JPH10267217A - External combustion superheater - Google Patents

External combustion superheater

Info

Publication number
JPH10267217A
JPH10267217A JP7704097A JP7704097A JPH10267217A JP H10267217 A JPH10267217 A JP H10267217A JP 7704097 A JP7704097 A JP 7704097A JP 7704097 A JP7704097 A JP 7704097A JP H10267217 A JPH10267217 A JP H10267217A
Authority
JP
Japan
Prior art keywords
combustion chamber
combustion
steam
superheater
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7704097A
Other languages
Japanese (ja)
Other versions
JP3455388B2 (en
Inventor
Nobuyuki Nishiguchi
信幸 西口
Masahiko Watanabe
正彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP07704097A priority Critical patent/JP3455388B2/en
Publication of JPH10267217A publication Critical patent/JPH10267217A/en
Application granted granted Critical
Publication of JP3455388B2 publication Critical patent/JP3455388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably control an external combustion superheater while preventing a vapor flow passage from being superheated and improving heat efficiency with a simplifier construction, the superheater including a vapor superheating passage disposed on a combustion gas flow passage from a combustion chamber and supply air volume adjusting means for adjusting the supply volume of air supplied together with a fuel to the combustion chamber and the superheater being adapted such that vapor from a waste heat boiler of an incinerator to an electric power generation installation can be superheated. SOLUTION: A combustion chamber 1 is divided into a primary combustion chamber 1A and a secondary combustion chamber 1B, and a radiation/heat transfer pipe line 10B communicated with a vapor superheating passage 10A and is disposed so s to surround the primary combustion chamber 1A. A bright frame combustion control part 31 is provided on supply air amount adjusting means 30 for controlling a primary air amount supplied to the primary combustion chamber 1A such that a combustion state in the primary combustion chamber 1A is in the state where air is insufficient. Use of gas fuel is effective as a fuel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部燃焼式過熱器
に関し、詳しくは、燃焼室からの燃焼ガス流路に蒸気過
熱路を配置するとともに、前記燃焼室に燃料と共に供給
する空気の供給量を調節する供給空気量調節手段を備
え、焼却炉の廃熱ボイラから発電装置への蒸気を過熱可
能に構成してある外部燃焼式過熱器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external combustion type superheater, and more particularly, to a method for arranging a steam superheat path in a combustion gas flow path from a combustion chamber and supplying air to the combustion chamber together with fuel. The present invention relates to an external combustion type superheater which is provided with a supply air amount adjusting means for adjusting the temperature and which can superheat steam from a waste heat boiler of an incinerator to a power generator.

【0002】[0002]

【従来の技術】従来、外部燃焼式過熱器においては、図
4に示すように、燃焼室1からの燃焼ガス流路に蒸気過
熱路10Aを配置して、前記燃焼室1に備えた燃焼器4
への燃料供給路5への燃料供給量を調節する過熱器制御
装置Cを設けて、前記燃焼室1からの燃焼排ガスに接す
る蒸気過熱管11を介して焼却炉の廃熱ボイラからの蒸
気を過熱するように構成されている。
2. Description of the Related Art Conventionally, in an external combustion type superheater, as shown in FIG. 4, a steam superheat path 10A is arranged in a combustion gas flow path from a combustion chamber 1 so that a combustion chamber provided in the combustion chamber 1 is provided. 4
A superheater control device C for adjusting the amount of fuel supplied to the fuel supply path 5 is provided, and steam from a waste heat boiler of an incinerator is passed through a steam superheater 11 in contact with combustion exhaust gas from the combustion chamber 1. It is configured to overheat.

【0003】前記燃焼室1には燃焼器4に燃料供給路5
からの天然ガス等のガス燃料が供給され、同時に空気供
給路6から燃焼用空気が供給されるように構成してあ
り、出口排ガスの一部を循環して、その一部を一次燃焼
室1の燃焼ガスに混合し、前記燃焼ガスを攪拌して、燃
焼ガス中の未燃成分と残存酸素との接触を促進すること
により二次燃焼室1Bで完全燃焼させるように構成して
ある。
The combustion chamber 1 has a fuel supply passage 5 connected to a combustor 4.
From the air supply passage 6, and at the same time, combustion air is supplied from the air supply passage 6. A part of the exhaust gas is circulated and a part of the exhaust gas is circulated to the primary combustion chamber 1. The combustion gas is mixed with the combustion gas, and the combustion gas is agitated to promote the contact between the unburned components in the combustion gas and the residual oxygen, thereby causing complete combustion in the secondary combustion chamber 1B.

【0004】前記ガス燃料の供給量は、蒸気供給路24
に配置した入口蒸気検出手段20の温度検出部20aで
検出する廃熱ボイラからの供給蒸気の温度と及び流量検
出部20bで検出する供給蒸気量に基づき設定され、燃
料供給路5に設けられた燃料調整弁5aを調節して制御
され、前記燃焼用空気の供給量は、前記燃料調整弁5a
の調節に連動して流量調整弁6aをPID制御して調節
される。
[0004] The supply amount of the gaseous fuel is determined by the steam supply path 24.
Is set on the basis of the temperature of the steam supplied from the waste heat boiler detected by the temperature detecting section 20a of the inlet steam detecting means 20 and the amount of supplied steam detected by the flow rate detecting section 20b. The fuel adjustment valve 5a is adjusted to be controlled, and the supply amount of the combustion air is controlled by the fuel adjustment valve 5a.
The PID control of the flow control valve 6a is performed in conjunction with the adjustment of the pressure control.

【0005】前記循環される燃焼ガスの他部を、前記燃
焼室1の周壁2に沿って冷却ガスとして室内に供給し
て、前記周壁を過熱から保護する冷却機構2aを設けて
いる。これは、前記冷却ガスによって前記周壁2の内面
を冷却すると同時に、燃焼ガスの前記周壁2への接触を
防止するものであり、前記冷却ガスを前記燃焼ガス流路
に導いて、冷却熱を回収することを目的としている。こ
のように、前記排ガスの循環は、出口排ガス路14から
排出される排ガスの顕熱を減少しようとするものでもあ
る。このために、前記出口排ガス路14から分岐する排
ガス循環路15を備え、循環ブロワ16によって再び前
記燃焼室1に送り込まれるようにしてある。
[0005] A cooling mechanism 2a is provided to supply the other part of the circulated combustion gas along the peripheral wall 2 of the combustion chamber 1 as a cooling gas into the room, thereby protecting the peripheral wall from overheating. This is to cool the inner surface of the peripheral wall 2 with the cooling gas and at the same time prevent the combustion gas from coming into contact with the peripheral wall 2, and to guide the cooling gas to the combustion gas flow path to recover cooling heat. It is intended to be. As described above, the circulation of the exhaust gas is intended to reduce the sensible heat of the exhaust gas discharged from the outlet exhaust gas passage 14. For this purpose, an exhaust gas circulation path 15 branched from the outlet exhaust gas path 14 is provided, and the exhaust gas circulation path 15 is fed into the combustion chamber 1 again by the circulation blower 16.

