JPH10266065A - Measurement of weft count in fabric and device therefor - Google Patents

Measurement of weft count in fabric and device therefor

Info

Publication number
JPH10266065A
JPH10266065A JP8731297A JP8731297A JPH10266065A JP H10266065 A JPH10266065 A JP H10266065A JP 8731297 A JP8731297 A JP 8731297A JP 8731297 A JP8731297 A JP 8731297A JP H10266065 A JPH10266065 A JP H10266065A
Authority
JP
Japan
Prior art keywords
light
fabric
cloth
light receiving
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP8731297A
Other languages
Japanese (ja)
Inventor
Masahiro Ueda
上田正紘
Yoshikatsu Hifumi
一二三吉勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkei Kogyo KK
Original Assignee
Hokkei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkei Kogyo KK filed Critical Hokkei Kogyo KK
Priority to JP8731297A priority Critical patent/JPH10266065A/en
Publication of JPH10266065A publication Critical patent/JPH10266065A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Treatment Of Fiber Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of measuring weft count in a fabric quickly and accurately by use of laser beams and an optical sensor. SOLUTION: Laser beams emitted by the laser 6 of an emitter 1 are throttled so as to be smaller than the diameter of each of wefts woven in a fabric 4 as the target to be measured and irradiated on the fabric 4, and the transmitted light Lt is received by the optical sensor 10 of a light receiver 2, and based on the frequency of the light thus received, the objective weft count woven in the fabric 4 is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザービーム及
び光センサを用いて布地の緯糸数を計測する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the number of wefts in a cloth using a laser beam and an optical sensor.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】布地の
うち経糸と緯糸とを互いに直角をなすように織りあげる
もの、即ち一般的には織物は、長さを単位に売買される
ことが多い。ところがその長さは、測定時の工程状況
(織りあげた直後、染色の前あるいは後、出荷直前)に
よって、またテンションのかけ方等によって、常に、時
には大きく異なる。このため、規格通りに緯糸を織り込
んであっても、長さが足りないために不良品として扱わ
れてしまうことがあり得る。このような不良品の出現
は、これまでは避け得ないものとされていた。
2. Description of the Related Art Of the fabrics, the warp and the weft are woven so as to be at right angles to each other, that is, the fabric is generally sold in units of length. . However, the length always and sometimes greatly differs depending on the process conditions at the time of measurement (immediately after weaving, before or after dyeing, immediately before shipping), and depending on the method of applying tension. For this reason, even if the weft is woven according to the standard, it may be treated as a defective product because the length is insufficient. Until now, the appearance of such defective products has been considered inevitable.

【0003】しかしながらこの問題は、例えば織りあげ
時での単位長さ当たりの緯糸数、すなわちその密度(緯
糸数/インチ)を基準にすることによって解決できる。
換言すれば、緯糸数そのものを長さの測度とし、布地あ
るいは織物(以下特に断らなければ単に布地という)の
全長に含まれる緯糸数を設計時に規定されるインチ間当
たりの緯糸数で規定すれば、長さ測定時の状況に左右さ
れずに、検査対象となる布地の良否を判断できるからで
ある。特に、緯糸密度は、染色時の色斑や風合いに影響
し、これが設計あるいは規格通りでないと製品価値を下
げることになるので判断基準として最適である。
[0003] However, this problem can be solved, for example, by reference to the number of weft yarns per unit length during weaving, that is, the density (number of weft yarns / inch).
In other words, the number of wefts itself is taken as a measure of length, and the number of wefts contained in the entire length of a fabric or a woven fabric (hereinafter simply referred to as fabric unless otherwise specified) is defined by the number of wefts per inch specified at the time of design. This is because the quality of the fabric to be inspected can be determined without being influenced by the situation at the time of measuring the length. In particular, the density of the weft affects the color spots and the texture at the time of dyeing, and if the density is not in accordance with the design or the standard, the product value is reduced.

【0004】ところが、布地をなす緯糸数を製織中にカ
ウントする技術は知られているものの、織りあげた布地
の緯糸数をカウントすることは難しく、本願発明者等の
知るところでは、このような技術は存在していなかっ
た。そこで本発明は、高密度かつかなり高速で織りあげ
られた布地や織物であっても、その緯糸数を非常に小さ
い誤差範囲内で計測できる布地の緯糸数計測装置を提供
することを目的とする。
However, although a technique for counting the number of wefts constituting a fabric during weaving is known, it is difficult to count the number of wefts of a woven fabric. Technology did not exist. Therefore, an object of the present invention is to provide an apparatus for measuring the number of wefts of a cloth, which can measure the number of wefts within a very small error range even for a cloth or a woven cloth woven at a high density and at a considerably high speed. .

【0005】さらに本発明は、製織工程を終えた部分で
布地の緯糸密度をリアルタイムで測定し、その測定デー
タをフィードバックして製織中の部分の緯糸密度を常に
一定にすること供し得る布地の緯糸数計測装置を提供す
ることを目的とする。
[0005] Further, the present invention measures the real-time weft density of a fabric at a portion where the weaving process is completed, and feeds back the measured data so that the weft density of the portion during the weaving can be always kept constant. It is an object to provide a number measuring device.

【0006】[0006]

【課題を解決するための手段】本発明の布地の緯糸数計
測方法のうち請求項1に係るものは、上記目的を達成す
るために、レーザービームを測定対象の布地に織り込ま
れている緯糸の直径よりも小さく絞り込んで上記測定対
象の布地に照射し、その透過光または散乱光を受光し、
該受光した光の周波数から上記布地に織り込まれている
緯糸数を測定することを特徴とする。
According to a first aspect of the present invention, there is provided a method for measuring the number of wefts in a cloth, the method comprising the steps of: It is squeezed smaller than the diameter and irradiates the cloth to be measured, receives the transmitted light or scattered light,
The number of wefts woven into the fabric is measured from the frequency of the received light.

【0007】また本発明の布地の緯糸数計測方法のうち
請求項2に係るものは、上記目的を達成するために、レ
ーザービームを扇状のビームパターンとして上記測定対
象の布地に織り込まれている緯糸の折り込み方向に沿っ
て細い線状となるように照射し、その透過光または散乱
光のその反射光を受光し、該受光した光の強度信号を矩
形波に変換し、該矩形波から上記布地に織り込まれてい
る緯糸数を測定することを特徴とする。
According to a second aspect of the present invention, there is provided a method for measuring the number of wefts on a fabric, wherein the wefts are woven into the fabric to be measured by using a laser beam as a fan-shaped beam pattern. Irradiating in the form of a thin line along the folding direction, receiving the transmitted light or the reflected light of the scattered light, converting the intensity signal of the received light into a rectangular wave, and converting the rectangular wave into the fabric. It is characterized in that the number of wefts woven into the fabric is measured.

【0008】本発明の布地の緯糸数計測装置のうち請求
項3に係るものは、上記目的を達成するために、測定対
象の布地に織り込まれている緯糸の直径よりも小さく絞
り込んだレーザービームを照射する手段と、該照射レー
ザービームの透過光または散乱光を受光する手段と、該
受光した光の周波数から上記布地に織り込まれている緯
糸数を測定する手段とからなることを特徴とする。
In order to achieve the above object, the apparatus for measuring the number of wefts of a fabric according to the present invention is characterized in that a laser beam narrowed down to a diameter smaller than the diameter of the weft woven into the fabric to be measured is used. It is characterized by comprising a means for irradiating, a means for receiving transmitted light or scattered light of the irradiated laser beam, and a means for measuring the number of wefts woven into the cloth from the frequency of the received light.

【0009】また本発明の布地の緯糸数計測装置のうち
請求項4に係るものは、上記目的を達成するために、レ
ーザービームを扇状のビームパターンとして上記測定対
象の布地に織り込まれている緯糸の折り込み方向に沿っ
て細い線状となるように照射する手段と、該照射レーザ
ービームの透過光または散乱光を受光する手段と、該受
光した光の強度信号を矩形波に変換する手段と、該矩形
波から上記布地に織り込まれている緯糸数を測定する手
段とからなることを特徴とする。
According to a fourth aspect of the present invention, there is provided an apparatus for measuring the number of wefts on a fabric, wherein a laser beam is woven into the fabric to be measured as a fan-shaped beam pattern in order to achieve the above object. Means for irradiating so as to form a thin line along the folding direction, means for receiving transmitted light or scattered light of the irradiation laser beam, and means for converting an intensity signal of the received light into a rectangular wave, Means for measuring the number of wefts woven into the fabric from the rectangular wave.

【0010】同請求項5に係る装置は、上記照射手段と
上記受光手段を所定間隔だけ離して少なくとも2個配し
てなることを特徴とする。
According to a fifth aspect of the present invention, at least two of the irradiating means and the light receiving means are arranged at predetermined intervals.

【0011】同請求項6に係る装置は、上記受光手段
が、近接させて配置した一対の受光素子を備え、一方の
受光素子のみに対して上記照射手段から上記レーザビー
ムを照射可能に配し、他方の受光素子で周囲環境からの
雑光を受光可能に配し、上記測定手段が、上記一対の受
光素子の受光信号の差信号により上記雑光の影響を除去
する手段を有することを特徴とする。
According to a sixth aspect of the present invention, the light receiving means includes a pair of light receiving elements disposed close to each other, and the laser beam is radiated from the irradiating means to only one of the light receiving elements. The other light receiving element is arranged so as to be able to receive light from the surrounding environment, and the measuring means has means for removing the influence of the light by the difference signal between the light receiving signals of the pair of light receiving elements. And

【0012】同請求項7に係る装置は、上記雑光の影響
を除去する手段が、上記一対の受光素子の受光信号の強
度差をとって出力する差動回路であることを特徴とす
る。
The device according to claim 7 is characterized in that the means for removing the influence of the miscellaneous light is a differential circuit for taking the difference between the intensity of the light receiving signals of the pair of light receiving elements and outputting the difference.

【0013】[0013]

【発明の実施の形態及び実施例】以下本発明の実施の形
態及び実施例を図面を参照して説明する。図1は本発明
に係る布地の緯糸数計測方法を実施するための布地の緯
糸数計測装置の一実施形態を示す斜視図である。本実施
形態の方法、装置は、レーザービームを測定対象となる
布地の緯糸の糸直径(最大密度10本/mmとすれば1
00μm程度)より小さく絞り込み、これを薄い布地に
照射し、その透過光の周期、即ち周波数から緯糸の本数
を測定しようとするものである。
Embodiments and examples of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of an apparatus for measuring the number of wefts on a fabric for implementing the method for measuring the number of wefts on a fabric according to the present invention. The method and apparatus according to the present embodiment are arranged so that the laser beam is used to measure the diameter of the weft of the cloth to be measured (if the maximum density is 10 yarns / mm, 1
(About 00 μm), and irradiate the thin cloth with a thin cloth, and measure the number of wefts from the period of the transmitted light, that is, the frequency.

【0014】図中1は発光部、2は受光部、3はデータ
処理部、4は測定対象の布地である。発光部1は、遮光
用のシリンダー5中にレーザー6と集束レンズ7を収納
して構成してある。また受光部2は、遮光用のシリンダ
ー8中に集光レンズ9と光センサー10を収納して構成
してある。さらにデータ処理部3は、増幅器11、△V
検出器12、カウンター13、比較器14、布地へのマ
ーカー記入装置15及び緯糸の所定本数を予めセットし
ておくためのプリセット回路16から構成してあり、カ
ウンター13のカウント値がプリセット回路16に予め
セットした値になるとマーカー記入装置15により布地
4に所定のマーカーをインク等で記入するようになって
いる。
In FIG. 1, reference numeral 1 denotes a light emitting unit, 2 denotes a light receiving unit, 3 denotes a data processing unit, and 4 denotes a cloth to be measured. The light emitting section 1 is configured by housing a laser 6 and a focusing lens 7 in a light shielding cylinder 5. The light receiving section 2 is configured by housing a condenser lens 9 and an optical sensor 10 in a light shielding cylinder 8. Further, the data processing unit 3 includes an amplifier 11, ΔV
The apparatus comprises a detector 12, a counter 13, a comparator 14, a marker writing device 15 for fabric, and a preset circuit 16 for presetting a predetermined number of wefts. When the value reaches a preset value, a predetermined marker is written on the cloth 4 by the marker writing device 15 using ink or the like.

【0015】布地4の緯糸間の間隔は糸直径dとほぼ同
程度と考えられ、透過光Ltの減衰を明確に判定するた
めには、布地4の照射面上でのレーザービームLを少な
くとも糸直径dよりも十分小さく絞り込むことが望まし
い。従ってレーザー6には、安価な半導体レーザーより
も、より性質の良いHeーNeレーザー(波長λ=63
2.8nm)や、布地4の色によってはより減衰や散乱
の大きい、即ちより感度のよいArイオンレーザー(波
長λ=547nm)を利用することが好ましい。レーザ
ービームLの集束レンズ7による絞り込み径aは、集束
レンズ7の焦点距離fと波長λとの積に比例するので、
できるだけ焦点距離fの小さいレンズが好ましい。ただ
し、布地4の表面との距離が小さくなりすぎて実用に不
適となることや、焦点位置のズレによるピンポケ状態と
発生で絞り込み径aが大きくなってしまうこと等も考慮
して選定すればよい。例えば、He−Neレーザ光(波
長入=633nm)に対して、焦点距離f=15mm、
動作距離l=6mm、倍率10倍の集束レンズを用いる
と、絞り込み径aは25μm程度となる。
The spacing between the wefts of the fabric 4 is considered to be substantially the same as the yarn diameter d. In order to clearly determine the attenuation of the transmitted light Lt, the laser beam L on the irradiation surface of the fabric 4 must be at least separated by the yarn. It is desirable to narrow down sufficiently smaller than the diameter d. Therefore, the laser 6 has a He—Ne laser (wavelength λ = 63) having better properties than an inexpensive semiconductor laser.
It is preferable to use an Ar ion laser (wavelength λ = 547 nm) which has higher attenuation or scattering depending on the color of the cloth 4, that is, has higher sensitivity. The aperture diameter a of the laser beam L by the focusing lens 7 is proportional to the product of the focal length f of the focusing lens 7 and the wavelength λ.
A lens having the smallest possible focal length f is preferable. However, the selection may be made in consideration of the fact that the distance from the surface of the cloth 4 becomes too small to be unsuitable for practical use, and that the narrowing diameter a becomes large due to the occurrence of a pin-poke state due to the shift of the focal position. . For example, for a He-Ne laser beam (wavelength input = 633 nm), the focal length f = 15 mm,
When a focusing lens having a working distance 1 = 6 mm and a magnification of 10 is used, the aperture diameter a is about 25 μm.

【0016】受光部2は、集光レンズ9によって透過光
Ltだけでなく回折や散乱光をも光センサー10の受光
素子上に集光して精度を上げている。ただし、高密度
(例えば最大10本/mm)かつ高速織りあげ(例えば
最大1m/s)に対応した光強度変化周期(例えば周期
T=0.1ms、即ち周波数は10kH z)を検出し得
るように、光センサー10の受光素子としては、より高
速用のPINフォトダイオードが最も好ましい。なおこ
のような受光部2の構成とすると、布地4が白色の場合
は赤色のHeーNeレーザービームによってこの強度変
化を感度良く、正確に検出できるが、布地4の種類や特
に色によってはArイオンレーザーの方が感度良く検出
できることもある。
The light receiving section 2 focuses not only the transmitted light Lt but also the diffracted light and the scattered light on the light receiving element of the optical sensor 10 by the condenser lens 9 to improve the accuracy. However, it is possible to detect a light intensity change period (for example, a period T = 0.1 ms, that is, a frequency of 10 kHz) corresponding to a high density (for example, a maximum of 10 lines / mm) and a high-speed weave (for example, a maximum of 1 m / s). In addition, as a light receiving element of the optical sensor 10, a PIN photodiode for higher speed is most preferable. With such a configuration of the light receiving unit 2, when the cloth 4 is white, the intensity change can be detected accurately and accurately by a red He-Ne laser beam. In some cases, an ion laser can be detected with higher sensitivity.

【0017】次に布地4が薄い場合の測定とその結果を
説明する。図2は、上述のように径を絞ったレーザービ
ームLで布地4を一定速度v(m/s)で走査したとき
の透過光Ltのスペクトルを示し、図3は試料とした布
地4の顕微鏡写真示す。図2は、試料布地を約15cm
/sの速さで移動させ、透過光強度変化をディジタルサ
ンプリングオシロスコープに記憶した信号波形で、
(A)は増幅器11からの出力信号を、(B)は△V検
出器12からの出力信号を示す。なお(A)で信号上部
が切れているのは、チョッパーで信号をカットしたため
であり、また所々出力が小さくなっているのは走査に用
いたレーザービームLが緯糸のみならず緯糸と経糸の両
方を透過したためである。このような信号が△V検出器
12を通ると、(B)のようになる。カウンター13で
は、このような信号波形から布地4を構成する緯糸の本
数を正確に計測できる。
Next, the measurement when the cloth 4 is thin and the result will be described. FIG. 2 shows a spectrum of transmitted light Lt when the cloth 4 is scanned at a constant speed v (m / s) with the laser beam L whose diameter is reduced as described above, and FIG. 3 is a microscope of the cloth 4 as a sample. Shown in the picture. FIG. 2 shows that the sample cloth is about 15 cm.
/ S, and the change in transmitted light intensity is a signal waveform stored in a digital sampling oscilloscope.
(A) shows an output signal from the amplifier 11 and (B) shows an output signal from the ΔV detector 12. Note that the upper portion of the signal is cut off in (A) because the signal was cut by the chopper, and the output was reduced in some places because the laser beam L used for scanning was not only the weft but also both the weft and the warp. Is transmitted. When such a signal passes through the ΔV detector 12, the signal becomes as shown in FIG. The counter 13 can accurately measure the number of wefts constituting the fabric 4 from such a signal waveform.

【0018】このときの周波数スペクトルは図4(A)
のように約130Hzただ1ケ所のみに鋭いピークがあ
り、半値幅は約3Hzである。この周波数スペクトル
は、布地4の織り方の大体の特徴を把握するのに必要
で、これが1ケ所のみに鋭いピークがあるということは
はその透過光Ltの強度が単純な正弦波状となっている
ことに対応する。測定の精度をさらに上げるためには、
同じ測定を同時に布地4の2ケ所以上の場所で行い、計
測ミスを極度に抑えるようにするとよい。なお図4
(B)は受光部2で受光した透過光Ltの光強度変化
で、これにより図4(A)の周波数スペクトルを得てい
る。
The frequency spectrum at this time is shown in FIG.
As shown in the figure, there is a sharp peak at only about 130 Hz, and the half width is about 3 Hz. This frequency spectrum is necessary for grasping the general characteristics of the weaving method of the cloth 4, and the fact that there is a sharp peak only at one place means that the intensity of the transmitted light Lt is a simple sine wave. Corresponding to To further improve the accuracy of the measurement,
It is preferable to perform the same measurement at two or more places on the cloth 4 at the same time so as to minimize measurement errors. FIG. 4
FIG. 4B shows a change in the light intensity of the transmitted light Lt received by the light receiving unit 2, and the frequency spectrum shown in FIG.

【0019】ところで上述のような測定に要求される精
度(正確さ)は99.9%以上である。単純な構造の布
地の場合には容易に実現可能であるが、種々の複雑な編
み方の布地に対してこれを実現するには、同じ測定装置
を同時に2個用いてどちらか正しい方の計数結果を用い
ることが考えられる。例えば3%の計数誤差の装置を2
個用いた場合、両方の機器が全く同じタイミングでミス
を犯す確率は0.09%(=0.03x0.03)<
0.1%であるから、容易に99.9%以上の精度の計
数が可能となる。もちろん、1個の装置でその精度が得
られればより実用的である。これを実現するには、例え
ば、透過光Ltまたは散乱光Lsの強度変化が突然乱れ
て計数不可能になったとき、その前後から判断してソフ
トウェアにより計測ミスを自動的に補正する方法(いわ
ゆる補間法)が考えられる。
Incidentally, the accuracy (accuracy) required for the above-described measurement is 99.9% or more. This can be easily achieved for simple structured fabrics, but to achieve this for a variety of complex knitted fabrics, the same counting device can be used at the same time to determine which one is the correct. It is conceivable to use the results. For example, a device with a 3% counting error
When using two devices, the probability that both devices make a mistake at exactly the same timing is 0.09% (= 0.03 × 0.03) <
Since it is 0.1%, counting with an accuracy of 99.9% or more can be easily performed. Of course, it is more practical if the accuracy can be obtained with one device. In order to realize this, for example, when the intensity change of the transmitted light Lt or the scattered light Ls is suddenly disturbed and counting becomes impossible, judgment is made from before and after that, and a measurement error is automatically corrected by software (a so-called method). Interpolation method) can be considered.

【0020】なお上述の実施形態の実機化に際しては、
レーザービームLの焦点位置を測定対象の布地4上に正
確に合わせ得る発光部1の構造を採用しなければならな
いが、これは集束レンズ7の先に半球形ガラスを組み込
み、確実に布地に接触する構造とすればよい。また周囲
からの雑光が無視できないので、発光部1を含む投光系
と、受光部2を含む受光系をそれぞれ写真機のフードの
ようなものの中に一体化すればよい。
In realizing the above-described embodiment,
It is necessary to adopt a structure of the light emitting section 1 which can accurately focus the focal position of the laser beam L on the cloth 4 to be measured. However, this incorporates a hemispherical glass at the tip of the focusing lens 7 and ensures the contact with the cloth. What is necessary is just to have the structure which does. In addition, since light from the surroundings cannot be ignored, the light projecting system including the light emitting unit 1 and the light receiving system including the light receiving unit 2 may be integrated into a hood like a camera.

【0021】図5は本発明に係る布地の緯糸数計測方法
を実施するための布地の緯糸数計測装置の第2の実施形
態を示す斜視図である。本実施形態の方法、装置は、高
級な布地の大半を占める厚手の布地であって、ミクロに
みれば編み方が複雑であるが、少しマクロにみれば(例
えば肉眼観察では)明らかに周期性がある布地を測定対
象とするもので、レーザービームを扇状に照射し、照射
面上での断面形状を線状(例えば1mm×0.1mm程
度)にしてその散乱光の強度変化を計数しようとするも
のである。即ち、遮光カーテン布地や表・裏の斜状紋が
異なっている布地、例えば図6(A)、(B)に示すよ
うな布地を測定対象とするものである。図6(A)が布
地の表、図6(B)が裏である。
FIG. 5 is a perspective view showing a second embodiment of a cloth weft number measuring apparatus for carrying out the cloth weft number measuring method according to the present invention. The method and apparatus according to the present embodiment are thick cloths that occupy most of high-grade cloths, and the knitting method is complicated when viewed from a microscopic scale, but is clearly periodic when viewed from a macroscopic level (for example, by visual observation). A certain cloth is to be measured, and a laser beam is radiated in a fan shape, and the cross-sectional shape on the irradiation surface is made linear (for example, about 1 mm × 0.1 mm), and the intensity change of the scattered light is counted. Is what you do. That is, a light-shielding curtain cloth or a cloth having different oblique patterns on the front and back sides, for example, the cloths shown in FIGS. 6A and 6B are measured. FIG. 6A shows the front side of the fabric, and FIG. 6B shows the back side.

【0022】即ち、厚い布地の場合はレーザービームL
の透過が期待できず、信号のS/N比も小さくなるの
で、布地4の表面での散乱光の強度変化から緯糸本数を
計測する。この場合の布地4は肉眼観察からも非常に複
雑な形状のものがあり、予め周波数スペクトルによる解
析が重要である。このため、本実施形態の装置は、発光
部1と受光部2を布地4に対して同一側に配置し、デー
タ処理部3にはさらにFFT17とコンピュータ18か
らなるスペクトルアナライザー19を付加している。
That is, in the case of a thick cloth, the laser beam L
Is not expected, and the S / N ratio of the signal becomes small. Therefore, the number of weft yarns is measured from the intensity change of the scattered light on the surface of the cloth 4. The cloth 4 in this case has a very complicated shape even from the naked eye observation, and it is important to analyze in advance the frequency spectrum. For this reason, in the apparatus of the present embodiment, the light emitting unit 1 and the light receiving unit 2 are arranged on the same side with respect to the cloth 4, and the data processing unit 3 is further provided with a spectrum analyzer 19 including an FFT 17 and a computer 18. .

【0022】本実施形態の方法、装置は、レーザービー
ムL’の布地4の表面での散乱光Lsを受光部2で受光
し、その周波数成分を解析して布地4の編み方の特徴を
つかみ、そのときの布地4の送り速度vとの関係から緯
糸の本数を計測するものである。発光部1と受光部2
は、線状のレーザービームL’が測定対象となる布地4
の編み目に沿うように配置する。例えば布地4の表面に
現れる編み目が図7に示すような斜状紋の場合、斜状紋
に対して平行に線状のレーザービームL’を照射できる
ように箱21とその中に収納した発光部1、受光部2を
配置する。レーザービームL’の幅wは斜状紋の間隔d
の半分程度、長さlは3〜5倍程度とするが、散乱光L
sの周波数スペクトルは、布地4の送り速度vや布地4
の照射面上でのレーザービームL’の断面形状によって
も変わるので、スペクトルアナライザー19によりまず
各種布地に適したレーザービームL’の断面形状をスペ
クトル解析から予測して、その形状のレーザービーム照
射によって計測するのが最適である。なお受光部2で受
光する散乱光Lsにはもちろん反射光も含まれる。
The method and apparatus according to the present embodiment receive the scattered light Ls of the laser beam L 'on the surface of the cloth 4 by the light receiving unit 2 and analyze the frequency component thereof to grasp the characteristics of the method of knitting the cloth 4. The number of weft yarns is measured from the relationship with the feed speed v of the cloth 4 at that time. Light emitting unit 1 and light receiving unit 2
Is a cloth 4 whose linear laser beam L 'is to be measured.
And place it along the stitches. For example, when the stitches appearing on the surface of the cloth 4 are oblique patterns as shown in FIG. 7, the box 21 and the light emission housed therein are arranged so that a linear laser beam L 'can be irradiated in parallel to the oblique patterns. The unit 1 and the light receiving unit 2 are arranged. The width w of the laser beam L 'is equal to the interval d of the oblique pattern.
And the length l is about 3 to 5 times, but the scattered light L
The frequency spectrum of s is determined by the feed speed v of the cloth 4 and the cloth 4
The cross-sectional shape of the laser beam L 'on the irradiation surface varies depending on the cross-sectional shape of the laser beam. It is best to measure. The scattered light Ls received by the light receiving section 2 includes reflected light as well.

【0023】上述のように構成して、発光部1から線状
のレーザービームL’を布地4の表面に照射し、その散
乱光Ls’を受光部2で受光すると、斜状紋の凹凸によ
って受光強度信号はほぼ正弦波状となる。この受光信号
を増幅器11で増幅した後、ΔV検出器12で矩形波に
変換し、それをカウンター13で計数する。
With the structure described above, a linear laser beam L ′ is emitted from the light emitting section 1 to the surface of the cloth 4 and the scattered light Ls ′ is received by the light receiving section 2. The received light intensity signal is substantially sinusoidal. After this light receiving signal is amplified by the amplifier 11, it is converted into a rectangular wave by the ΔV detector 12, and the converted wave is counted by the counter 13.

【0024】なお、本実施形態の装置を、図8に示すよ
うに下方を開口した箱21内に収納して周囲からの雑光
を遮断し、箱21の上部を駆動装置22に取り付け、布
地4の長手方向に移動させ得るようにしてもよいし、先
の実施形態と同様に測定装置を固定し、布地4を移動さ
せるようにしてもよい。
As shown in FIG. 8, the apparatus of the present embodiment is housed in a box 21 having an opening at the lower side to block light from the surroundings, and the upper part of the box 21 is attached to a drive unit 22 so that the cloth 4 may be moved in the longitudinal direction, or the measuring device may be fixed and the fabric 4 may be moved as in the previous embodiment.

【0025】この装置での測定結果を図9〜図11に示
す。いずれも上段が受光部2からの出力強度そのもの
を、下段がΔV検出器12の出力を示す。図9は線状の
レーザービームL’が布地4の斜状紋に平行な理想的な
場合のもの、図10は僅かにずれた場合のもの、図11
は斜状紋と交差した場合のものである。図10の出力
は、図9の出力に比較すると出力強度そのものの振幅が
小さくなるだけでなく、波形そのものが正弦波状から歪
んでいる。しかしながら、ΔV検出器12の閾値を適当
に選択すれば、この程度のズレでは計数ミスは生じな
い。図11では計数ミスが生じ得る。これら図9〜図1
1に対応した線状のレーザービームL’と斜状紋との関
係を図7の符号S9、S10、S11として示す。
FIGS. 9 to 11 show the measurement results obtained with this apparatus. In each case, the upper part shows the output intensity itself from the light receiving unit 2, and the lower part shows the output of the ΔV detector 12. 9 shows an ideal case where the linear laser beam L ′ is parallel to the oblique pattern of the cloth 4, FIG. 10 shows a case where the laser beam L ′ is slightly displaced, and FIG.
Indicates the case where the pattern crosses the oblique pattern. The output of FIG. 10 not only has a smaller amplitude of the output intensity itself than the output of FIG. 9, but the waveform itself is distorted from a sinusoidal shape. However, if the threshold value of the ΔV detector 12 is appropriately selected, a counting error does not occur with such a deviation. In FIG. 11, counting errors may occur. These FIGS. 9 to 1
The relationship between the linear laser beam L ′ corresponding to 1 and the oblique pattern is shown as S9, S10, and S11 in FIG.

【0026】即ち、線状のレーザービームL’はできる
だけ布地4の斜状紋に平行にしたほうがよいが、必ずし
もこのように配置し得るとは限らない。そこで、要求さ
れる精度、例えば99・9%以上を実現するには、平行
からずれると受光素子の出力信号の振幅が小さくなるこ
とを利用し、そのような信号を受信したらレーザービー
ムL’の方向を回転させればよいが、lm/s以上の速
さで移動する布地4の緯糸計数時に方向調整が速度的に
追従できないこともあり得るので、先にも述べたよう
に、同一の装置を異なった位置に2台設置して、どちら
か正しく計数している信号で計数するか、一時的に計数
ミスを生じるときにはその前後の正しい計数で、ミス区
間を補正する、いわゆる補間法を利用する方法が採用で
きる。2台の装置での計測は、装置を布地4の幅(約1
〜2m)方向にできるだけ離して設置すれば、これも上
述のように、同時に計数ミスを生じる可能性はほとんど
なくなる。
That is, it is preferable that the linear laser beam L 'be parallel to the oblique pattern of the cloth 4 as much as possible, but it is not always possible to arrange it in this way. Therefore, in order to achieve the required accuracy, for example, 99.9% or more, the fact that the amplitude of the output signal of the light receiving element becomes small when it deviates from the parallel state is utilized. The direction may be rotated, but the direction adjustment may not be able to follow the speed at the time of counting the weft of the fabric 4 moving at a speed of 1 m / s or more. Are installed at different positions and either one of them is counted by the signal that is correctly counted, or if a temporary counting error occurs, the correct counting before and after that is used to correct the error section, so-called interpolation method is used Can be adopted. For measurement with two devices, the width of the fabric 4 (approximately 1
.About.2 m), there is almost no possibility that a counting error will occur at the same time, as described above.

【0027】本実施形態装置による何種類かの布地に対
する測定結果例を図12に示す。測定精度は99%以上
であったが、測定対象とした布地は斜状紋のもののみで
あるので、実際の緯糸数は織り方によって何倍かの係数
を掛ける必要がある。
FIG. 12 shows an example of measurement results for several types of fabrics by the apparatus of this embodiment. Although the measurement accuracy was 99% or more, since the cloth to be measured was only the oblique pattern, the actual number of wefts had to be multiplied by a factor of several depending on the weaving method.

【0028】ところで上述のような布地の測定を行う場
所は、検反場と称して人間が布地の傷や色斑を検出する
場所で、通常の部屋よりも数倍明るい。即ち、室内の明
るさが雑光となり、受光部2での受光信号が雑光中に埋
もれてしまうことがあり得る。発光部1に大出力(約2
0mW)の半導体レーザーを用い、さらに受光部2を大
きな箱で遮光して用いればこの点を解決できるが、実際
の測定場所では必ずしもそれが可能ではない。そこで本
発明の実施において採用し得る雑光除去方法を以下に説
明する。
By the way, the place where the cloth is measured as described above is called a detection field, where a person detects a scratch or a color spot on the cloth, and is several times brighter than a normal room. That is, the brightness in the room becomes miscellaneous light, and the light reception signal in the light receiving section 2 may be buried in the miscellaneous light. High output (about 2
This point can be solved by using a semiconductor laser of 0 mW) and the light receiving unit 2 is shielded from light by a large box, but this is not always possible in an actual measurement place. Therefore, a method for removing noise that can be employed in the embodiment of the present invention will be described below.

【0029】この除去方法は、積極的に明るい場所でも
雑光の影響を除去し得る、いわゆるアクティブ(能動
的)雑光除去法で、図13に示すように、同一構成の受
光部2a、2bを近接させて2個配し、その一方の受光
部2aのみに信号としてのレーザービームLを照射し、
両受光部2a、2bの出力の差を取り出すものである。
なお図中30は蛍光灯等の雑光源、31は受光部2bの
受光面の前面に配した遮光板である。
This removing method is a so-called active (active) light removing method capable of positively removing the influence of the light even in a bright place. As shown in FIG. 13, the light receiving sections 2a and 2b having the same structure are used. Are arranged close to each other, and only one of the light receiving portions 2a is irradiated with the laser beam L as a signal,
The difference between the outputs of the two light receiving units 2a and 2b is extracted.
In the drawing, reference numeral 30 denotes a rough light source such as a fluorescent lamp, and reference numeral 31 denotes a light shielding plate disposed on the front surface of the light receiving surface of the light receiving unit 2b.

【0030】図14は両受光部2a、2bの出力の差を
取り出すための差動回路40を示す回路図である。受光
素子2a、2bに入射する雑光NLの強度をそれぞれN
1、N2、受光素子2aのみに入射するレーザービーム
Lの強度をL1とすると、受光素子2aに生じる電流I
1は、
FIG. 14 is a circuit diagram showing a differential circuit 40 for extracting the difference between the outputs of the light receiving sections 2a and 2b. The intensity of the miscellaneous light NL incident on the light receiving elements 2a and 2b is N
1, N2 and the intensity of the laser beam L incident only on the light receiving element 2a is L1, and the current I
1 is

【数1】I1=kl(L1+N1) また受光素子2bに生じる電流I2は、I1 = k1 (L1 + N1) The current I2 generated in the light receiving element 2b is

【数2】I2=k2・N2 となる。ここで、k1、k2は両受光素子2a、2bの
総合的な受光感度を表す係数であり、kl=k2とする
のが理想的である。また両受光素子2a、2bを近接配
置すれば、ほぼ受光素子2a、2bに入射する雑光NL
の強度NI、N2はほぼ等しくなると考えられる。
## EQU2 ## I2 = k2 · N2. Here, k1 and k2 are coefficients representing the overall light receiving sensitivity of both light receiving elements 2a and 2b, and ideally k1 = k2. If the light receiving elements 2a and 2b are arranged close to each other, the miscellaneous light NL substantially incident on the light receiving elements 2a and 2b
Are considered to be almost equal.

【0031】差動回路40は一対の増幅器41a、41
b、及び差動増幅器42からなり、増幅器41aは受光
素2aに接続し、増幅器41bは受光素子2bに接続
し、差動増幅器42に両増幅器41a、41bの出力を
入力して差動増幅するようになっている。周知のよう
に、両増幅器41a、41bの出力をEa、Ebとすれ
ば、差動増幅器42の電圧利得E0は、
The differential circuit 40 includes a pair of amplifiers 41a, 41
b, and a differential amplifier 42, the amplifier 41a is connected to the light receiving element 2a, the amplifier 41b is connected to the light receiving element 2b, and the differential amplifier 42 inputs the outputs of both amplifiers 41a and 41b to perform differential amplification. It has become. As is well known, if the outputs of both amplifiers 41a and 41b are Ea and Eb, the voltage gain E0 of the differential amplifier 42 is

【数3】E0=[E1・{R4(R1+R2)}/{R
1(R3+R4)}]−{E2・(R2/R1)} であり、(R2/R1)=(R3/R4)であれば、
E0 = [E10 {R4 (R1 + R2)} / {R
1 (R3 + R4)}]-{E2 / (R2 / R1)}, and if (R2 / R1) = (R3 / R4),

【数4】E0=(E1−E2)・(R2/R1) となる。これによって雑光NLによる出力がキャンセル
され、雑光の影響の無いレーザービームLによる出力信
号のみとすることができる。
## EQU4 ## E0 = (E1-E2). (R2 / R1) As a result, the output due to the light NL is canceled, and only the output signal from the laser beam L free from the influence of the light can be obtained.

【0032】もちろん、なんらかの環境下で雑光NLに
よる出力N1、N2が無視できない程度に異なっている
場合には、受光素子2a、2bの取り付け状態を工夫す
るか、増幅器41a、41bどららかの増幅度を調整し
て近似的に雑光による出力N1、N2がほぼ等しくなる
ようにすればよい。なお、両受光素子2a、2bが受け
る振動等の環境的外因によっても出力が可変する可能性
があるので、受光素子2a、2bを同じ支持系に取り付
ければ、両者が受ける振動等の外因が全く同じになり、
外因による誤差も除去し得る。
Of course, when the outputs N1 and N2 due to the miscellaneous light NL are different from each other to such an extent that they cannot be ignored under some circumstances, the mounting state of the light receiving elements 2a and 2b may be devised, or one of the amplifiers 41a and 41b may be used. The amplification degree may be adjusted so that the outputs N1 and N2 due to the miscellaneous light are approximately equal. Note that the output may vary depending on environmental factors such as vibrations received by the light receiving elements 2a and 2b. Therefore, if the light receiving elements 2a and 2b are mounted on the same support system, the external factors such as the vibrations received by the two light receiving elements 2a and 2b are completely reduced. Become the same,
External errors can also be removed.

【0033】本実施形態による方法、装置による測定結
果例を図15〜図18に示す。図15は、受光素子2
a、2bの一方のみで受光したときの雑光(蛍光灯)出
力、図16はレーザービームLによる出力、図17は両
者の出力の和を示す。また図18は遮光板31を取り除
いて、雑光源30のみでの出力を差動増幅した結果を示
す。このように差動増幅することによって2.92Vの
雑光電圧が18.85mVに、すなわちほとんど0にな
った。
FIGS. 15 to 18 show examples of measurement results obtained by the method and the apparatus according to the present embodiment. FIG. 15 shows the light receiving element 2
a, b output when only one of the light is received, FIG. 16 shows the output by the laser beam L, and FIG. 17 shows the sum of both outputs. FIG. 18 shows the result of differentially amplifying the output of only the light source 30 with the light shielding plate 31 removed. As a result of the differential amplification, the light voltage of 2.92 V becomes 18.85 mV, that is, almost zero.

【0034】即ち、上記2実施形態のいずれでも、タオ
ル地のような肉眼で規則性が全く見いだせないもの(周
波数スペクトルも複雑であるもの)を除き、規則性が見
いだせるもの、換言すれば散乱光の光強度変化の周波数
スペクトルが1ケ所にピークを有するものは正確に緯糸
本数を計測できる。
That is, in any of the above-described two embodiments, except for the one such as toweling, in which no regularity can be found with the naked eye (the one having a complicated frequency spectrum), the one in which regularity can be found, in other words, the scattering light When the frequency spectrum of the light intensity change has a peak at one place, the number of wefts can be accurately measured.

【0035】[0035]

【発明の効果】本発明に係る布地の緯糸数計測方法及び
同装置は、以上説明してきたようなものなので、薄い布
地、厚い布地さらには各種織り方の布地の緯糸数の計測
を安価かつ実用的に、しかも高速、高精度で正確に行え
るようになるという効果がある。また本発明の方法及び
装置は、高速での計測が可能であるので、布地を織成中
にリアルタイムで緯糸本数、密度を測定でき、測定結果
をフィードバックして製織中の部分の緯糸本数、密度を
一定化させ得るという効果もある。
The method and apparatus for measuring the number of wefts of a fabric according to the present invention are as described above. Therefore, the method for measuring the number of wefts of a thin fabric, a thick fabric and fabrics of various weaves is inexpensive and practical. In addition, there is an effect that it is possible to perform accurately and accurately at high speed and high accuracy. Further, the method and apparatus of the present invention can measure at high speed, so that the number of wefts and density can be measured in real time while weaving the fabric, and the measurement results can be fed back to the number of wefts and the density of the portion during weaving. There is also an effect that can be made constant.

【0036】また本発明の装置のうち請求項6、7に係
るものは、上記共通の効果に加え、周囲光の影響を受け
ないようになり、明るくて雑光の多い環境においても積
極的に雑光の影響を除去して、精度の良い検出を行うこ
とができるようになるという効果がある。
The apparatus according to the sixth and seventh aspects of the present invention, in addition to the above-mentioned common effects, is not affected by ambient light, and can be actively used even in a bright and noisy environment. There is an effect that accurate detection can be performed by removing the influence of noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る布地の緯糸数計測方法を実施する
ための布地の緯糸数計測装置の一実施形態を示す斜視図
である。
FIG. 1 is a perspective view showing an embodiment of an apparatus for measuring the number of wefts of a fabric for implementing a method of measuring the number of wefts of a fabric according to the present invention.

【図2】図1の装置により布地を測定したときの透過光
のスペクトルを示す図である。
FIG. 2 is a diagram showing a spectrum of transmitted light when a cloth is measured by the apparatus of FIG. 1;

【図3】図2の装置で測定対象とした布地の顕微鏡写真
を示す図である。
FIG. 3 is a diagram showing a micrograph of a cloth to be measured by the apparatus of FIG. 2;

【図4】図2の透過光の周波数スペクトルを示す図
(A)と透過光の光強度変化を示す図(B)である。
4A is a diagram illustrating a frequency spectrum of the transmitted light in FIG. 2 and FIG. 4B is a diagram illustrating a change in light intensity of the transmitted light.

【図5】本発明に係る布地の緯糸数計測方法を実施する
ための布地の緯糸数計測装置の第2の実施形態を示す斜
視図である。
FIG. 5 is a perspective view showing a second embodiment of a cloth weft number measuring device for carrying out the cloth weft number measuring method according to the present invention.

【図6】図5の装置で測定対象とした布地の顕微鏡写真
を示す図である。
FIG. 6 is a view showing a micrograph of a cloth to be measured by the apparatus of FIG. 5;

【図7】図11の装置で測定対象とした布地の編み目
(斜状紋)の拡大図である。
FIG. 7 is an enlarged view of a stitch (slanted pattern) of a cloth to be measured by the apparatus of FIG. 11;

【図8】図5の装置の使用形態を示す斜視図である。8 is a perspective view showing a use form of the device of FIG.

【図9】図5の装置での測定結果を示す図で、線状のレ
ーザービームが布地の斜状紋に平行な理想的な場合を示
す図である。
9 is a diagram showing a measurement result of the apparatus of FIG. 5, and is a diagram showing an ideal case where a linear laser beam is parallel to a slant pattern on a cloth.

【図10】図5の装置での測定結果を示す図で、線状の
レーザービームが布地の斜状紋に僅かにずれた場合を示
す図である。
FIG. 10 is a view showing a measurement result obtained by the apparatus shown in FIG. 5, and is a view showing a case where a linear laser beam slightly shifts to a slant pattern on a cloth.

【図11】図5の装置での測定結果を示す図で、線状の
レーザービームが布地の斜状紋からずれて計数ミスが生
じる場合を示す図である。
11 is a diagram showing measurement results obtained by the apparatus shown in FIG. 5, and is a diagram showing a case where a linear laser beam deviates from a slant pattern on a cloth and a counting error occurs.

【図12】図5の装置での何種類かの布地に対する測定
結果例を示す図である。
FIG. 12 is a diagram showing an example of measurement results for several types of fabrics in the apparatus of FIG. 5;

【図13】本発明に係る布地の緯糸数計測方法を明るい
場所で実施する際の雑光除去方法、装置を示す概念図で
ある。
FIG. 13 is a conceptual diagram showing a method and an apparatus for removing miscellaneous light when the method for measuring the number of wefts of a fabric according to the present invention is performed in a bright place.

【図14】図13の装置で用いる差動回路の一例を示す
回路図である。
FIG. 14 is a circuit diagram showing an example of a differential circuit used in the device of FIG.

【図15】図5の装置で受光素子の一方のみで受光した
ときの雑光出力例を示す図である。
FIG. 15 is a diagram illustrating an example of miscellaneous light output when light is received by only one of the light receiving elements in the device of FIG. 5;

【図16】図5の装置で受光素子にレーザービームのみ
を照射したときの出力例を示す図である。
FIG. 16 is a diagram showing an output example when only a laser beam is irradiated on a light receiving element in the apparatus of FIG. 5;

【図17】図15と図16の出力の和を示す図である。FIG. 17 is a diagram showing the sum of the outputs of FIGS. 15 and 16;

【図18】図5の装置で受光素子の両方で雑光を受光し
たときの差動出力例を示す図である。
FIG. 18 is a diagram illustrating an example of differential output when light is received by both light receiving elements in the device of FIG. 5;

【符号の説明】[Explanation of symbols]

1 発光部 2 受光部 2a、2b 受光部 3 データ処理部 4 測定対象の布地 5、8遮光用のシリンダー 6 レーザー 7 集束レンズ 9 集光レンズ 10 光センサー 11 増幅器 12 △V検出器 13 カウンター 14 比較器 15 マーカー記入装置 16 プリセット回路 17 FFT 18 コンピュータ 19 スペクトルアナライザー 21 箱 22 駆動装置 30 雑光源 31 遮光板 40 差動回路 41a、41b 増幅器 42 差動増幅器 L レーザービーム L’ 線状のレーザービーム Lt 透過光 Ls、Ls’ 散乱光 NL 雑光 DESCRIPTION OF SYMBOLS 1 Light-emitting part 2 Light-receiving part 2a, 2b Light-receiving part 3 Data processing part 4 Fabric to be measured 5, 8 Light-shielding cylinder 6 Laser 7 Focusing lens 9 Condensing lens 10 Optical sensor 11 Amplifier 12 △ V detector 13 Counter 14 Comparison Instrument 15 Marker writing device 16 Preset circuit 17 FFT 18 Computer 19 Spectrum analyzer 21 Box 22 Drive device 30 Miscellaneous light source 31 Light shielding plate 40 Differential circuit 41a, 41b Amplifier 42 Differential amplifier L Laser beam L 'Linear laser beam Lt Transmission Light Ls, Ls' Scattered light NL Miscellaneous light

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 レーザービームを測定対象の布地に織り
込まれている緯糸の直径よりも小さく絞り込んで上記測
定対象の布地に照射し、その透過光または散乱光を受光
し、該受光した光の周波数から上記布地に織り込まれて
いる緯糸数を測定することを特徴とする布地の緯糸数計
測方法。
1. A laser beam is squeezed to a diameter smaller than the diameter of a weft woven into a cloth to be measured and irradiates the cloth to be measured, the transmitted light or the scattered light is received, and the frequency of the received light is received. A method of measuring the number of wefts woven into the cloth from the above.
【請求項2】 レーザービームを扇状のビームパターン
として上記測定対象の布地に織り込まれている緯糸の折
り込み方向に沿って細い線状となるように照射し、その
透過光または散乱光のその反射光を受光し、該受光した
光の強度信号を矩形波に変換し、該矩形波から上記布地
に織り込まれている緯糸数を測定することを特徴とする
布地の緯糸数計測方法。
2. A laser beam is irradiated as a fan-shaped beam pattern so as to form a thin line along the folding direction of the weft woven into the cloth to be measured, and the transmitted light or the reflected light of the scattered light. And converting the intensity signal of the received light into a rectangular wave, and measuring the number of wefts woven into the fabric from the rectangular wave.
【請求項3】 測定対象の布地に織り込まれている緯糸
の直径よりも小さく絞り込んだレーザービームを照射す
る手段と、該照射レーザービームの透過光または散乱光
を受光する手段と、該受光した光の周波数から上記布地
に織り込まれている緯糸数を測定する手段とからなるこ
とを特徴とする布地の緯糸数計測装置。
3. A means for irradiating a laser beam narrowed down to a diameter of a weft woven into a cloth to be measured, a means for receiving transmitted light or scattered light of the irradiated laser beam, and a means for receiving the received light. Means for measuring the number of wefts woven into the fabric from the frequency of the weft.
【請求項4】 レーザービームを扇状のビームパターン
として上記測定対象の布地に織り込まれている緯糸の折
り込み方向に沿って細い線状となるように照射する手段
と、該照射レーザービームの透過光または散乱光を受光
する手段と、該受光した光の強度信号を矩形波に変換す
る手段と、該矩形波から上記布地に織り込まれている緯
糸数を測定する手段とからなることを特徴とする布地の
緯糸数計測装置。
4. A means for irradiating the laser beam as a fan-shaped beam pattern so as to form a thin line along the folding direction of the weft woven into the cloth to be measured, A fabric comprising: means for receiving scattered light; means for converting an intensity signal of the received light into a rectangular wave; and means for measuring the number of wefts woven into the fabric from the rectangular wave. Weft count measuring device.
【請求項5】 上記照射手段と上記受光手段を所定間隔
だけ離して少なくとも2個配してなることを特徴とする
請求項3または4の布地の緯糸数計測装置。
5. An apparatus according to claim 3, wherein at least two of said irradiating means and said light receiving means are arranged at a predetermined distance from each other.
【請求項6】 上記受光手段が、近接させて配置した一
対の受光素子を備え、一方の受光素子のみに対して上記
照射手段から上記レーザビームを照射可能に配し、他方
の受光素子で周囲環境からの雑光を受光可能に配し、上
記測定手段が、上記一対の受光素子の受光信号の差信号
により上記雑光の影響を除去する手段を有することを特
徴とする請求項3ないし5のいずれかの布地の緯糸数計
測装置。
6. The light receiving means includes a pair of light receiving elements arranged close to each other, the one light receiving element being arranged to be able to irradiate the laser beam from the irradiating means, and the other light receiving element being provided with a surrounding area. 6. The light receiving device according to claim 3, wherein said light receiving means is arranged to receive light from the environment, and said measuring means has means for removing an influence of said light by a difference signal between light receiving signals of said pair of light receiving elements. Device for measuring the number of wefts of any fabric.
【請求項7】 上記雑光の影響を除去する手段が、上記
一対の受光素子の受光信号の強度差をとって出力する差
動回路であることを特徴とする請求項6の布地の緯糸数
計測装置。
7. The number of wefts of a fabric according to claim 6, wherein the means for removing the influence of the miscellaneous light is a differential circuit that outputs the difference in the intensity of the light receiving signals of the pair of light receiving elements. Measuring device.
JP8731297A 1997-03-24 1997-03-24 Measurement of weft count in fabric and device therefor Ceased JPH10266065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8731297A JPH10266065A (en) 1997-03-24 1997-03-24 Measurement of weft count in fabric and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8731297A JPH10266065A (en) 1997-03-24 1997-03-24 Measurement of weft count in fabric and device therefor

Publications (1)

Publication Number Publication Date
JPH10266065A true JPH10266065A (en) 1998-10-06

Family

ID=13911333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8731297A Ceased JPH10266065A (en) 1997-03-24 1997-03-24 Measurement of weft count in fabric and device therefor

Country Status (1)

Country Link
JP (1) JPH10266065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093780A (en) * 2013-11-14 2015-05-18 三菱レイヨン株式会社 Fiber bundle monitoring method, monitoring device using monitoring method, and method for manufacturing fiber bundle using monitoring method or monitoring device
JP2018052744A (en) * 2017-11-10 2018-04-05 三菱ケミカル株式会社 Method for measuring fiber bundle, measuring device using the same, and method for manufacturing fiber bundle using measuring method or measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093780A (en) * 2013-11-14 2015-05-18 三菱レイヨン株式会社 Fiber bundle monitoring method, monitoring device using monitoring method, and method for manufacturing fiber bundle using monitoring method or monitoring device
JP2018052744A (en) * 2017-11-10 2018-04-05 三菱ケミカル株式会社 Method for measuring fiber bundle, measuring device using the same, and method for manufacturing fiber bundle using measuring method or measuring device

Similar Documents

Publication Publication Date Title
US7436507B2 (en) Method and apparatus for inspecting a pattern
JP3323537B2 (en) Microstructure evaluation device and microstructure evaluation method
KR100190312B1 (en) Foreign substance inspection apparatus
CN100565193C (en) Be used for detecting the pick-up unit of the defective of transparent substrate
US5576831A (en) Wafer alignment sensor
JP3611140B2 (en) Yarn measuring device
JPH05346390A (en) Particle analyzer
EP0183226A2 (en) Edge detecting device in optical measuring instrument
JPH08219714A (en) Method of measuring position of web or sheet and device thatperforms said method
KR970000781B1 (en) Foreign matter detection device
US4652738A (en) Edge detecting device in optical measuring instrument
US6794625B2 (en) Dynamic automatic focusing method and apparatus using interference patterns
US7224447B2 (en) System and method for measuring the permeability of a material
JPH10266065A (en) Measurement of weft count in fabric and device therefor
EP0735563B1 (en) Scanning electron microscope
JP2003017536A (en) Pattern inspection method and inspection apparatus
EP0192993B1 (en) Process and arrangement for the three-dimensional optical recognition of objects
JP3332096B2 (en) Defect inspection method and apparatus
KR19980032767A (en) Woven checker
JP2001272355A (en) Foreign matter inspecting apparatus
KR940002504B1 (en) Detecting device for extremely small defect of thin wire
JPH055270A (en) Knitting flaw detector
JPH0552517A (en) Speckle displacement meter
JP2001264259A (en) Sheet inspecting device
KR100531958B1 (en) Inspection optic system in wafer surface and operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A977 Report on retrieval

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061108

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20070328