JPH1026626A - Automatic analyzer - Google Patents

Automatic analyzer

Info

Publication number
JPH1026626A
JPH1026626A JP8627097A JP8627097A JPH1026626A JP H1026626 A JPH1026626 A JP H1026626A JP 8627097 A JP8627097 A JP 8627097A JP 8627097 A JP8627097 A JP 8627097A JP H1026626 A JPH1026626 A JP H1026626A
Authority
JP
Japan
Prior art keywords
reaction
sample
group
reagent
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8627097A
Other languages
Japanese (ja)
Other versions
JP2798080B2 (en
Inventor
Hiroshi Mimaki
弘 三巻
Fujiya Takahata
藤也 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9086270A priority Critical patent/JP2798080B2/en
Publication of JPH1026626A publication Critical patent/JPH1026626A/en
Application granted granted Critical
Publication of JP2798080B2 publication Critical patent/JP2798080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate control and perform reaction processing in correspondence with the respective items of different kinds of analyses mixed on a reaction line by dividing many reaction containers on the single reaction line into a plurality of groups. SOLUTION: For example, respective groups on a reaction disk 4 are controlled with every four reaction containers 5 as the unit. A sample is sucked by one pippet nozzle of a sampling mechanism 3 from a sample cup 2 and injected into the reaction container 5. Movement and stopping are made to proceed with one group of the reaction container as the unit at every one cycle time. When the cycles are repeated, the suitable reagent on a reagent disc 7 is sucked by a reagent pipetting mechanism 6. The light of the reaction liquid in the reaction container 5 is measured by a multiple-wavelength photometer 9 at a measuring position through an agitating mechanism 8. In this case, the container, which is not used in the group, is discriminated, extracted and used. Therefore, e.g. three kinds of the reaction systems having the different reaction time can be analyzed at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動分析装置に係
り、特に単一反応ライン上の反応容器列を用いて複数種
の分析項目を反応処理するのに好適な自動分析装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic analyzer, and more particularly to an automatic analyzer suitable for performing a reaction process on a plurality of types of analysis items using a row of reaction vessels on a single reaction line.

【0002】[0002]

【従来の技術】同じ反応ライン上で複数の分析項目を反
応させ、各種の反応液を多波長光度計に順次位置づけて
測光し、次々と分析を進めていくいわゆるシングルライ
ン多項目分析装置は、特公昭55−21303 号の発明が公表
されて以来急速に普及した。この技術により多項目分析
計の小形化が実現された。
2. Description of the Related Art A so-called single-line multi-item analyzer, in which a plurality of analysis items are caused to react on the same reaction line, various reaction solutions are sequentially positioned on a multi-wavelength photometer, and photometry is performed, and analysis is sequentially performed, Since the invention of Japanese Patent Publication No. 55-21303 was announced, it has spread rapidly. This technology has realized the miniaturization of a multi-item analyzer.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術で
は、分析項目に応じて試薬の添加場所を変えることによ
って反応開始から測光位置までの時間を調節している
が、多数の試薬添加機構を用いなければならず、構成が
複雑であった。このような問題を解決するため、簡単な
構成で多種類の試薬を添加し得る試薬ピペッティング技
術が開発された。これは、特公昭59−22905 号に示され
ている。
In the prior art described above, the time from the start of the reaction to the photometric position is adjusted by changing the location of addition of the reagent according to the analysis item. However, a large number of reagent addition mechanisms are used. And the configuration was complicated. In order to solve such a problem, a reagent pipetting technique capable of adding various kinds of reagents with a simple configuration has been developed. This is shown in JP-B-59-22905.

【0004】ところが試薬ピペッティング法を採用する
と、どの試薬も反応ライン上の同じ場所で反応容器内に
添加しなければならず、分析時間の同じような分析項目
同士の処理はできるが、分析時間の異なる分析項目同士
を混在させて分析操作を実行することが困難であった。
However, when the reagent pipetting method is employed, all reagents must be added to the reaction vessel at the same place on the reaction line, and the analysis items having the same analysis time can be processed. It is difficult to execute analysis operations by mixing different analysis items.