【0006】この過熱器Sにおいては、燃焼ガス温度を
極力高くする目的で、空気による火炎の冷却を避けるた
めに過剰空気率を極力低くし、且つ空気予熱器17で燃
焼用空気に排ガスの熱を回収し、さらに前記のとおり攪
拌用ガスとして前記排ガス循環路15からの循環排ガス
の一部を一次燃焼室1Aの出口に吹き込んで、一次燃焼
室1Aでの未燃ガスを残余の酸素と接触させて完全燃焼
させることを図っている。このために、二次燃焼室1B
の入口に拡散機構3を設けて、前記循環排ガスによる攪
拌効果を高めるようにし、さらに排ガスの顕熱を回収す
るようにしてある。
In the superheater S, in order to increase the temperature of the combustion gas as much as possible, the excess air ratio is reduced as much as possible in order to avoid the cooling of the flame by the air, and the heat of the exhaust gas is converted into the combustion air by the air preheater 17. And a part of the circulating exhaust gas from the exhaust gas circulation path 15 is blown into the outlet of the primary combustion chamber 1A as a stirring gas as described above, so that the unburned gas in the primary combustion chamber 1A comes into contact with the remaining oxygen. To complete combustion. For this reason, the secondary combustion chamber 1B
A diffusion mechanism 3 is provided at the inlet of the exhaust gas to enhance the stirring effect of the circulating exhaust gas, and further recovers the sensible heat of the exhaust gas.

【0007】前記燃焼室1出口の燃焼ガス温度は900
℃以下に維持し、過熱器出口排ガス温度を約400℃に
維持し、蒸気過熱路10A出口の過熱蒸気温度を500
℃程度に維持して、蒸気過熱管11の管壁温度を530
℃程度に抑えるように構成してある。このために前記燃
焼制御装置Cを設けて、前記燃焼室1出口に設けた燃焼
ガス温度検出手段18の検出する前記燃焼室1出口の燃
焼ガス温度と、過熱器出口の前記燃焼ガス流路に配置し
た排ガス検出手段19の温度検出部19aで検出する排
ガス温度及び流量検出部19bで検出する排ガス流量
と、前記入口蒸気検出手段20の温度検出部20aで検
出する供給蒸気の温度及び流量検出部20bで検出する
供給蒸気量と、蒸気過熱路10A出口に配置した出口蒸
気検出手段21の温度検出部21aで検出する出口過熱
蒸気温度と、冷却ガス流路22に設けた流量検出手段2
2b及び拡散用ガス流路23に設けた流量検出手段23
bで検出する排ガス循環量を入力して、前記空気供給路
6に備える流量調整弁6aと、前記排ガス循環路15に
備える流量調整弁15aと、前記冷却ガスを導く、前記
排ガス循環路15から冷却ガス流路22と分岐する拡散
用ガス流路23に備える流量調整弁23aとを調節する
ように構成してある。
The temperature of the combustion gas at the outlet of the combustion chamber 1 is 900
° C or lower, the exhaust gas temperature at the superheater outlet is maintained at about 400 ° C, and the superheated steam temperature at the outlet of the steam superheater 10A is set to 500 ° C.
℃, the wall temperature of the steam superheater 11
It is configured to keep it at about ° C. For this purpose, the combustion control device C is provided, and the combustion gas temperature at the outlet of the combustion chamber 1 detected by the combustion gas temperature detecting means 18 provided at the outlet of the combustion chamber 1 and the combustion gas flow path at the outlet of the superheater are provided. Exhaust gas temperature detected by the temperature detector 19a of the disposed exhaust gas detector 19 and the exhaust gas flow rate detected by the flow rate detector 19b, and the temperature and flow rate detector of the supplied steam detected by the temperature detector 20a of the inlet steam detector 20 20b, the temperature of the outlet superheated steam detected by the temperature detector 21a of the outlet steam detector 21 disposed at the outlet of the steam superheater 10A, and the flow detector 2 provided in the cooling gas passage 22.
2b and flow rate detecting means 23 provided in diffusion gas channel 23
b, the exhaust gas circulating amount detected is input, and the flow rate adjusting valve 6a provided in the air supply path 6, the flow rate adjusting valve 15a provided in the exhaust gas circulating path 15, and the exhaust gas circulating path 15, which guides the cooling gas. The cooling gas flow path 22 and the flow rate adjusting valve 23a provided in the branched gas flow path 23 are configured to be adjusted.

【0008】[0008]

【発明が解決しようとする課題】上記従来の外部燃焼式
過熱器においては、蒸気供給路24を経て廃熱ボイラか
ら供給される蒸気量が低下すると過熱蒸気温度が高くな
り過ぎるという問題がある。そこで、前記入口蒸気検出
手段20の流量検出部20bで流量低下を検出すると、
燃焼器4への燃料供給量を減少すると同時に、過剰空気
の供給により燃焼ガス温度を低下させる対策が考えられ
るが、過剰空気により燃焼ガスを希釈して冷却しても、
管壁温度を急速に低下させることは困難であり、しか
も、過剰空気を供給すれば排ガス量が増加し、排ガスの
持ち出す顕熱に由来する熱損失の増大を招く。
The above-mentioned conventional external combustion type superheater has a problem that when the amount of steam supplied from the waste heat boiler through the steam supply passage 24 decreases, the temperature of the superheated steam becomes too high. Therefore, when the flow rate detector 20b of the inlet steam detector 20 detects a decrease in the flow rate,
While measures to reduce the amount of fuel supplied to the combustor 4 and at the same time to reduce the temperature of the combustion gas by supplying excess air can be considered, even if the combustion gas is diluted and cooled by the excess air,
It is difficult to rapidly lower the tube wall temperature, and if excess air is supplied, the amount of exhaust gas increases, resulting in an increase in heat loss due to sensible heat brought by the exhaust gas.

【0009】そこで出願人は、水添加機構13を構成す
る水供給機構13Aから蒸気過熱路10A内の蒸気にそ
の乾き度が低下しすぎない範囲で水を添加し、さらに前
記出口蒸気検出手段21の温度検出部21aで温度の必
要以上の上昇を検出すると、前記水添加機構13の他の
構成要素である減温機構13Bから蒸気過熱路10A内
の蒸気にさらに水を添加して過熱蒸気温度を低下させる
ようにすることを先に提案している(特願平4−115
623)。しかし、前記過熱蒸気温度の上昇が激しく、
殊に入口蒸気量の減少が激しい場合には、前記水添加機
構から添加される水が蒸気の湿り度を高める結果、蒸気
過熱管11の内壁のエロージョン等の問題発生の原因と
なり易い。従って、上記対策は制御応答は速いものの、
その対策の有効な操作範囲が狭いという点に問題が残っ
ている。
Therefore, the applicant adds water from the water supply mechanism 13A constituting the water addition mechanism 13 to the steam in the steam superheater 10A within a range where the dryness is not excessively reduced. When the temperature detection unit 21a detects that the temperature rises more than necessary, water is further added to the steam in the steam superheating path 10A from the temperature reduction mechanism 13B, which is another component of the water addition mechanism 13, and the superheated steam temperature is increased. (Japanese Patent Application No. 4-115).
623). However, the temperature of the superheated steam increases sharply,
In particular, when the amount of steam at the inlet is sharply reduced, the water added from the water addition mechanism increases the wetness of the steam, so that problems such as erosion of the inner wall of the steam superheater tube 11 are likely to occur. Therefore, the above countermeasure has a fast control response,
The problem remains that the effective operation range of the countermeasure is narrow.

【0010】また、熱効率向上のために、従来の水冷壁
構造に代えて、燃焼室1の周壁2内面に沿って排ガスを
循環供給することによって、循環排ガスにより燃焼ガス
を希釈して冷却する燃焼室の冷却機構2aを提案してい
る(特願平8−60651)。しかし、循環排ガスによ
り冷却しても、上記過剰空気の添加と同様に蒸気過熱管
11の管壁温度を急速に低下させることが困難である点
は解決していない。しかも、前記燃焼ガスの冷却と上記
水添加とを同時に制御することによって制御が複雑にな
る割りに制御応答性に乏しく、短時間で静定させること
に困難を伴うという問題が生じる。つまり、前記水添加
機構13は制御応答が速く、一方、前記燃料供給量の減
少は、過熱器内の熱的慣性が大きいことから制御応答に
遅れを生じやすい点に問題を有している。そこで本発明
は、上記の問題点を解決し、蒸気流路の過熱を防止しつ
つ、単純な構造で熱効率を高めながら、安定した制御が
可能な外部燃焼式過熱器を提供することを目的とする。
In order to improve the thermal efficiency, the exhaust gas is circulated and supplied along the inner surface of the peripheral wall 2 of the combustion chamber 1 instead of the conventional water-cooled wall structure, so that the combustion gas is diluted and cooled by the circulated exhaust gas. A chamber cooling mechanism 2a has been proposed (Japanese Patent Application No. 8-60651). However, even if it is cooled by the circulating exhaust gas, the point that it is difficult to rapidly lower the tube wall temperature of the steam superheater 11 similarly to the addition of the excess air described above has not been solved. Moreover, simultaneous control of the cooling of the combustion gas and the addition of the water results in a problem that the control response is poor in spite of the complicated control, and that it is difficult to settle in a short time. That is, the water addition mechanism 13 has a problem in that the control response is fast, while the decrease in the fuel supply amount tends to cause a delay in the control response due to a large thermal inertia in the superheater. Accordingly, an object of the present invention is to provide an external combustion type superheater capable of solving the above problems and preventing overheating of a steam flow path, increasing thermal efficiency with a simple structure, and performing stable control. I do.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕上記の目的のための本発明の外部燃焼
式過熱器の第1特徴構成は、請求項1に記載の如く、前
記燃焼室を一次燃焼室と二次燃焼室とに分割構成すると
ともに、前記蒸気過熱路に連通する輻射伝熱管路を形成
して、前記一次燃焼室を包囲するように配置し、前記供
給空気量調節手段に、前記一次燃焼室に供給する一次空
気量を、前記一次燃焼室における燃焼状態を不足空気状
態に制御する輝炎燃焼制御部を設けてある点にある。 〔第1特徴構成の作用効果〕上記第1特徴構成によれ
ば、燃焼室の壁部の冷却損失を抑制しながら、火炎の輝
度を変化させるだけで、熱入力及び燃焼室出口温度を変
化させることなく過熱蒸気出口温度を調節することが可
能になる。つまり、一次燃焼室を包囲するように輻射伝
熱管路を配置してあるので、この輻射伝熱管路で壁部の
過熱を防止でき、また、一次燃焼室の空気不足率を変化
させることによりガス燃料であっても火炎の輝度を調節
でき、これにより輻射伝熱量を変化させることができる
ようになるから、過熱器出口蒸気温度を遅れなく安定制
御できる。しかも、輻射伝熱量を高く維持することが可
能になるので、前記輻射伝熱管路の入口蒸気の湿り度が
高くなっても急速に蒸発させることが可能で、蒸気の湿
り度の影響を抑制できる。この際、一次空気量の変化の
みで調節するので、一次燃焼室の火炎温度は殆ど変化せ
ず、二次燃焼後の燃焼ガス温度も変化が少ないので、過
熱器出口排ガス温度を安定させることが可能である。従
って、蒸気路入口の温度が変化したとしても、或いは蒸
気路入口の蒸気流量が大幅に変化したとしても、余裕を
もってこれに対処できるようになる。例えば、蒸気過熱
路出口の温度が極端に低下した場合には、供給空気量調
節手段を機能させて燃料供給量を多くすると同時に一次
燃焼室における火炎の輝度を高めて輻射伝熱量を高める
ように輝炎燃焼制御部を機能させれば、輻射伝熱管路出
口の過熱蒸気温度を高く維持することができる。また、
例えば蒸気路入口の供給蒸気量が少なくなった場合に
は、前記供給空気量調節手段を機能させて燃料供給量を
少なくしても前記蒸気過熱路出口の蒸気温度が高くなる
ので、一次燃焼室の火炎の輝度を低下させるように前記
輝炎燃焼制御部を機能させれば、前記輻射伝熱管路にお
ける出入口温度差を小さくすることができ、従って、前
記輻射伝熱管路の輻射伝熱管の管壁の過熱を防止でき
て、前記輻射伝熱管路出口の過熱蒸気温度を安定させる
ことが可能である。この火炎の輝度の制御は殊に気体燃
料に有効であるが、液体燃料を用いる場合においても、
液体燃料の微粒化の調節によって火炎の輝度を調節する
ことが可能であり、さらに、液体燃料と気体燃料とを併
用することによってこの火炎の輝度の調節はさらに容易
になる。その結果、蒸気流路の過熱を防止しつつ、単純
な構造で熱効率を高めながら、安定した制御が可能とな
る。
[First characteristic configuration] According to a first characteristic configuration of the external combustion type superheater of the present invention for the above purpose, as described in claim 1, the combustion chamber is divided into a primary combustion chamber and a secondary combustion chamber. And a radiant heat transfer pipe communicating with the steam superheat passage, and disposed so as to surround the primary combustion chamber, and the supply air amount adjusting means includes a primary air amount supplied to the primary combustion chamber. Is provided with a bright flame combustion control unit for controlling the combustion state in the primary combustion chamber to an insufficient air state. [Effects of First Feature Configuration] According to the first feature configuration, the heat input and the combustion chamber exit temperature are changed only by changing the brightness of the flame while suppressing the cooling loss of the wall of the combustion chamber. It is possible to adjust the superheated steam outlet temperature without the need. In other words, since the radiant heat transfer pipe is arranged so as to surround the primary combustion chamber, overheating of the wall can be prevented by the radiant heat transfer pipe, and the gas shortage can be prevented by changing the air shortage rate of the primary combustion chamber. Even with fuel, the brightness of the flame can be adjusted and the amount of radiant heat transfer can be changed, so that the steam temperature at the superheater outlet can be stably controlled without delay. Moreover, since the amount of radiant heat transfer can be maintained high, even when the wetness of the inlet steam of the radiant heat transfer pipe becomes high, it is possible to evaporate quickly, and the influence of the wetness of the steam can be suppressed. . At this time, since the temperature is adjusted only by the change in the amount of primary air, the flame temperature of the primary combustion chamber hardly changes, and the temperature of the combustion gas after the secondary combustion also changes little. It is possible. Therefore, even if the temperature at the inlet of the steam path changes, or if the steam flow rate at the inlet of the steam path changes greatly, it is possible to cope with this with a margin. For example, when the temperature at the outlet of the steam superheat path is extremely reduced, the supply air amount adjusting means is operated to increase the fuel supply amount, and at the same time, increase the luminance of the flame in the primary combustion chamber to increase the radiant heat transfer amount. If the bright flame combustion control unit is operated, the superheated steam temperature at the radiant heat transfer pipe outlet can be maintained high. Also,
For example, when the amount of supplied steam at the inlet of the steam passage is reduced, the temperature of the steam at the outlet of the superheated steam passage becomes higher even when the amount of supplied fuel is reduced by operating the supply air amount adjusting means. If the bright flame combustion control unit is operated so as to lower the brightness of the flame of the radiant heat transfer pipe, the temperature difference between the entrance and the exit of the radiant heat transfer pipe can be reduced. It is possible to prevent overheating of the wall and to stabilize the superheated steam temperature at the outlet of the radiant heat transfer pipe. This control of the brightness of the flame is particularly effective for gaseous fuels, but even when using liquid fuels,
The brightness of the flame can be adjusted by adjusting the atomization of the liquid fuel, and the adjustment of the brightness of the flame is further facilitated by using the liquid fuel and the gaseous fuel together. As a result, stable control is possible while preventing overheating of the steam flow path and increasing thermal efficiency with a simple structure.

【0012】〔第2特徴構成〕尚、本発明の外部燃焼式
過熱器の第2特徴構成は、請求項2に記載の如く、前記
第1特徴構成における燃料としてガス燃料を用いて燃焼
させる点にあり、これによって、上述のように、火炎の
輝度調節が容易となる。つまり、気体燃料であるガス燃
料は、過剰空気燃焼させれば完全に青色炎で燃焼し、熱
輻射率は非常に低いのに対し、不足空気状態で燃焼させ
れば、火炎が黄色化し、さらに輝炎燃焼するようにな
る。この火炎の輝度の変化の大きいことを利用すれば、
輻射熱伝達率を容易に変化させることができ、しかもこ
の制御応答に遅れがない。その結果、蒸気流路の過熱は
容易に防止でき、制御の安定性も高めることができるよ
うになる。 〔第3特徴構成及び作用効果〕また、本発明の外部燃焼
式過熱器の第3特徴構成は、請求項3に記載の如く、前
記第1特徴構成における燃焼室に過熱器出口からの排ガ
スを循環供給可能な排ガス循環路を設けてある点にあ
り、これによって、燃焼ガス流路の燃焼ガス流量を変化
させることなく入口蒸気温度に対して過熱蒸気出口温度
を変えることが出来るようになる。つまり、焼却炉は2
4時間連続操業でありながら、電力需要は昼夜で変化す
るため、電力需要の低下する夜間は、過熱蒸気出口温度
を低下させて、廃熱ボイラからの蒸気をそのまま用いな
がら、燃料供給量を減少させつつ排ガス循環路からの排
ガスを燃焼室に導入して、過熱器出口の排ガスの保有顕
熱を回収するとともに燃焼ガス流量を補って、蒸気過熱
路における熱伝達率の低下を防止することが出来る。当
然入熱量が低下するので、過熱蒸気出口温度は低下す
る。その結果、熱損失の増大を招くことなく、発電機出
力を抑制することが可能となる。
[Second characteristic configuration] The second characteristic configuration of the external combustion type superheater of the present invention is that, as set forth in claim 2, combustion is performed using gaseous fuel as the fuel in the first characteristic configuration. This facilitates the adjustment of the brightness of the flame as described above. In other words, gas fuel, which is a gaseous fuel, burns completely in a blue flame if burned with excess air, and has a very low thermal emissivity, whereas if burned in a lack of air state, the flame turns yellow, The bright flame starts to burn. By taking advantage of the large change in the brightness of this flame,
The radiant heat transfer coefficient can be easily changed, and there is no delay in the control response. As a result, overheating of the steam flow path can be easily prevented, and control stability can be improved. [Third characteristic configuration and operation and effect] According to a third characteristic configuration of the external combustion type superheater of the present invention, the exhaust gas from the superheater outlet is supplied to the combustion chamber in the first characteristic configuration. An exhaust gas circulation path that can be circulated and supplied is provided, so that the superheated steam outlet temperature can be changed with respect to the inlet steam temperature without changing the combustion gas flow rate in the combustion gas flow path. In other words, the incinerator is 2
Even though it is a continuous operation for 4 hours, the power demand fluctuates day and night, so at night when the power demand falls, the superheated steam outlet temperature is lowered and the fuel supply is reduced while using the steam from the waste heat boiler as it is. The exhaust gas from the exhaust gas circulation path is introduced into the combustion chamber while recovering the sensible heat of the exhaust gas at the outlet of the superheater and supplementing the combustion gas flow rate to prevent a decrease in the heat transfer coefficient in the steam superheat path. I can do it. Naturally, since the heat input decreases, the superheated steam outlet temperature decreases. As a result, it is possible to suppress the generator output without increasing the heat loss.

【0013】[0013]

【発明の実施の形態】上記本発明の外部燃焼式過熱器の
実施の形態の一例について、以下に、図面を参照しなが
ら説明する。尚、前記従来の技術において説明した要素
と同じ要素並びに同等の機能を有する要素に関しては、
先の図4に付したと同一の符号を付し、詳細の説明の一
部は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the above-mentioned external combustion type superheater of the present invention will be described below with reference to the drawings. In addition, regarding the same element as the element described in the above conventional technology and the element having the same function,
The same reference numerals as in FIG. 4 are used, and a part of the detailed description is omitted.

【0014】外部燃焼式過熱器Sは、模式的に図1に示
すように、燃焼室1からの燃焼ガス流路に蒸気過熱路1
0Aを配置するとともに、前記燃焼室1の周壁2に沿っ
て輻射伝熱管路10Bを配置して、前記輻射伝熱管路1
0Bを前記蒸気過熱路10Aに流路接続し、その入口に
焼却炉の廃熱ボイラからの蒸気路を接続し、供給された
蒸気を過熱して前記輻射伝熱管路10B出口を、発電装
置への蒸気路を接続するように構成してある。
As shown schematically in FIG. 1, the external combustion type superheater S is provided with a steam superheater 1 in a combustion gas flow path from the combustion chamber 1.
0A and a radiant heat transfer pipe 10B along the peripheral wall 2 of the combustion chamber 1.
0B is connected to the steam superheating path 10A, the inlet thereof is connected to a steam path from a waste heat boiler of an incinerator, and the supplied steam is superheated and the outlet of the radiant heat transfer pipe 10B is connected to a power generator. Are connected to each other.

【0015】前記燃焼室1は、一次燃焼室1Aとその上
方に形成される二次燃焼室1Bとで構成してある。前記
一次燃焼室1Aには、供給される天然ガス等のガス燃料
と空気とを混合して着火し、前記一次燃焼室1A内で燃
焼火炎を形成させる燃焼器4が設けられており、前記燃
焼器4には、燃料供給路5と一次空気路7とが接続され
ている。前記一次空気路7は、空気供給路6に一次空気
調整弁7aを介して接続されており、前記空気供給路6
の流量調整弁6aと前記一次空気調整弁7aとの間から
二次空気路8を分岐して、前記一次燃焼室1Aと前記二
次燃焼室1Bとの境界部に二次空気を供給するように構
成してある。こうして決定された所要空気量に合わせて
燃焼用空気の総量を前記流量調整弁6aで調節し、前記
燃焼火炎を輝炎化するために設定された不足空気比に合
わせて一次空気量を前記調整弁7aによって調節するよ
うに構成してある。前記空気供給路6には押込送風機9
から燃焼用空気が供給される。
The combustion chamber 1 comprises a primary combustion chamber 1A and a secondary combustion chamber 1B formed above the primary combustion chamber 1A. The primary combustion chamber 1A is provided with a combustor 4 that mixes gaseous fuel such as natural gas or the like supplied with air and ignites to form a combustion flame in the primary combustion chamber 1A. The fuel supply passage 5 and the primary air passage 7 are connected to the vessel 4. The primary air passage 7 is connected to the air supply passage 6 via a primary air regulating valve 7a.
The secondary air passage 8 is branched from between the flow control valve 6a and the primary air control valve 7a to supply secondary air to the boundary between the primary combustion chamber 1A and the secondary combustion chamber 1B. It is configured in. The total amount of combustion air is adjusted by the flow control valve 6a in accordance with the required air amount determined in this manner, and the primary air amount is adjusted in accordance with the insufficient air ratio set to make the combustion flame bright. It is configured to be adjusted by the valve 7a. A forced blower 9 is provided in the air supply path 6.
Supply air for combustion.

【0016】前記蒸気過熱路10Aは、前記二次燃焼室
1B上方の燃焼ガス流路に、前記燃焼室1からの燃焼ガ
スに接触可能に配置された蒸気過熱管11で形成してあ
り、前記輻射伝熱管路10Bは、前記燃焼室1の周壁2
に沿って上下方向姿勢に配置され、且つ前記周壁2に沿
って周方向に並設された複数の輻射伝熱管12cの下方
の蒸気入口側を分配管12aで連結するとともに、前記
複数の輻射伝熱管12cの上方の蒸気出口側を集合管1
2bで連結した輻射伝熱管群12として形成してあり、
前記分配管12aの蒸気入口側を前記蒸気過熱路10A
を構成する蒸気過熱管11の蒸気出口側に流路接続して
ある。さらに、前記蒸気過熱管11と前記輻射伝熱管群
12とを接続する蒸気流路10に、流路内の蒸気に水を
添加する水添加機構13を配置してある。前記蒸気過熱
管11の蒸気入口側が過熱器Sの蒸気入口となり、前記
集合管12bの蒸気出口側が過熱器Sの過熱蒸気出口と
なる。上記輻射伝熱管群12は、複数の輻射伝熱管12
cを周壁2の内面と離間して配置してあってもよく、ま
た、前記複数の輻射伝熱管12cを連設してメンブレン
ウォールに形成して、前記周壁2の内面を構成するよう
に配置してあってもよい。
The steam superheat path 10A is formed by a steam superheat pipe 11 arranged in a combustion gas flow path above the secondary combustion chamber 1B so as to be able to contact the combustion gas from the combustion chamber 1. The radiant heat transfer pipe 10 </ b> B is provided on the peripheral wall 2 of the combustion chamber 1.
A plurality of radiant heat transfer tubes 12c arranged in the vertical direction along the peripheral wall 2 and arranged in the circumferential direction along the peripheral wall 2 are connected to the lower steam inlet side by a distribution pipe 12a, and the plurality of radiant transfer tubes are connected. The steam outlet side above the heat pipe 12c is the collecting pipe 1
It is formed as a radiant heat transfer tube group 12 connected by 2b,
The steam inlet side of the distribution pipe 12a is connected to the steam superheating path 10A.
The flow passage is connected to the steam outlet side of the steam superheater 11 constituting the above. Further, a water addition mechanism 13 for adding water to the steam in the flow path is disposed in the steam flow path 10 connecting the steam superheated pipe 11 and the radiant heat transfer pipe group 12. The steam inlet side of the steam superheater 11 serves as a steam inlet of the superheater S, and the steam outlet side of the collecting pipe 12b serves as a superheated steam outlet of the superheater S. The radiant heat transfer tube group 12 includes a plurality of radiant heat transfer tubes 12.
c may be disposed separately from the inner surface of the peripheral wall 2, or the plurality of radiant heat transfer tubes 12 c may be connected to each other and formed on a membrane wall to form the inner surface of the peripheral wall 2. You may have.

【0017】前記二次燃焼室1Bの出口部に燃焼ガス温
度を検出する燃焼ガス温度検出手段18を設け、過熱器
Sの出口部に燃焼ガス流路からの排ガスの温度を検出す
る温度検出部19aと排ガスの流量を検出する流量検出
部19bとを備える排ガス検出手段19を設けてある。
また、前記蒸気入口に入口蒸気の温度を検出する温度検
出部20aと流量を検出する流量検出部20bとを備え
た入口蒸気検出手段20を設け、前記過熱蒸気出口に出
口過熱蒸気の温度を検出する温度検出部21aを備える
出口蒸気検出手段21を設けてある。そして、前記燃焼
ガス温度検出手段18と前記排ガス検出手段19と前記
入口蒸気検出手段20と前記出口蒸気検出手段21とか
らの入力に基づいて、前記燃焼器4への燃料供給量を調
節する前記燃料調整弁5aと、前記燃焼器4への一次空
気供給量を調節する前記一次空気調整弁7aと、前記水
添加機構13とを制御する過熱器制御装置Cを設てあ
る。
A combustion gas temperature detector 18 for detecting the temperature of the combustion gas is provided at the outlet of the secondary combustion chamber 1B, and a temperature detector for detecting the temperature of the exhaust gas from the combustion gas passage at the outlet of the superheater S. An exhaust gas detecting means 19 is provided which includes a flow sensor 19a for detecting the flow rate of the exhaust gas.
Further, an inlet steam detecting means 20 having a temperature detecting section 20a for detecting the temperature of the inlet steam and a flow rate detecting section 20b for detecting the flow rate is provided at the steam inlet, and the temperature of the outlet superheated steam is detected at the superheated steam outlet. An outlet steam detecting means 21 having a temperature detecting section 21a is provided. Then, the amount of fuel supplied to the combustor 4 is adjusted based on inputs from the combustion gas temperature detecting means 18, the exhaust gas detecting means 19, the inlet steam detecting means 20, and the outlet steam detecting means 21. The fuel control valve 5a, the primary air control valve 7a for adjusting the primary air supply amount to the combustor 4, and the superheater control device C for controlling the water addition mechanism 13 are provided.

【0018】前記燃焼制御装置Cには、前記燃焼器4に
供給する燃料供給量に対して、空気の供給量を調節する
供給空気量調節手段30を備えており、さらに、前記輻
射伝熱管群12を構成する輻射伝熱管12cへの輻射伝
熱量を調整するために、前記燃焼器4に供給する一次空
気量を調節する輝炎燃焼制御部31を備えている。
The combustion control device C includes a supply air amount adjusting means 30 for adjusting an air supply amount with respect to a fuel supply amount supplied to the combustor 4, and further includes the radiant heat transfer tube group. In order to adjust the amount of radiant heat transfer to the radiant heat transfer tube 12c that constitutes the blast tube 12, a bright flame combustion control unit 31 that adjusts the amount of primary air supplied to the combustor 4 is provided.

【0019】上述の外部燃焼式過熱器Sの制御は、前記
過熱器制御装置Cによって以下のように行われる。先
ず、前記過熱器制御装置Cに入口蒸気検出手段20で検
出した入口蒸気の温度と流量を入力して所要熱量を算出
し、燃料供給量を決定し、燃料調整弁5aを調節する。
そして、検出した入口蒸気の流量が少ないときは、所要
水添加量を算出し、水添加機構13への水の添加量を調
整する。同時に、前記燃焼器4への燃料供給量を検出す
る流量計5bの検出結果に基づき供給空気量調節手段3
0によって前記空気供給路6に備える流量調整弁6aを
比例制御するようにしてある。次に前記供給空気量調節
手段30の輝炎燃焼制御部31に出口蒸気検出手段21
の温度検出部21aで検出する出口過熱蒸気温度を入力
して、500℃に維持するよう一次燃焼室1Aにおける
火炎の輝度を調節するために、所要の不足空気率を算出
し、一次空気調整弁7aを調節する。さらに、前記過熱
器制御装置Cでは、燃焼ガス温度検出手段18の検出す
る燃焼ガス温度を900℃に維持するように、空気供給
路6の流量調整弁6aの開度を補正する。次いで、排ガ
ス検出手段19の温度検出部19aで検出する排ガスの
温度に基づき、前記燃料調整弁5a及び前記流量調整弁
6aの開度を補正制御する。
The above-described external combustion type superheater S is controlled by the superheater control device C as follows. First, the temperature and flow rate of the inlet steam detected by the inlet steam detecting means 20 are input to the superheater control device C to calculate the required heat quantity, determine the fuel supply amount, and adjust the fuel regulating valve 5a.
When the detected inlet steam flow rate is low, the required water addition amount is calculated, and the water addition amount to the water addition mechanism 13 is adjusted. At the same time, based on the detection result of the flow meter 5b for detecting the fuel supply amount to the combustor 4, the supply air amount adjusting means 3
With 0, the flow control valve 6a provided in the air supply path 6 is proportionally controlled. Next, the outlet steam detector 21 is provided to the bright flame combustion controller 31 of the supply air amount controller 30.
In order to adjust the brightness of the flame in the primary combustion chamber 1A so as to maintain the temperature at 500 ° C. by inputting the outlet superheated steam temperature detected by the temperature detecting section 21a, a required insufficient air ratio is calculated, and the primary air regulating valve is adjusted. Adjust 7a. Further, the superheater control device C corrects the opening of the flow regulating valve 6a of the air supply passage 6 so that the combustion gas temperature detected by the combustion gas temperature detecting means 18 is maintained at 900 ° C. Next, based on the temperature of the exhaust gas detected by the temperature detecting section 19a of the exhaust gas detecting means 19, the opening of the fuel control valve 5a and the flow control valve 6a is corrected and controlled.

【0020】上述の構成により、本発明の外部燃焼式過
熱器においては、前記燃焼制御装置Cによる制御に対す
る燃焼ガス温度及び排ガス温度に関しての制御応答特性
が改善され、出口過熱蒸気温度の制御遅れが抑制され、
全体の制御の整合が図れた結果、静定の速い過熱器の制
御が実現できた。さらに、最終過熱段を竪型輻射伝熱管
群12に形成した結果、水添加機構13からの水の添加
量が過剰になって、前記竪型輻射伝熱管群12に供給さ
れる蒸気が湿り蒸気になっても問題なく過熱蒸気を発生
でき、殊に、水分が多くなって輻射伝熱管12cに水位
が生じても、前記竪型輻射伝熱管群12は蒸発管として
機能するようになる。しかも、前記輻射伝熱管12cの
総管路面積を他の蒸気流路よりも大きく出来るので、蒸
気流速を低下させることができる結果、単位容積当たり
の伝熱量を高く維持することが可能で、さらに蒸気の湿
りに起因するエロージョンの発生も防止できる。
With the above configuration, in the external combustion type superheater of the present invention, the control response characteristic of the combustion gas temperature and the exhaust gas temperature with respect to the control by the combustion control device C is improved, and the control delay of the outlet superheated steam temperature is reduced. Restrained,
As a result of the matching of the overall control, control of the superheater with a fast settling was realized. Furthermore, as a result of forming the final superheating stage in the vertical radiant heat transfer tube group 12, the amount of water added from the water addition mechanism 13 becomes excessive, and the steam supplied to the vertical radiant heat transfer tube group 12 becomes wet steam. Even if the temperature rises, superheated steam can be generated without any problem. In particular, even if the water level increases in the radiant heat transfer tubes 12c due to an increase in moisture, the vertical radiant heat transfer tube group 12 functions as an evaporation tube. Moreover, since the total pipe area of the radiant heat transfer tube 12c can be made larger than the other steam flow paths, the steam flow rate can be reduced, so that the heat transfer amount per unit volume can be kept high, and furthermore, Erosion caused by the wetness of the steam can also be prevented.

【0021】次に、本発明の他の実施の形態について説
明する。 〈1〉上記実施の形態に於いては、燃焼室1の周壁2に
沿って輻射伝熱管路10Bを配置した例を示したが、前
記輻射伝熱管路10Bを構成する輻射伝熱管群12の一
部は燃焼室1内に配置してあってもよい。 〈2〉上記実施の形態に於いては、燃焼室1の周壁2に
沿って輻射伝熱管路10Bを配置した例を示したが、前
記輻射伝熱管路10Bは一次燃焼室1Aのみの周壁2に
沿って配置してあってもよく、また、前記燃焼室1から
燃焼ガス流路に亘る周壁2に配置してあってもよい。 〈3〉上記実施の形態に於いては、燃焼室1を一次燃焼
室1Aとその上方に形成される二次燃焼室1Bとで構成
してある例を示したが、その配置は例えば図4に示した
ように横配置であってもよい。 〈4〉上記実施の形態に於いては、輻射伝熱管路10B
を蒸気過熱路10Aに流路接続し、蒸気過熱路10Aの
入口に焼却炉の廃熱ボイラからの蒸気路を接続し、前記
輻射伝熱管路10B出口に発電装置への蒸気路を接続し
た例を示したが、前記輻射伝熱管路10B出口にさらに
蒸気過熱路10Aを接続して、前記輻射伝熱管路10B
下流側の蒸気過熱路10A出口に発電装置への蒸気路を
接続するようにしてもよい。 〈5〉上記実施の形態に於いては、輻射伝熱管路10B
を、燃焼室1の周壁2に沿って竪方向姿勢に配置され、
且つ前記周壁2に沿って周方向に並設された複数の輻射
伝熱管12cの下方の蒸気入口側を分配管12aで連結
するとともに、前記複数の輻射伝熱管12cの上方の蒸
気出口側を集合管12bで連結した輻射伝熱管群12と
して形成した例を示したが、例えば図2に示すように、
螺旋状に形成した輻射伝熱管12cで輻射伝熱管路10
Bを構成してあってもよい。このように構成すれば、前
記輻射伝熱管12cを輻射伝熱管路10Bとして蒸気流
路10に比して流路断面を大きくすることにより蒸気の
滞留時間を長くとれるので、輻射伝熱量の変化の効果を
有効にできる。この輻射伝熱管12cは、前記周壁2の
内面から離間して配置してあってもよく、前記周壁2の
内面に埋設してあってもよい。さらに、前記輻射伝熱管
12cを並設した複数の管路で形成してあってもよい。
前記螺旋状の輻射伝熱管路10Bは、燃焼ガス流の方向
に対向する蒸気流れ方向に(対向流として)配置したも
のを示してあるが、逆方向に(並行流として)配置して
あってもよい。 〈6〉上記図2に於いては、一次空気路7に一次空気調
整弁7aを設ける代わりに二次空気路8に二次空気調整
弁8aを設けた例を示したが、前記実施の形態における
空気調整弁のように配置してもよく、また、前記図1に
示した実施の形態に於いて、前記図2に示したような調
整弁の配置にすることも可能である。ここに、前記水添
加機構13は、図2に示すように、蒸気過熱路10Aの
入口側蒸気流路10に配置した水供給機構13Aと、輻
射伝熱管路10Bへの入口側蒸気流路10に配置した減
温機構13Bとで構成してあってもよい。さらに、外部
燃焼式過熱器Sは、竪型のものを例示したが、横型のも
のであってもよく、従来の技術に示したように、燃焼器
2を横向きに配置したものであってもよい。 〈7〉上記実施の形態に於いては、蒸気過熱管11と輻
射伝熱管群12とを接続する蒸気流路10に、流路内の
蒸気に水を添加する水添加機構13を配置してある例を
示したが、前記水添加機構13は設けていなくてもよ
い。つまり、出口過熱蒸気量を一定に保つべき要請がな
い場合には、前記水添加機構13を過熱蒸気の減温機構
として用いることなく、供給空気量調節手段30の輝炎
燃焼制御部31により、一次燃焼室1Aにおける燃焼火
炎の輝度を調節することによって輻射伝熱管12cの過
熱を防止することが可能だからである。尚、前記輝炎燃
焼制御部31は、前記供給空気量調節手段30とは独立
のものであってもよい。さらに、前記供給空気量調節手
段30が過熱器制御装置Cから独立していてもよい。 〈8〉上記実施の形態に於いては、燃焼器2でガス燃料
を燃焼させる例を示したが、前記燃焼器2で燃焼させる
燃料は、液体燃料であってもよく、噴霧燃焼させれば燃
焼火炎は確実に輝炎化する。尚、燃焼火炎の輝度は、噴
霧粒径の調整によってもよく、液体燃料の予熱温度の調
節によっても調節可能であり、また、二次空気の吹き込
み量によって調整するようにしてあってもよい。 〈9〉外部燃焼式過熱器Sは、図3に示すように、出口
排ガス路14から分岐する排ガス循環路15を空気供給
路6に接続して排ガスを循環して燃焼室1に供給するよ
うにしてあってもよい。このようにすれば、排ガスに伴
って排出される熱エネルギーの一部を回収でき、さらに
燃焼室1における火炎温度を低下させることができ、燃
料供給量を低下させても燃焼ガス流量を維持できるの
で、例えば、夜間の電力需要の低下した時期に、廃熱ボ
イラからの蒸気を比較的低温に過熱して発電機に供給
し、熱損失を抑制しながら焼却炉の廃熱を有効利用する
ことが可能となる。尚、この排ガス循環路15は、一次
空気路7に接続してあってもよく、このようにすれば、
蒸気過熱路10Aにおける伝熱を維持しながら一次燃焼
火炎の温度を低下させて、輻射伝熱管路10Bへの輻射
伝熱量を低下させることで過熱蒸気出口温度を低下させ
ることが可能となる。また、前記排ガス循環路15を二
次空気路8に接続してあってもよく、このようにすれ
ば、一次燃焼火炎の温度は低下させることなく燃焼ガス
温度を低下させることが可能で、前記蒸気過熱路10A
からの蒸気温度が低下し、或いは蒸気流量が低下した場
合に、一次燃焼火炎の輝度を調整することにより、制御
応答性よく過熱蒸気出口温度を調節できるようになる。
Next, another embodiment of the present invention will be described. <1> In the above-described embodiment, an example in which the radiant heat transfer pipes 10B are arranged along the peripheral wall 2 of the combustion chamber 1 has been described, but the radiant heat transfer pipe group 12 constituting the radiant heat transfer pipes 10B A part may be arranged in the combustion chamber 1. <2> In the above-described embodiment, an example is shown in which the radiant heat transfer pipe 10B is arranged along the peripheral wall 2 of the combustion chamber 1; however, the radiant heat transfer pipe 10B is a peripheral wall 2 having only the primary combustion chamber 1A. May be arranged along the peripheral wall 2 extending from the combustion chamber 1 to the combustion gas flow path. <3> In the above embodiment, an example is shown in which the combustion chamber 1 is constituted by the primary combustion chamber 1A and the secondary combustion chamber 1B formed above the primary combustion chamber 1A. As shown in FIG. <4> In the above embodiment, the radiation heat transfer pipe 10B
An example in which a steam path is connected to a steam superheat path 10A, a steam path from a waste heat boiler of an incinerator is connected to an inlet of the steam superheat path 10A, and a steam path to a power generator is connected to an outlet of the radiant heat transfer pipe 10B. However, a steam superheater 10A is further connected to the outlet of the radiant heat transfer pipe 10B, so that the radiant heat transfer pipe 10B
A steam path to the power generator may be connected to the downstream steam superheat path 10A outlet. <5> In the above embodiment, the radiation heat transfer pipe 10B
Are arranged in a vertical posture along the peripheral wall 2 of the combustion chamber 1,
Further, the lower steam inlet side of the plurality of radiant heat transfer tubes 12c arranged in the circumferential direction along the peripheral wall 2 is connected by a distribution pipe 12a, and the upper steam outlet side of the plurality of radiant heat transfer tubes 12c is assembled. Although the example formed as the radiant heat transfer tube group 12 connected by the tube 12b was shown, for example, as shown in FIG.
The radiant heat transfer pipe 12c formed in a spiral shape is
B may be configured. With this configuration, the radiant heat transfer pipe 12c is used as the radiant heat transfer pipe 10B, and the cross section of the flow path is made larger than that of the steam flow path 10, so that the residence time of the steam can be increased. The effect can be effective. The radiant heat transfer tube 12 c may be arranged separately from the inner surface of the peripheral wall 2, or may be embedded in the inner surface of the peripheral wall 2. Further, the radiant heat transfer tube 12c may be formed by a plurality of pipes arranged in parallel.
The spiral radiant heat transfer pipe 10B is arranged in the steam flow direction (as a counter flow) opposed to the combustion gas flow direction, but is arranged in the opposite direction (as a parallel flow). Is also good. <6> FIG. 2 shows an example in which the secondary air passage 8 is provided with the secondary air adjustment valve 8a instead of providing the primary air passage 7 with the primary air adjustment valve 7a. In the embodiment shown in FIG. 1, it is also possible to arrange the adjustment valve as shown in FIG. Here, as shown in FIG. 2, the water addition mechanism 13 includes a water supply mechanism 13A disposed in the inlet-side steam flow path 10 of the steam superheat path 10A, and an inlet-side steam flow path 10A to the radiant heat transfer pipe 10B. And the temperature reduction mechanism 13B arranged in the first position. Furthermore, although the external combustion type superheater S has been exemplified as a vertical type, the external combustion type superheater S may be a horizontal type, and as shown in the prior art, a type in which the combustor 2 is arranged in a horizontal direction. Good. <7> In the above embodiment, the water addition mechanism 13 that adds water to the steam in the flow path is disposed in the steam flow path 10 that connects the steam superheated pipe 11 and the radiant heat transfer pipe group 12. Although an example has been shown, the water addition mechanism 13 may not be provided. That is, when there is no request to keep the outlet superheated steam amount constant, the bright flame combustion control unit 31 of the supply air amount adjustment unit 30 does not use the water addition mechanism 13 as a superheated steam temperature reduction mechanism. This is because it is possible to prevent overheating of the radiant heat transfer tube 12c by adjusting the brightness of the combustion flame in the primary combustion chamber 1A. The bright flame combustion control section 31 may be independent of the supply air amount adjusting means 30. Further, the supply air amount adjusting means 30 may be independent of the superheater control device C. <8> In the above-described embodiment, the example in which the gas fuel is burned in the combustor 2 has been described. However, the fuel burned in the combustor 2 may be a liquid fuel. The combustion flame surely turns into a bright flame. The brightness of the combustion flame may be adjusted by adjusting the spray particle diameter, by adjusting the preheating temperature of the liquid fuel, or by adjusting the amount of secondary air blown. <9> The external combustion superheater S connects the exhaust gas circulation path 15 branched from the outlet exhaust gas path 14 to the air supply path 6 to circulate the exhaust gas and supply the exhaust gas to the combustion chamber 1, as shown in FIG. You may have. In this way, a part of the heat energy discharged with the exhaust gas can be recovered, the flame temperature in the combustion chamber 1 can be reduced, and the combustion gas flow rate can be maintained even when the fuel supply amount is reduced. Therefore, for example, when nighttime power demand falls, steam from the waste heat boiler is heated to a relatively low temperature and supplied to the generator, and the waste heat of the incinerator is effectively used while suppressing heat loss. Becomes possible. In addition, this exhaust gas circulation path 15 may be connected to the primary air path 7, and in this case,
The temperature of the primary combustion flame is reduced while maintaining the heat transfer in the steam superheat path 10A, and the amount of radiant heat transfer to the radiant heat transfer pipe 10B is reduced, so that the superheated steam outlet temperature can be reduced. Further, the exhaust gas circulation path 15 may be connected to the secondary air path 8, so that the temperature of the combustion gas can be reduced without lowering the temperature of the primary combustion flame. Steam superheat path 10A
When the temperature of the steam from the furnace decreases or the steam flow rate decreases, the superheated steam outlet temperature can be adjusted with good control responsiveness by adjusting the brightness of the primary combustion flame.

【0022】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による外部燃焼式過熱器の一例を説明す
る模式図
FIG. 1 is a schematic diagram illustrating an example of an external combustion superheater according to the present invention.

【図2】本発明による外部燃焼式過熱器の他の例を説明
する模式図
FIG. 2 is a schematic view illustrating another example of the external combustion superheater according to the present invention.

【図3】本発明による外部燃焼式過熱器の他の例の説明
FIG. 3 is an explanatory view of another example of the external combustion type superheater according to the present invention.

【図4】従来の外部燃焼式過熱器の一例を示す説明図FIG. 4 is an explanatory view showing an example of a conventional external combustion type superheater.

【符号の説明】[Explanation of symbols]

1 燃焼室 1A 一次燃焼室 1B 二次燃焼室 10A 蒸気過熱路 10B 輻射伝熱管路 15 排ガス循環路 30 供給空気調節手段 31 輝炎燃焼制御部 DESCRIPTION OF SYMBOLS 1 Combustion chamber 1A Primary combustion chamber 1B Secondary combustion chamber 10A Steam superheating path 10B Radiation heat transfer pipe 15 Exhaust gas circulation path 30 Supply air adjusting means 31 Bright flame combustion control section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室(1)からの燃焼ガス流路に蒸気
過熱路(10A)を配置するとともに、 前記燃焼室(1)に燃料と共に供給する空気の供給量を
調節する供給空気量調節手段(30)を備え、 焼却炉の廃熱ボイラから発電装置への蒸気を過熱可能に
構成してある外部燃焼式過熱器であって、 前記燃焼室(1)を一次燃焼室(1A)と二次燃焼室
(1B)とに分割構成するとともに、 前記蒸気過熱路(10A)に連通する輻射伝熱管路(1
0B)を形成して、前記一次燃焼室(1A)を包囲する
ように配置し、 前記供給空気量調節手段(30)に、前記一次燃焼室
(1A)に供給する一次空気量を、前記一次燃焼室(1
A)における燃焼状態を不足空気状態に制御する輝炎燃
焼制御部(31)を設けてある外部燃焼式過熱器。
1. A supply air amount control for arranging a steam superheat path (10A) in a combustion gas flow path from a combustion chamber (1) and adjusting a supply amount of air supplied together with fuel to the combustion chamber (1). An external combustion type superheater comprising means (30) and configured to be able to superheat steam from a waste heat boiler of an incinerator to a power generation device, wherein the combustion chamber (1) is a primary combustion chamber (1A). The radiant heat transfer pipe (1) is divided into a secondary combustion chamber (1B) and communicates with the steam superheat path (10A).
0B) is formed and disposed so as to surround the primary combustion chamber (1A), and the supply air amount adjusting means (30) is provided with the primary air amount supplied to the primary combustion chamber (1A) by the primary air amount. Combustion chamber (1
An external combustion superheater provided with a bright flame combustion control section (31) for controlling the combustion state in A) to an insufficient air state.
【請求項2】 前記燃料としてガス燃料を用いて燃焼さ
せる請求項1記載の外部燃焼式過熱器。
2. The external combustion type superheater according to claim 1, wherein the fuel is burned using gaseous fuel as the fuel.
【請求項3】 過熱器出口からの排ガスを前記燃焼室
(1)に循環供給可能な排ガス循環路(15)を設けて
ある請求項1又は2に記載の外部燃焼式過熱器。
3. The external combustion type superheater according to claim 1, further comprising an exhaust gas circulation path (15) capable of circulating and supplying exhaust gas from a superheater outlet to the combustion chamber (1).
JP07704097A 1997-03-28 1997-03-28 External combustion superheater Expired - Fee Related JP3455388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07704097A JP3455388B2 (en) 1997-03-28 1997-03-28 External combustion superheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07704097A JP3455388B2 (en) 1997-03-28 1997-03-28 External combustion superheater

Publications (2)

Publication Number Publication Date
JPH10267217A true JPH10267217A (en) 1998-10-09
JP3455388B2 JP3455388B2 (en) 2003-10-14

Family

ID=13622667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07704097A Expired - Fee Related JP3455388B2 (en) 1997-03-28 1997-03-28 External combustion superheater

Country Status (1)

Country Link
JP (1) JP3455388B2 (en)

Also Published As

Publication number Publication date
JP3455388B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP4661993B1 (en) Boiler system
CN101939589B (en) Oxy-fuel combustion system with closed loop flame temperature control
US5626085A (en) Control of staged combustion, low NOx firing systems with single or multiple levels of overfire air
CN105805739B (en) Adjust the circulating fluidized bed combustion method of superheat steam temperature
EP2182283A2 (en) Oxyfuel combustion boiler plant and control method for the same
JP5774381B2 (en) Waste heat recovery boiler and power plant
US4316420A (en) Furnace heat absorption control
CA1120799A (en) Furnace heat absorption control
JPH10267217A (en) External combustion superheater
JP2922711B2 (en) Urban waste incineration equipment
JPH10267218A (en) External combustion superheater
JPH10267216A (en) External combustion superheater
CN101056719A (en) Device and method for boiler superheat temperature control
JP2000028129A (en) Pulverized coal combustor
JP2944502B2 (en) Garbage incineration equipment
JP3455389B2 (en) Control method of external combustion superheater
US11319874B1 (en) Air supplying apparatus and method of hybrid power generation equipment
JP5408150B2 (en) Boiler system
JPH11101401A (en) Method for controlling state of combustion in furnace zone of boiler having plural furnace zones
JPH0586521B2 (en)
JPH1194240A (en) Low calorific value gas fired boiler
JPH0220572Y2 (en)
JPH02293514A (en) Method and apparatus for controlling combustion load in melting furnace
JPH10110904A (en) Boiler controller
JPH0198817A (en) Control device for gas hot water feeder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees