パイプ4aの出口室20に向かって送られる。そして、
この出口室20に接続された出口管7を通じて、図示し
ないコンプレッサに向けて送り出される。この場合、上
記冷媒は、上記折り返し流路10を流れる間に、周囲の
熱を奪って蒸発する。この結果、上記1対の伝熱管素子
群5a、5bの温度が低下する為、これら伝熱管素子群
5a、5bに図示しないブロアから空気調和用の空気を
送り込めば、この空気が冷却され、更に除湿される。従
って、この空気を図示しない吹き出し部より、自動車室
内の後部に向かって冷風として吹き出せば、この後部の
冷房や除湿を行える。
The refrigerant sent to the other header pipe 4b returns inside the other header pipe 4b.
That is, the refrigerant sent inside the other header pipe 4b flows down inside the other header pipe 4b. Each of the plurality of heat transfer tube elements 8 among the plurality of heat transfer tube elements 8 and 8 communicating with the lower half portion of the other header pipe 4b and constituting the pair of heat transfer tube element groups 5a and 5b.
a, 5b, return channel 1 of heat transfer tube elements 8, 8 in lower half
4, the air is sent toward the outlet chamber 20 of the one header pipe 4a as indicated by an arrow in FIG. And
The air is sent out to an unillustrated compressor through the outlet pipe 7 connected to the outlet chamber 20. In this case, the refrigerant takes off the surrounding heat and evaporates while flowing through the return flow path 10. As a result, the temperature of the pair of heat transfer tube element groups 5a and 5b decreases. If air for conditioning is sent from a blower (not shown) to the heat transfer tube element groups 5a and 5b, the air is cooled. It is further dehumidified. Therefore, if this air is blown out as a cool air from the blowout section (not shown) toward the rear of the vehicle compartment, the rear can be cooled and dehumidified.

【0019】この様に構成され作用する本発明のオーバ
ヘッドクーラ用エバポレータは、1対のヘッダパイプ4
a、4bの両側に1対の伝熱管素子群5a、5bを設け
ている為、このオーバヘッドクーラ用エバポレータ1a
の熱交換部分で空気の流れに対する横方向の長さは、上
記1対の伝熱管素子群5a、5bの横方向の長さを合わ
せた長さになる。従って、上記1対のヘッダパイプ4
a、4bの存在により、上記各伝熱管素子群5a、5b
を構成する各伝熱管素子8、8の端部の結合強度を向上
できる事と相俟って、十分な強度を確保しつつ、上記オ
ーバヘッドクーラ用エバポレータ1aの空気の流れに対
する横方向の長さを大きくできる。従ってこのオーバヘ
ッドクーラ用エバポレータ1aは、上下方向の長さを短
くしても必要とする熱交換部分の面積を十分に確保する
事ができる。
The overhead cooler evaporator of the present invention configured and operated as described above has a pair of header pipes 4.
a, a pair of heat transfer tube element groups 5a, 5b are provided on both sides of the overhead cooler evaporator 1a.
The horizontal length of the heat exchange portion with respect to the flow of air is equal to the total length of the pair of heat transfer tube element groups 5a and 5b in the horizontal direction. Therefore, the pair of header pipes 4
a, 4b, the heat transfer tube element groups 5a, 5b
In addition to being able to improve the coupling strength of the end portions of the heat transfer tube elements 8 and 8 constituting the above, while ensuring sufficient strength, the length of the overhead cooler evaporator 1a in the horizontal direction with respect to the flow of air is maintained. Can be increased. Therefore, the overhead cooler evaporator 1a can sufficiently secure the required area of the heat exchange portion even if the length in the vertical direction is reduced.

【0020】又、本発明のオーバヘッドクーラ用エバポ
レータは、前述した従来のプレート型のフィンを用いた
オーバヘッドクーラ用エバポレータ1aと異なり、伝熱
管素子8、8とコルゲート型のフィン9、9とを交互に
配置した、所謂積層型熱交換器としている為、熱交換性
能を十分に向上させる事ができる。即ち、この積層型熱
交換器の構造では、上記各伝熱管素子8、8とコルゲー
ト型のフィン9、9との接触部分は、コルゲート型のフ
ィン9、9の折り曲げ部と伝熱管素子8、8の平面部と
の接触である為、多数の線状の接触となり、上記接触部
分の面積を比較的大きくできる。従って、本発明のオー
バヘッドクーラ用エバポレータ1aは、上下方向に短い
構造としたままで、熱交換性能を向上させる事ができ
る。
The overhead cooler evaporator of the present invention differs from the above-mentioned conventional overhead cooler evaporator 1a using plate-type fins in that heat transfer tube elements 8, 8 and corrugated fins 9, 9 are alternately arranged. , The heat exchange performance can be sufficiently improved. That is, in the structure of the laminated heat exchanger, the contact portions between the heat transfer tube elements 8 and 8 and the corrugated fins 9 and 9 correspond to the bent portions of the corrugated fins 9 and 9 and the heat transfer tube elements 8 and 9, respectively. Since the contact is with the flat portion of FIG. 8, the contact becomes a large number of linear contacts, and the area of the contact portion can be relatively large. Therefore, the heat exchange performance can be improved while the overhead cooler evaporator 1a of the present invention has a vertically short structure.

【0021】更に、本発明のオーバヘッドクーラ用エバ
ポレータは、上記1対のヘッダパイプ4a、4bのうち
の少なくとも一方のヘッダパイプの内側に、その内部を
密に仕切る仕切り板18を備えている為、熱交換性能を
更に向上させる事ができる。即ち、本例の場合、上記1
対のヘッダパイプ4a、4bのうち一方のヘッダパイプ
4aの内側に仕切り板18を備えており、上記冷媒は、
上記1対のヘッダパイプ4a、4bの間を上記1対のヘ
ッダパイプ4a、4bのうち他方のヘッダパイプ4bで
折り返しつつ上記伝熱管素子8、8の内部を流れる。従
って、熱交換部分の流路を長くして、この流路を流れる
冷媒の流速を上げる事ができる。この結果、本発明のオ
ーバヘッドクーラ用エバポレータ1aは、熱交換性能を
更に向上させる事ができる。
Further, since the overhead cooler evaporator of the present invention is provided with a partition plate 18 inside at least one of the pair of header pipes 4a and 4b to partition the inside tightly, Heat exchange performance can be further improved. That is, in the case of this example, the above 1
A partition plate 18 is provided inside one header pipe 4a of the pair of header pipes 4a and 4b.
The air flows between the pair of header pipes 4a and 4b while being turned back by the other header pipe 4b of the pair of header pipes 4a and 4b. Therefore, it is possible to lengthen the flow path of the heat exchange portion and increase the flow rate of the refrigerant flowing through this flow path. As a result, the overhead cooler evaporator 1a of the present invention can further improve the heat exchange performance.

【0022】尚、本例のオーバヘッドクーラ用エバポレ
ータの場合、請求項2に対応する構造として、1対の伝
熱管素子群5a、5bを構成する上記各伝熱管素子8、
8を、それぞれ同数、同形状、同寸法とし、且つ、1対
のヘッダパイプ4a、4bに関して対称の位置に配置し
ている。この様にこれら1対のヘッダパイプ4a、4b
に関して、上記1対の伝熱管素子群5a、5b互いに対
象の関係にある為、これら1対の伝熱管素子群5a、5
b内の冷媒の流れを均一にできる。従って、本例のオー
バヘッドクーラ用エバポレータ1aの場合、上記1対の
伝熱管素子群5a、5bに対して同量の空気を送り込め
ば、自動車室内の横方向に亙り均一な温度分布を得られ
る。従って、横方向に長いオーバヘッドクーラ用エバポ
レータの場合でも、横方向の温度分布が異なる事による
乗員の感じる不快感を極力防止できる。
In the case of the overhead cooler evaporator of the present embodiment, each of the heat transfer tube elements 8 constituting the pair of heat transfer tube element groups 5a and 5b has a structure corresponding to claim 2.
8 have the same number, the same shape, and the same size, and are arranged at symmetrical positions with respect to the pair of header pipes 4a and 4b. Thus, the pair of header pipes 4a, 4b
, The above-mentioned pair of heat transfer tube element groups 5a, 5b are in a symmetrical relationship with each other.
The flow of the refrigerant in b can be made uniform. Therefore, in the case of the overhead cooler evaporator 1a of this embodiment, if the same amount of air is sent to the pair of heat transfer tube element groups 5a and 5b, a uniform temperature distribution can be obtained in the lateral direction in the vehicle interior. . Therefore, even in the case of an overhead cooler evaporator that is long in the lateral direction, it is possible to minimize the discomfort felt by the occupant due to the difference in the lateral temperature distribution.

【0023】尚、上述した本発明の実施の形態の1例の
他、上記1対のヘッダパイプ4a、4bの両ヘッダパイ
プの内側に更に仕切り板を設けて、伝熱管素子8、8を
流れる冷媒の上記1対のヘッダパイプ4a、4bの間で
の折り返しを増やす事により、上記冷媒の流路を更に長
くする事もできる。この様にすれば上記流路を流れる冷
媒の流速を更に上げる事ができ、オーバヘッドクーラ用
エバポレータの熱交換性能を更に向上させる事ができ
る。
In addition to the above-described embodiment of the present invention, a partition plate is further provided inside both of the pair of header pipes 4a, 4b to flow through the heat transfer tube elements 8, 8. By increasing the number of turns of the refrigerant between the pair of header pipes 4a and 4b, the flow path of the refrigerant can be further lengthened. With this configuration, the flow rate of the refrigerant flowing through the flow path can be further increased, and the heat exchange performance of the overhead cooler evaporator can be further improved.

【0024】更に、上記各ヘッダパイプ4a、4bの内
部を密に仕切る仕切り板は、上記各ヘッダパイプ4a、
4bの内部を横方向に仕切る様にしても良い。そして例
えば、前述した様な各ヘッダパイプ4a、4bの内部を
上下方向に仕切る仕切り板と組み合わせる事により、送
り込み口6を通じて一方のヘッダパイプ4aに送り込ん
だ冷媒が、各伝熱管素子群5a、5bを構成する伝熱管
素子8、8の内部を順に流れる様にする。そして、上記
各伝熱管素子群5a、5bを構成する伝熱管素子8、8
の内部を流れる冷媒を、上記1対のヘッダパイプ4a、
4bの間を折り返しつつ、或は、互いの伝熱管素子群5
a、5bの間を行き来しつつ流す。これにより、前述し
た本発明の実施の形態の1例の場合よりも、更に上記冷
媒の流速を上げる事ができる。この結果、オーバヘッド
クーラ用エバポレータの熱交換性能を更に向上させる事
ができる。但し、この場合には、前述した様なオーバヘ
ッドクーラ用エバポレータの横方向に亙る均一な温度分
布を得られるという効果がなくなる場合もある。
Further, a partition plate for densely partitioning the inside of each of the header pipes 4a, 4b is provided with a partition plate.
The inside of 4b may be partitioned in the horizontal direction. Then, for example, by combining the inside of each of the header pipes 4a and 4b with a partition plate that vertically separates the above, the refrigerant sent to one of the header pipes 4a through the inlet 6 is supplied to each of the heat transfer tube element groups 5a and 5b. In the heat transfer tube elements 8, 8. Then, the heat transfer tube elements 8, 8 constituting each of the heat transfer tube element groups 5a, 5b
Of the refrigerant flowing inside the pair of header pipes 4a,
4b or between the heat transfer tube element groups 5
Flow while moving back and forth between a and 5b. Thereby, the flow rate of the refrigerant can be further increased as compared with the case of the above-described embodiment of the present invention. As a result, the heat exchange performance of the overhead cooler evaporator can be further improved. However, in this case, the effect of obtaining a uniform temperature distribution in the lateral direction of the overhead cooler evaporator as described above may not be obtained.

【0031】[0031]

【発明の効果】本発明のオーバヘッドクーラ用エバポレ
ータは、以上の述べた通り構成され作用するので、上下
方向に薄い構造としたままで、熱交換性能を十分に向上
させる事ができる。
The evaporator for an overhead cooler according to the present invention is constructed and operated as described above, so that the heat exchange performance can be sufficiently improved while keeping the structure thin in the vertical direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の1例を示す斜視図。FIG. 1 is a perspective view showing an example of an embodiment of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図2のB−B断面図。FIG. 3 is a sectional view taken along line BB of FIG. 2;

【図4】同C−C断面図。FIG. 4 is a sectional view taken along the line CC in FIG.

【図5】伝熱管素子群を構成する伝熱管素子を示す、部
分分解斜視図。
FIG. 5 is a partially exploded perspective view showing a heat transfer tube element constituting a heat transfer tube element group.

【図6】従来のエバポレータの一例を示す斜視図。FIG. 6 is a perspective view showing an example of a conventional evaporator.

【符号の説明】[Explanation of symbols]

1、1a オーバヘッドクーラ用エバポレータ 2 伝熱管 3 プレート型のフィン 4、4a ヘッダパイプ 5a、5b 伝熱管素子群 6 入口管 7 出口管 8 伝熱管素子 9 コルゲート型のフィン 10 折り返し流路 11 板材 12 突出部 13 凹部 14 突起 15 ヘッダ本体 16 蓋体 17 接続孔 18 仕切り板 19 入口室 20 出口室 DESCRIPTION OF SYMBOLS 1, 1a Overhead cooler evaporator 2 Heat transfer tube 3 Plate-type fin 4, 4a Header pipe 5a, 5b Heat transfer tube element group 6 Inlet tube 7 Outlet tube 8 Heat transfer tube element 9 Corrugated fin 10 Folding channel 11 Plate material 12 Projection Part 13 Concave part 14 Projection 15 Header body 16 Lid 17 Connection hole 18 Partition plate 19 Inlet chamber 20 Outlet chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を送り込む為の送り込み口と、熱交
換を完了した冷媒を送り出す為の送り出し口と、これら
送り込み口と送り出し口との間に接続され、互いに平行
に配置された1対のヘッダパイプと、それぞれがその両
端をこれら1対のヘッダパイプの内部と密に通じさせた
U字形の折り返し流路を有し、且つ、互いに平行に配置
された複数の扁平状の伝熱管素子及び隣り合う伝熱管素
子同士の間に挟持されたコルゲート型のフィンを備え、
上記1対のヘッダパイプに関して両側に設けられた1対
の伝熱管素子群とから成り、上記1対のヘッダパイプの
うちの少なくとも一方のヘッダパイプの内側に、その内
部を密に仕切る仕切り板を設け、上記冷媒を、上記各伝
熱管素子群を構成する伝熱管素子の内部を、上記1対の
ヘッダパイプの間を折り返しつつ、或は、互いの伝熱管
素子群の間を行き来しつつ流すオーバヘッドクーラ用エ
バポレータ。
1. A feed port for feeding a refrigerant, a feed port for sending a refrigerant having completed heat exchange, and a pair of parallel connected to each other between the feed port and the feed port. A header pipe, each of which has a U-shaped folded flow path with both ends closely communicating with the inside of the pair of header pipes, and a plurality of flat heat transfer tube elements arranged in parallel with each other; Equipped with corrugated fins sandwiched between adjacent heat transfer tube elements,
A pair of heat transfer tube element groups provided on both sides of the pair of header pipes, and a partition plate for densely partitioning the inside of at least one of the pair of header pipes. The refrigerant flows inside the heat transfer tube elements constituting each of the heat transfer tube element groups while turning between the pair of header pipes or moving back and forth between the heat transfer tube element groups. Evaporator for overhead cooler.
【請求項2】 1対の伝熱管素子群を構成する複数の扁
平状の伝熱管素子が、それぞれ同数、同形状、同寸法
で、且つ、1対のヘッダパイプに関して対称の位置に配
置されている、請求項1に記載のオーバヘッドクーラ用
エバポレータ。
2. A plurality of flat heat transfer tube elements constituting a pair of heat transfer tube element groups, each having the same number, the same shape and the same size, and arranged at symmetrical positions with respect to the pair of header pipes. The evaporator for an overhead cooler according to claim 1, wherein
JP6837297A 1997-03-21 1997-03-21 Evaporator for overhead cooler Pending JPH10267461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6837297A JPH10267461A (en) 1997-03-21 1997-03-21 Evaporator for overhead cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6837297A JPH10267461A (en) 1997-03-21 1997-03-21 Evaporator for overhead cooler

Publications (1)

Publication Number Publication Date
JPH10267461A true JPH10267461A (en) 1998-10-09

Family

ID=13371869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6837297A Pending JPH10267461A (en) 1997-03-21 1997-03-21 Evaporator for overhead cooler

Country Status (1)

Country Link
JP (1) JPH10267461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873796A1 (en) * 2004-07-28 2006-02-03 Valeo Climatisation Sa Heater core for motor vehicle, has individual slip rings fixed on parallel flat tubes with respective half of each ring that is aligned and connected to form heating fluid inlet and outlet ducts
CN103762399A (en) * 2014-01-09 2014-04-30 安徽江淮汽车股份有限公司 Evaporator assembly and evaporator assembly for electric car battery pack
JP2021050828A (en) * 2019-09-20 2021-04-01 サンデン・アドバンストテクノロジー株式会社 Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873796A1 (en) * 2004-07-28 2006-02-03 Valeo Climatisation Sa Heater core for motor vehicle, has individual slip rings fixed on parallel flat tubes with respective half of each ring that is aligned and connected to form heating fluid inlet and outlet ducts
CN103762399A (en) * 2014-01-09 2014-04-30 安徽江淮汽车股份有限公司 Evaporator assembly and evaporator assembly for electric car battery pack
JP2021050828A (en) * 2019-09-20 2021-04-01 サンデン・アドバンストテクノロジー株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
EP0947792B1 (en) Refrigerant evaporator and manufacturing method for the same
EP1065453B1 (en) Refrigerant evaporator with refrigerant distribution
US6047769A (en) Heat exchanger constructed by plural heat conductive plates
US5701760A (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
US5180004A (en) Integral heater-evaporator core
US8176750B2 (en) Heat exchanger
US20100083694A1 (en) Evaporator
JPH116693A (en) Heat-exchanger for air-conditioner in vehicle
US20070295026A1 (en) Laminated Heat Exchanger
JPH0842989A (en) Heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
JP2002162174A (en) Snaky heat exchanger
JP2003063239A (en) Air conditioner for vehicle
KR100497847B1 (en) Evaporator
JP3797109B2 (en) Evaporator
JP3677922B2 (en) Air conditioner
JP6106503B2 (en) Evaporator and vehicle air conditioner using the same
JP2002147990A (en) Heat exchanger
JPH10267461A (en) Evaporator for overhead cooler
EP0935115B1 (en) Heat exchanger constructed by plural heat conductive plates
JPH10170098A (en) Laminated evaporator
JP2737286B2 (en) Stacked heat exchanger
JP2000055573A (en) Refrigerant evaporator
WO2024024394A1 (en) Heat exchanger
US5778974A (en) Laminated type heat exchanger having small flow resistance