【0005】本発明の目的は、多数の反応容器の管理が
容易であり、異種分析項目に応じた多様な反応処理が可
能な自動分析装置を提供することにある。
An object of the present invention is to provide an automatic analyzer capable of easily managing a large number of reaction vessels and performing various reaction processes according to different types of analysis items.

【0006】[0006]

【課題を解決するための手段】本発明は、単一反応ライ
ンに反応容器の列が形成された反応ディスクと、該反応
ライン上の反応容器に試料を分注する試料分注装置と、
反応ライン上の反応容器に分析項目に応じた試薬を分注
する試薬分注装置と、試料と試薬の反応液を光学的に測
定する光度計を備えた自動分析装置において、反応ライ
ン上の反応容器列をそれぞれ複数の反応容器で構成した
複数の群に分割して管理する制御部を備え、分割された
群単位で反応ライン上の試料受入領域に位置づけるよう
に反応ディスクを動作せしめると共に、特定の群が試料
受入領域に位置づけられたときに試料分注装置の1本の
ピペットノズルがその特定の群内の反応容器の1つにだ
け試料を分注し該特定の群内の他の反応容器には上記ピ
ペットノズルによる試料の分注をさせず、次いで後続す
る群が試料受入領域に位置づけられたときに上記ピペッ
トノズルにより該後続する群内の反応容器の1つにだけ
試料を分注するように試料分注装置を動作せしめるよう
に構成したことを特徴とする。
According to the present invention, there is provided a reaction disk in which a row of reaction vessels is formed in a single reaction line, a sample dispensing apparatus for dispensing a sample into a reaction vessel on the reaction line,
In an automatic analyzer equipped with a reagent dispensing device that dispenses reagents corresponding to the analysis items into reaction vessels on the reaction line and a photometer that optically measures the reaction solution of the sample and the reagent, the reaction on the reaction line Equipped with a control unit that divides and manages the vessel row into a plurality of groups each composed of a plurality of reaction vessels, and operates and specifies the reaction disk so that the divided groups are positioned in the sample receiving area on the reaction line. When one group is positioned in the sample receiving area, one pipette nozzle of the sample dispenser dispenses the sample to only one of the reaction vessels in that particular group and the other reactions in that particular group The container is not dispensed by the pipette nozzle and the sample is then dispensed by the pipette nozzle into only one of the reaction vessels in the subsequent group when the subsequent group is positioned in the sample receiving area. I will do it Characterized by being configured to allowed to operate the sample dispensing apparatus.

【0007】[0007]

【発明の実施の形態】本発明に基づく実施例の基本的動
作を図1及び図2を参照して説明する。図1において、
サークル状の単一の反応ラインに沿って多数の反応容器
がループ状に並べられ、反応容器列を形成している。図
1の例では、隣接する3個ずつの反応容器が各々の群を
形成しており、反応容器列全体が複数の群に分割されて
いる。今、これらの群の内の1つに着目し、3個の反応
容器をそれぞれA,B,Cとする。今、3つの異なる反
応時間を有する分析項目を斜線(45分反応),たて線
(30分反応),打点(15分反応)とする。図中Sは
反応容器への試料の添加を示し、1回の試料添加から次
の試料添加までを1装置サイクル時間とすると、1装置
サイクル時間で反応容器は、1群分反時計方向に回転す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic operation of an embodiment according to the present invention will be described with reference to FIGS. In FIG.
A number of reaction vessels are arranged in a loop along a single circle-shaped reaction line to form a reaction vessel row. In the example of FIG. 1, three adjacent reaction vessels form each group, and the entire reaction vessel row is divided into a plurality of groups. Now, focusing on one of these groups, let three reaction vessels be A, B, and C, respectively. Now, the analysis items having three different reaction times are indicated by oblique lines (45 minutes reaction), vertical lines (30 minutes reaction), and hit points (15 minutes reaction). In the figure, S indicates the addition of a sample to the reaction vessel, and when one cycle from one sample addition to the next sample addition is one apparatus cycle time, the reaction vessel rotates one group counterclockwise in one apparatus cycle time. I do.

【0008】図1の(イ)において45分反応の分析項
目が反応容器A内で分析される。
In FIG. 1A, the analysis items of the 45-minute reaction are analyzed in the reaction vessel A.

【0009】15分後に群は円周上を一周するがこの時
A部は45分反応に使用されているため空いているBま
で移動して次の分析項目(30分反応)に供される(図
中(ロ))。同様に次の15分後には、A,B両方とも反
応に供されているため、空いているCまで移動して次の
分析項目(15分反応)に供される(図中(ハ))。ス
タートから45分後には、A中の45分反応,B中の3
0分反応,C中の15分反応が3つ同時に終了するため
3つの反応容器は全て空にされ、洗浄され、次の分析準
備の状態になる。図中(ニ)では、再びA部で45分反
応が始められる。図の(ホ)は60分後、(ヘ)は75
分後のサンプリング状態を示す。
After 15 minutes, the group goes around the circumference. At this time, since part A is used for 45 minutes reaction, it moves to vacant B and is used for the next analysis item (30 minutes reaction). ((B) in the figure). Similarly, after the next 15 minutes, since both A and B have been used for the reaction, they move to the empty C and are used for the next analysis item (15-minute reaction) ((c) in the figure). . 45 minutes after the start, 45 minutes reaction in A, 3 minutes in B
Since the 0-minute reaction and the 15-minute reaction in C are completed at the same time, all three reaction vessels are emptied, washed, and ready for the next analysis. In (d) in the figure, the reaction is started again in part A for 45 minutes. (E) in the figure is 60 minutes later, (f) is 75 minutes
This shows the sampling state after one minute.

【0010】以上のように、1装置サイクル時間ごとに
反応容器の1群(3個)ずつを単位として移動と停止を
進めていくが、その際、群の中の反応に供されていない
容器を判別抽出して使用するため、上記のように反応時
間が異なる3種の反応系を同時に分析することができ
る。試料毎に単一反応ラインで複数の項目を直列に分析
していくこのような方式を単一反応ラインのランダムア
クセス方式と呼ぶ。
[0010] As described above, the movement and the stop are advanced in units of one group (three) of the reaction vessels every unit cycle time of the apparatus. Is used by discriminating, extracting and using the three reaction systems having different reaction times as described above. Such a method in which a plurality of items are analyzed in series on a single reaction line for each sample is referred to as a single reaction line random access method.

【0011】図2は、図1の分析をタイムチャート上に
展開したもので、Sは試料添加を、Wは反応液の排出・
洗浄を示す。同じ群の中で空いている1つの反応容器を
選びながら、毎周(15分毎)に試料添加が行われる。
実際の装置では円周上に複数の群が配列されており、1
装置サイクル毎に群から群へと円周上を移動させ、1周
後(15分後)に元の位置に戻る。
FIG. 2 is a development of the analysis of FIG. 1 on a time chart, wherein S indicates addition of a sample, and W indicates discharge / reaction of a reaction solution.
Indicates washing. The sample is added every circumference (every 15 minutes) while selecting one vacant reaction vessel in the same group.
In an actual device, a plurality of groups are arranged on the circumference,
It moves on the circumference from group to group for each device cycle, and returns to its original position after one round (after 15 minutes).

【0012】本発明の望ましい実施例では、隣接した反
応容器を複数個ずつ群に分割し分析に当って群の中の反
応容器の内使用されていない1個を判別抽出し反応に供
する。反応容器は試料と試薬の反応液を形成する室とな
る。反応容器列上には、あらかじめ定められた場所に試
料受入領域があり、この試料受入領域に群の単位で反応
容器が順次停止する。
In a preferred embodiment of the present invention, adjacent reaction vessels are divided into a plurality of groups, and one of the unused reaction vessels in the group is discriminated and extracted for analysis in the analysis. The reaction container is a chamber for forming a reaction solution of the sample and the reagent. A sample receiving area is provided in a predetermined place on the reaction vessel row, and the reaction vessels are sequentially stopped in the sample receiving area in units of groups.

【0013】複数の群の内のいずれかが反応ライン上の
試料受入領域に位置づけられたとき、当該群の中で空の
状態にある反応容器を制御部が判別して新たな試料を供
給するが、この群の位置づけの際に、空の状態の反応容
器があらかじめ定められた1つの試料ピペットノズルの
試料吐出位置に停止するように構成してもよく、又群の
位置づけの際に、その群を上記試料受入領域の一旦停止
した後、空の状態の反応容器まで試料ピペットノズルを
移動動作させるように構成してもよい。
When one of the groups is positioned in the sample receiving area on the reaction line, the control unit determines an empty reaction container in the group and supplies a new sample. However, when positioning the group, the empty reaction vessel may be configured to stop at the sample discharge position of one predetermined sample pipette nozzle, and when positioning the group, After the group is temporarily stopped in the sample receiving area, the sample pipette nozzle may be moved to an empty reaction vessel.

【0014】分割管理される各群は、複数の反応容器を
有しており、各反応容器は受け入れる試料の分析項目に
応じてその分析時間が決定され、制御部であるコンピュ
ータによって分析動作が管理,制御されるが、特定の反
応室が特定の分析時間に決められているのではなく、各
反応容器は設定可能な複数の分析時間の内のどの分析時
間にも設定されるように制御される。同じ群の中におけ
る複数の反応容器に対応する分析時間の組合せは、最長
の分析時間が最短の分析時間の整数倍であることが管理
する上で扱いやすい。
Each group to be divided and managed has a plurality of reaction vessels, and the analysis time of each reaction vessel is determined according to the analysis item of the sample to be received, and the analysis operation is managed by a computer as a control unit. , Is controlled, but a specific reaction chamber is not fixed to a specific analysis time, but each reaction vessel is controlled to be set to any of a plurality of configurable analysis times. You. A combination of analysis times corresponding to a plurality of reaction vessels in the same group is easy to handle in managing that the longest analysis time is an integral multiple of the shortest analysis time.

【0015】以下、本発明の一実施例の自動分析装置
を、図3を参照して説明する。この実施例では、反応デ
ィスク4上に円環状となるように全部で120個の反応
容器が配置されている。図3では各群が、4個の反応容
器ずつを単位として管理されており、全体で30群が構
成されている。
An automatic analyzer according to one embodiment of the present invention will be described below with reference to FIG. In this embodiment, a total of 120 reaction vessels are arranged on the reaction disk 4 so as to form an annular shape. In FIG. 3, each group is managed in units of four reaction vessels, and a total of 30 groups are configured.

【0016】図3の自動分析装置において、試料はサン
プルディスク1の上のサンプルカップ2の中に収容され
て設置される。試料は試料分注装置としての試料サンプ
リング機構3の1本のピペットノズルによって吸引さ
れ、その後反応ディスク4の円周上に並べられた反応容
器5の中に注入される。試料が分注された反応容器は装
置の1サイクル時間(実施例の場合30秒)後に、反時
計方向に移動し、隣りの群の場所まで移動して停止す
る。スタートから4サイクル後、試薬分注ポジションま
で特定の反応容器群が移動した時、試薬分注装置として
の試薬ピペッティング機構6により試薬ディスク7上の
適切な試薬が吸引され反応ディスク上の対象とする反応
容器に添加される。
In the automatic analyzer shown in FIG. 3, a sample is accommodated and placed in a sample cup 2 on a sample disk 1. The sample is sucked by one pipette nozzle of the sample sampling mechanism 3 as a sample dispensing device, and then injected into the reaction vessels 5 arranged on the circumference of the reaction disk 4. The reaction container into which the sample has been dispensed moves counterclockwise after one cycle time of the apparatus (30 seconds in the embodiment), moves to the next group, and stops. Four cycles after the start, when a specific reaction container group moves to the reagent dispensing position, the appropriate reagent on the reagent disk 7 is aspirated by the reagent pipetting mechanism 6 as a reagent dispensing device, and the target on the reaction disk is removed. Is added to the reaction vessel.

【0017】スタートから5サイクル後、撹拌ポジショ
ンに反応容器が移動した時、撹拌機構8によって反応容
器の内容物が均一に撹拌される。撹拌された反応容器は
さらに3サイクル(スタートから8サイクル)後、測定
ポジションに進み、その反応容器内の反応液が多波長光
度計9によって測光される。ここで反応が終了していれ
ば、反応容器は洗浄機構10により洗浄され次の分析に
供されるが、反応が本実施例の反応ディスク一周分の時
間(15分間)で終了しない場合に、分析条件を記憶し
たマイクロコンピュータ30の指示でインターフェイス
11を介し、洗浄ポンプ12が制御され、反応容器の洗
浄は行われない。多波長光度計9は、特公昭55−21303
号と同様の構成のものも用い得る。
After 5 cycles from the start, when the reaction vessel is moved to the stirring position, the contents of the reaction vessel are uniformly stirred by the stirring mechanism 8. After three cycles (eight cycles from the start), the stirred reaction vessel proceeds to the measurement position, and the reaction solution in the reaction vessel is measured by the multi-wavelength photometer 9. If the reaction has been completed, the reaction vessel is washed by the washing mechanism 10 and subjected to the next analysis. However, if the reaction is not completed within one rotation of the reaction disk (15 minutes) in this embodiment, The washing pump 12 is controlled via the interface 11 by the instruction of the microcomputer 30 storing the analysis conditions, and the reaction vessel is not washed. Multi-wavelength photometer 9 is
The same configuration as that described above can also be used.

【0018】反応液をそのまま残した反応容器は再び試
料受入領域に移動する。この場合、前周でサンプリング
された試料が反応容器内に残っている場合、反応条件を
記憶しているマイクロコンピュータ30からの指示でイ
ンターフェイスを介し反応ディスク4は試料の残った反
応容器と同じ群内の空の反応容器を試料受入領域まで移
動させる。以後、上述の動作をくり返して分析を進め
る。
The reaction vessel in which the reaction solution has been left moves to the sample receiving area again. In this case, when the sample sampled in the previous round remains in the reaction vessel, the reaction disk 4 is in the same group as the reaction vessel in which the sample remains through the interface by an instruction from the microcomputer 30 storing the reaction conditions. The empty reaction vessel inside is moved to the sample receiving area. Thereafter, the above operation is repeated to advance the analysis.

【0019】上述の動作を通じ、反応容器は全て、恒温
循環槽13によって37℃に温度制御されている。試料
は、試料分注機構(ポンプ)14により定量分注され、
試薬は、試薬分注機構(ポンプ)15により定量分注さ
れる。多波長光度計9で読み取られた光量信号は、Log
変換器/AD変換器16により吸光度スケールに変換さ
れた後デジタル化され、インターフェイスを介してマイ
クロコンピュータ30に取込まれる。マイクロコンピュ
ータに取込まれた吸光度信号は濃度変換され、プリンタ
17より患者試料中濃度として印字出力されるか、CR
T18の画面に出力される。又、キーボード19からの
指示により、濃度などの分析結果を、マイクロディスク
20に記憶することも可能である。本実施例によれば、
反応容器列上に反応時間の異なる分析項目が混在してい
ても、効率よくランダムアクセス分析を行うことができ
る。
Through the above operation, the temperature of all the reaction vessels is controlled to 37 ° C. by the constant temperature circulating tank 13. The sample is dispensed quantitatively by a sample dispensing mechanism (pump) 14,
The reagent is dispensed by a reagent dispensing mechanism (pump) 15. The light amount signal read by the multi-wavelength photometer 9 is Log
After being converted into an absorbance scale by the converter / AD converter 16, it is digitized and taken into the microcomputer 30 via the interface. The absorbance signal taken into the microcomputer is converted into a density and printed out from the printer 17 as the density in the patient sample,
Output to the screen of T18. In addition, analysis results such as concentration can be stored in the micro disk 20 according to an instruction from the keyboard 19. According to the present embodiment,
Even if analysis items having different reaction times are mixed on the reaction vessel row, random access analysis can be performed efficiently.

【0020】次に他の実施例について説明する。この例
では、図3と同様構成で空の反応容器を試料サンプリン
グポジションに移動するのに反応ディスクの停止位置を
制御する代りに、反応ディスクの円周上に並べられた一
群の反応容器(実施例では4個)の開口部の上を移動可
能な試料サンプリング機構により、サンプリング機構の
停止位置をマイクロコンピュータにより制御すること
で、1本の試料ピペットノズルを空の反応容器に位置づ
けることができる。本実施例によれば試料サンプリング
時に反応ディスクの停止する位置が一定するので、停止
時間中に他の動作(試薬分注,撹拌,測光,洗浄)を行
うための時間に余裕ができる効果がある。又、別な実施
例においては、特公昭59−24380 号に示されたのと同様
の反応ディスク動作を行わせ、複数の群が継続的に移動
した後反応ディスクを停止させて、全反応過程測光方式
を行う。この場合、図3と同様構成とするが、特定の群
から次の群の場所へ、一装置サイクル時間内に移動する
時、常に反応ディスクを一周回転させ加えて1群分送る
か、又は一回転マイナス一群分送る操作を行う。この場
合全反応容器が多波長光度計前を通過するため全反応容
器の吸光度を1装置サイクル時間ごとに取込み可能であ
る。本実施例によれば反応容器内の吸光度変化を刻々追
跡できるため、特に酵素の反応速度を求めるのに好適で
ありデータの精度を向上させることができる。
Next, another embodiment will be described. In this example, instead of controlling the stop position of the reaction disk to move the empty reaction container to the sample sampling position in the same configuration as in FIG. 3, a group of reaction containers arranged on the circumference of the reaction disk (implemented) By controlling the stop position of the sampling mechanism by a microcomputer using a sample sampling mechanism movable over four openings in the example, one sample pipette nozzle can be positioned in an empty reaction vessel. According to the present embodiment, the stop position of the reaction disk is constant at the time of sample sampling, so that there is an effect that time for performing other operations (reagent dispensing, stirring, photometry, washing) during the stop time can be provided. . In another embodiment, a reaction disk operation similar to that shown in Japanese Patent Publication No. 59-24380 is performed, and after a plurality of groups continuously move, the reaction disk is stopped to complete the entire reaction process. Perform photometry. In this case, the structure is the same as that shown in FIG. 3, but when moving from a specific group to the next group within one apparatus cycle time, the reaction disk is always rotated one turn and added or sent for one group, or Perform rotation minus one group feed. In this case, since all the reaction vessels pass in front of the multi-wavelength photometer, the absorbance of all the reaction vessels can be taken in every one apparatus cycle time. According to the present embodiment, the change in absorbance in the reaction vessel can be tracked every moment, so that it is particularly suitable for determining the reaction rate of the enzyme, and the accuracy of the data can be improved.

【0021】[0021]

【発明の効果】本発明によれば、単一反応ライン上の多
数の反応容器を複数の群に分割して管理容易にし、反応
ライン上に混在された異種分析項目のそれぞれに応じた
多様な反応処理を可能にする。
According to the present invention, a large number of reaction vessels on a single reaction line are divided into a plurality of groups to facilitate management, and various reaction vessels corresponding to each of different types of analysis items mixed on the reaction line. Enables reaction processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の基本的な動作を説明するため
の図である。
FIG. 1 is a diagram for explaining a basic operation of an embodiment of the present invention.

【図2】図1の動作結果例を示すタイムチャートであ
る。
FIG. 2 is a time chart illustrating an operation result example of FIG. 1;

【図3】一実施例としての自動分析装置の全体構成を示
す概略図である。
FIG. 3 is a schematic diagram showing the entire configuration of an automatic analyzer as one embodiment.

【符号の説明】[Explanation of symbols]

1…サンプルディスク、2…サンプリング機構、4…反
応ディスク、5…反応容器、6…試薬ピペッティング機
構、9…多波長光度計、30…マイクロコンピュータ。
DESCRIPTION OF SYMBOLS 1 ... sample disk, 2 ... sampling mechanism, 4 ... reaction disk, 5 ... reaction container, 6 ... reagent pipetting mechanism, 9 ... multi-wavelength photometer, 30 ... microcomputer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単一反応ラインに反応容器の列が形成され
た反応ディスクと、上記反応ライン上の反応容器に試料
を分注する試料分注装置と、上記反応ライン上の反応容
器に分析項目に応じた試薬を分注する試薬分注装置と、
試料と試薬の反応液を光学的に測定する光度計を備えた
自動分析装置において、上記反応ライン上の反応容器列
をそれぞれ複数の反応容器で構成した複数の群に分割し
て管理する制御部を備え、分割された群単位で上記反応
ライン上の試料受入領域に位置づけるように上記反応デ
ィスクを動作せしめると共に、特定の群が上記試料受入
領域に位置づけられたときに上記試料分注装置の1本の
ピペットノズルが上記特定の群内の反応容器の1つにだ
け試料を分注し該特定の群内の他の反応容器には上記ピ
ペットノズルによる試料の分注をさせず、次いで後続す
る群が上記試料受入領域に位置づけられたときに上記ピ
ペットノズルにより上記後続する群内の反応容器の1つ
にだけ試料を分注するように上記試料分注装置を動作せ
しめるように構成したことを特徴とする自動分析装置。
1. A reaction disk in which a row of reaction vessels is formed in a single reaction line, a sample dispensing apparatus for dispensing a sample into a reaction vessel on the reaction line, and an analysis on a reaction vessel on the reaction line. A reagent dispensing device for dispensing a reagent according to the item,
In an automatic analyzer provided with a photometer for optically measuring a reaction solution of a sample and a reagent, a control unit for dividing and managing a reaction vessel array on the reaction line into a plurality of groups each composed of a plurality of reaction vessels. The reaction disk is operated so as to be positioned in the sample receiving area on the reaction line in divided groups, and when a specific group is positioned in the sample receiving area, one of the sample dispensing apparatuses is operated. A pipette nozzle dispenses the sample to only one of the reaction vessels in the specific group, and does not dispens the sample to the other reaction vessels in the specific group by the pipette nozzle, and then follows Configured to cause the sample dispensing device to operate such that the pipette nozzle dispenses a sample to only one of the reaction vessels in the subsequent group when the group is positioned in the sample receiving area. Automatic analyzer, characterized in that the.
JP9086270A 1997-04-04 1997-04-04 Automatic analyzer Expired - Fee Related JP2798080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9086270A JP2798080B2 (en) 1997-04-04 1997-04-04 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9086270A JP2798080B2 (en) 1997-04-04 1997-04-04 Automatic analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62285396A Division JP2708437B2 (en) 1987-11-13 1987-11-13 Automatic analyzer

Publications (2)

Publication Number Publication Date
JPH1026626A true JPH1026626A (en) 1998-01-27
JP2798080B2 JP2798080B2 (en) 1998-09-17

Family

ID=13882138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9086270A Expired - Fee Related JP2798080B2 (en) 1997-04-04 1997-04-04 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP2798080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149885A (en) * 2010-01-25 2011-08-04 Hitachi High-Technologies Corp Automatic analyzer
JPWO2020044781A1 (en) * 2018-08-28 2021-08-26 株式会社日立ハイテク Automatic analyzer and its method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912992A (en) * 1982-07-14 1984-01-23 Hitachi Ltd Preparation of deashed coal slurry having high concentration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912992A (en) * 1982-07-14 1984-01-23 Hitachi Ltd Preparation of deashed coal slurry having high concentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149885A (en) * 2010-01-25 2011-08-04 Hitachi High-Technologies Corp Automatic analyzer
JPWO2020044781A1 (en) * 2018-08-28 2021-08-26 株式会社日立ハイテク Automatic analyzer and its method

Also Published As

Publication number Publication date
JP2798080B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
JP2708437B2 (en) Automatic analyzer
US5434083A (en) Method and apparatus for automatically analyzing a plurality of test items
JP2927082B2 (en) Analysis method and analyzer for liquid sample
JP3063584B2 (en) Automatic analyzer
JP3558898B2 (en) Automatic analyzer and automatic analysis method
JP3156550B2 (en) Reagent management method and apparatus
JP2834200B2 (en) Liquid sample analyzer and analysis method
JP4349893B2 (en) Automatic analyzer and analysis method of automatic analyzer
EP0445616A2 (en) Automatic analysis method and apparatus of the same
US20050112025A1 (en) Automatic analyzer
JP2970114B2 (en) Automatic analyzer
US20080206097A1 (en) Automatic analyzer
JP2798080B2 (en) Automatic analyzer
CN107636469A (en) Automatic analysing apparatus
JPH08313538A (en) Automatic analytical instrument
JPH09127123A (en) Clinical automatic analyzer
JP4408404B2 (en) Automatic analyzer
JPH0572212A (en) Automatic analytical apapratus
US20200278366A1 (en) Automatic Analysis Device
JPH0921813A (en) Automatic analyzing device
JPH06100608B2 (en) Automatic analyzer
JP2000227434A (en) Automatic analyzer
JPH05256854A (en) Reagent container for automatic analyzer
JP2892678B2 (en) Automatic analyzer
JPH0618532A (en) Automatic analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees