JPH10265869A - Silicon carbide series fiber-reinforced titanium-alum. series intermetallic compound composite material - Google Patents

Silicon carbide series fiber-reinforced titanium-alum. series intermetallic compound composite material

Info

Publication number
JPH10265869A
JPH10265869A JP7332497A JP7332497A JPH10265869A JP H10265869 A JPH10265869 A JP H10265869A JP 7332497 A JP7332497 A JP 7332497A JP 7332497 A JP7332497 A JP 7332497A JP H10265869 A JPH10265869 A JP H10265869A
Authority
JP
Japan
Prior art keywords
fiber
matrix
composite material
layer
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7332497A
Other languages
Japanese (ja)
Inventor
Tsutomu Fujiwara
力 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7332497A priority Critical patent/JPH10265869A/en
Publication of JPH10265869A publication Critical patent/JPH10265869A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve an SiC series fiber/TiAl composite material, on the boundary between SiC series fiber and a matrix, by forming a carbon layer and a tungsten layer from the fiber side. SOLUTION: As for the formation of the carbon layer and the tungsten layer, before the fiber and matrix are compounded, as coating, they are formed on the surface of the fiber. As coating forming means, CVD, PVD, thermal spraying, plating or the like can be adopted. In this case, at first, the carbon layer is formed to prevent the damage from the outside in the fiber, and on the surface of the carbon layer, the tungsten layer preventing its excessive reaction with the matrix. In this way, the carbon layer and tungsten layer on the surface of the fiber suppress the excessive reaction between the fiber and TiAl matrix and furthermore prevent the physical damage of the fiber, by which cracks which have been generated in the conventional compounded preformed body can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は強化繊維となるSi
C系繊維とマトリックスとなるTiAl系金属間化合物
の界面にカーボン層とタングステン層を有するSiC系
繊維強化TiAl系金属間化合物複合材料(以下、Si
C系繊維/TiAl複合材料という)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
SiC fiber reinforced TiAl-based intermetallic compound composite material (hereinafter referred to as Si) having a carbon layer and a tungsten layer at the interface between the C-based fiber and the TiAl-based intermetallic compound serving as a matrix.
C-based fiber / TiAl composite material).

【0002】[0002]

【従来の技術】市販のSiC系繊維にはその表面にカー
ボン層を形成したものがあるが、SiC系繊維/TiA
l複合材料は一般にはSiC系繊維とTiAl系金属間
化合物を複合化して形成されていた。
2. Description of the Related Art Commercially available SiC fibers have a carbon layer formed on the surface thereof.
In general, a composite material is formed by compounding a SiC-based fiber and a TiAl-based intermetallic compound.

【0003】[0003]

【発明が解決しようとする課題】従来のSiC系繊維/
TiAl複合材料においては、その複合化成形時または
高温での使用時に繊維(SiC)とマトリックス(Ti
Al)が界面にて過度の反応を生じ、かつ促進される。
その結果、繊維が劣化したり、脆化相が界面に生成され
複合化した成形体(複合材料)のマトリックスにクラッ
クが生じ、健全な成形体が得られず、また成形体の力学
的特性が低くなるという問題があった。
SUMMARY OF THE INVENTION Conventional SiC fibers /
In the TiAl composite material, the fiber (SiC) and the matrix (Ti
Al) causes and promotes excessive reactions at the interface.
As a result, fibers are deteriorated, an embrittlement phase is generated at the interface, and cracks occur in the matrix of the composite body (composite material), and a healthy molded body cannot be obtained. There was a problem that it became low.

【0004】従って、繊維とマトリックスとの界面反応
を抑止する(もしくは低減する)必要がある。そのため
には界面に反応バリア層を形成することが必要である
が、その際、問題となるところは、何がバリアとして機
能するかを選択することである。このバリア材に要求さ
れる特性はSiC系繊維(強化繊維)とマトリックスの
TiAlとが化学的、物理的(繊維とマトリックスの線
膨張係数の差に起因する熱応力の緩和)適用性に優れる
ことである。本発明はそのバリア層材料を選択し、従来
のSiC繊維/TiAl複合材料の有する欠点を解消し
ようとするものである。
[0004] Therefore, it is necessary to suppress (or reduce) the interfacial reaction between the fiber and the matrix. For that purpose, it is necessary to form a reaction barrier layer at the interface, but at this time, a problem is to select what functions as a barrier. The properties required for this barrier material are that the SiC-based fiber (reinforcing fiber) and the matrix TiAl are excellent in chemical and physical (relaxation of thermal stress caused by a difference in linear expansion coefficient between the fiber and the matrix) excellent applicability. It is. The present invention seeks to eliminate the disadvantages of the conventional SiC fiber / TiAl composite material by selecting the barrier layer material.

【0005】[0005]

【課題を解決するための手段】本発明はSiC系繊維を
強化繊維とし、TiAl系金属間化合物をマトリックス
とする複合材料であって、該繊維とマトリックスの界面
に繊維側からカーボン層、タングステン層が形成されて
いることを特徴とするSiC系繊維強化TiAl系金属
間化合物複合材料である。
SUMMARY OF THE INVENTION The present invention is a composite material comprising SiC-based fibers as reinforcing fibers and a TiAl-based intermetallic compound as a matrix. Is a SiC-based fiber reinforced TiAl-based intermetallic compound composite material, characterized in that

【0006】すなわち、本発明は前述の界面反応を抑止
するバリア層として、マトリックスのTiAlとの化学
的適合性に優れる(TiAlと反応が少ない)W(タン
グステン)を選定し、繊維の損傷を防ぎ、マトリックス
との物理的適合性に優れるバリア層としてC(カーボ
ン)を選定したものである。つまり、SiC系繊維とT
iAlマトリックスとの界面にWとCの2層を設けたも
のである。
That is, according to the present invention, W (tungsten) having excellent chemical compatibility with TiAl of the matrix (less reactive with TiAl) is selected as a barrier layer for suppressing the above-mentioned interfacial reaction to prevent fiber damage. And C (carbon) as a barrier layer having excellent physical compatibility with the matrix. That is, the SiC-based fiber and T
Two layers of W and C are provided at the interface with the iAl matrix.

【0007】本発明の複合材料を製造するに際しての、
W層とC層の形成はSiC系繊維とTiAlマトリック
スを複合化する前に、SiC系繊維表面に皮膜として形
成する。皮膜形成手段はCVD、PVD、溶射、メッキ
などいずれによってもよい。なお、この時、まずカーボ
ン層を形成し、SiC系繊維を外部からの損傷を防ぎ、
カーボン層の表面にマトリックスとの過度の反応を防ぐ
W層を形成する。
In producing the composite material of the present invention,
The W layer and the C layer are formed as a film on the surface of the SiC-based fiber before the SiC-based fiber and the TiAl matrix are combined. The film forming means may be any of CVD, PVD, thermal spraying, plating and the like. At this time, first, a carbon layer is formed to prevent the SiC-based fiber from being damaged from outside,
A W layer is formed on the surface of the carbon layer to prevent excessive reaction with the matrix.

【0008】(作用)本発明によれば、SiC系繊維表
面のC層、W層が繊維とTiAlマトリックスとの過度
の界面反応を抑止するとともに繊維の物理的損傷を防
ぎ、これらバリア材を用いない場合に生じる複合化成形
体のクラック発生を防止するSiC/TiAl複合材料
が提供される。
According to the present invention, according to the present invention, the C layer and the W layer on the surface of the SiC fiber suppress the excessive interfacial reaction between the fiber and the TiAl matrix, prevent the fiber from being physically damaged, and use these barrier materials. Provided is a SiC / TiAl composite material that prevents cracking of a composite molded article that would otherwise occur.

【0009】[0009]

【発明の実施の形態】本発明において使用されるSiC
系繊維としてはポリカルボシラン、ポリチタノカルボシ
ランまたはポリジルコカルボシランよりなるポリマーを
紡糸、焼成したもの、あるいはコアとなるタングステン
繊維又はカーボン繊維の表面にCVD法でSiCを蒸着
した径:50〜142μmのSiC系繊維などが使用さ
れる。また、TiAl系金属間化合物としてはγタイ
プ、α2 タイプ、オーソロムビック(orthorhombic)のも
のが使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS SiC used in the present invention
As the system fiber, a polymer made of polycarbosilane, polytitanocarbosilane or polyzircocarbosilane is spun and baked, or a diameter of SiC vapor-deposited on the surface of a tungsten fiber or carbon fiber serving as a core by a CVD method: 50 For example, a SiC-based fiber of about 142 μm is used. Further, TiAl-based type γ as intermetallic compounds, alpha 2 type, those Ortho ROM big the (orthorhombic) is used.

【0010】本発明において、SiC系繊維に形成され
るカーボン層の厚さは一般的に0.1〜5μm、タング
ステン層の厚さは一般的に0.2〜50μmである。こ
れら各層はCVD法、PVD法、溶射法またはメッキ法
のいずれの方法によって形成させてもよい。
In the present invention, the thickness of the carbon layer formed on the SiC fiber is generally 0.1 to 5 μm, and the thickness of the tungsten layer is generally 0.2 to 50 μm. These layers may be formed by any of a CVD method, a PVD method, a thermal spraying method, and a plating method.

【0011】[0011]

【実施例】以下、本発明のSiC系繊維強化TiAl系
金属間化合物複合材料の製造方法の具体的な実施例をあ
げ、本発明複合材料の効果を明らかにする。
EXAMPLES Hereinafter, specific examples of the method for producing a SiC-based fiber-reinforced TiAl-based intermetallic compound composite material of the present invention will be described to clarify the effects of the composite material of the present invention.

【0012】(例1)拡大模式図である図1によって、
本発明複合材料の製造法及び製品について説明する。カ
ーボン繊維(1)をコアとし、その表面にCVD法でS
iC層を蒸着した径:約140μmのSiC繊維(2)
に、CVD法でカーボン層(3)を約3μm形成した繊
維(商標SCS−6;米国 Taxtron Specialty Maleria
ls製)の表面にCVD法でW層(4)を約2μm形成し
た。このW層(4)をコートしたSCS−6繊維を直径
500mmのドラムの上にピッチ:約0.2mmで巻き
つけた。
(Example 1) Referring to FIG. 1 which is an enlarged schematic view,
The production method and product of the composite material of the present invention will be described. Using carbon fiber (1) as a core, S
Diameter of deposited iC layer: about 140 μm SiC fiber (2)
A fiber (trade name: SCS-6; US Taxtron Specialty Maleria) having a carbon layer (3) formed at about 3 μm by CVD method
ls) was formed to a thickness of about 2 μm on the surface by CVD. The SCS-6 fiber coated with the W layer (4) was wound on a drum having a diameter of 500 mm at a pitch of about 0.2 mm.

【0013】ドラム上に巻きつけた繊維上に、マトリッ
クス(5)であるγ−タイプのTi−48Al−2Cr
−2Nb(atomic%)のArガスアトマイズ粉末を、下
記表1に示す低圧プラズマ溶射にて溶射し、溶射プリフ
ォームを製造した。
On the fiber wound on the drum, a matrix (5), γ-type Ti-48Al-2Cr
Ar gas atomized powder of -2Nb (atomic%) was sprayed by low-pressure plasma spraying shown in Table 1 below to produce a sprayed preform.

【0014】[0014]

【表1】 [Table 1]

【0015】上記溶射プリフォームを4層積層し、その
積層体の両表面をTi−48Al−2Cr−2Nb(at
omic%)の溶射皮膜シート材(厚さ:約200μm)で
サンドイッチし、この積層体を温度:1075℃、圧
力:1500atm、時間:2HrでHIPし、複合化
した。この複合化成形体(複合材料)はマトリックス
(5)にクラック等の発生はなく健全な成形体であっ
た。
Four layers of the above-mentioned thermal spray preform are laminated, and both surfaces of the laminated body are made of Ti-48Al-2Cr-2Nb (at
(thickness: about 200 μm), and the laminate was HIPed at a temperature of 1075 ° C., a pressure of 1500 atm, and a time of 2 hr to form a composite. This composite molded body (composite material) was a sound molded body without any cracks or the like in the matrix (5).

【0016】(例2)拡大模式図である図2によって、
本発明の他の実施例を説明する。ポリチタノカルボシラ
ンを原料とし、紡糸、焼成した中太径の直径約30μm
のSiC系繊維(2)(商標チラノ繊維:宇部興産製)
にカーボン層(3)をCVD法(原料ガス:C2 6
キャリアガス:Ar,C2 6 /Ar量比:約1/2
0,温度:1100℃)で0.7〜1.1μm厚さに形
成し、さらにその上にW層(4)をCVD法(原料ガ
ス:WCl6 ,キャリアガス:H2 +Ar(等量混合ガ
ス),WCl6 /キャリアガス量比:約1/50,温
度:650℃)で約2μmを形成した。
(Example 2) Referring to FIG. 2 which is an enlarged schematic view,
Another embodiment of the present invention will be described. Medium-diameter approximately 30 μm spun and fired from polytitanocarbosilane as raw material
SiC fiber (2) (trademark Tyranno fiber: Ube Industries)
The carbon layer (3) is formed by CVD (source gas: C 2 H 6 ,
Carrier gas: Ar, C 2 H 6 / Ar amount ratio: about 1/2
0, temperature: 1100 ° C.) to a thickness of 0.7 to 1.1 μm, and further a W layer (4) is formed thereon by a CVD method (source gas: WCl 6 , carrier gas: H 2 + Ar (equivalent mixture) Gas), WCl 6 / carrier gas amount ratio: about 1/50, temperature: 650 ° C.) to form about 2 μm.

【0017】C及びWコートした中太径のチラノ繊維束
をArガスアトマイズしたTi−48Al−2Cr−2
Hb粉末(60μm以下にふるいかけしたもの)のスラ
リー中を通過させ、繊維束内に粉末を含浸させ、引き上
げ500mm直径のドラムに巻き付け乾燥させた。この
スラリー法によるワイヤプリフォームを裁断積層し、チ
ューブ付きHIPカプセルにカプセリングし、カプセリ
ングした状態で、チューブから真空引きしながら、カプ
セルを室温から450℃迄を2Hrで加熱し、450℃
で5Hr保持、真空脱気を行った。次いで、さらにカプ
セルを550℃迄、1Hrで昇温し、550℃で2Hr
保持し、その後、真空脱気状態でチューブを封止し、カ
プセル内部を真空封止する。真空封止したカプセルを温
度:1075℃、圧力:1500atm、時間:2Hr
で内部のプリフォーム積層体を複合化した。この複合化
成形体(複合材料)はマトリックス(5)にクラック等
の発生はなく健全な成形体であった。
Ti-48Al-2Cr-2 obtained by Ar gas atomizing a medium and large diameter Tyranno fiber bundle coated with C and W.
The powder was passed through a slurry of Hb powder (sieved to 60 μm or less), impregnated with the powder in the fiber bundle, pulled up, wound around a drum having a diameter of 500 mm, and dried. The wire preform obtained by the slurry method is cut and laminated, encapsulated in a HIP capsule with a tube, and the capsule is heated from room temperature to 450 ° C. at 2 hours while being evacuated from the tube in the encapsulated state.
For 5 hours and vacuum degassing was performed. Next, the temperature of the capsule was further raised to 550 ° C. at 1 hour, and the capsule was heated at 550 ° C. for 2 hours.
Then, the tube is sealed in a vacuum degassed state, and the inside of the capsule is vacuum sealed. The vacuum-sealed capsule is heated at a temperature of 1075 ° C., a pressure of 1500 atm, and a time of 2 hours.
Was used to composite the internal preform laminate. This composite molded body (composite material) was a sound molded body without any cracks or the like in the matrix (5).

【0018】[0018]

【発明の効果】C層とW層の2層はSiC系繊維とTi
Alマトリックスとの界面の物理的、化学的適合性を改
善させ、複合化成形体(複合材料)のマトリックスにク
ラック等は発生せず、健全な成形体を製造することがで
きる。
The C layer and the W layer are made of SiC fiber and Ti.
The physical and chemical compatibility of the interface with the Al matrix is improved, and cracks and the like do not occur in the matrix of the composite molded article (composite material), and a sound molded article can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の一部説明図。FIG. 1 is a partial explanatory view of a first embodiment of the present invention.

【図2】本発明の第2実施例の一部説明図。FIG. 2 is a partial explanatory view of a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SiC系繊維を強化繊維とし、TiAl
系金属間化合物をマトリックスとする複合材料であっ
て、該繊維とマトリックスの界面に繊維側からカーボン
層、タングステン層が形成されていることを特徴とする
SiC系繊維強化TiAl系金属間化合物複合材料。
An SiC-based fiber is used as a reinforcing fiber, and TiAl is used.
A SiC-based fiber-reinforced TiAl-based intermetallic compound composite material comprising a matrix containing an intermetallic compound as a matrix, wherein a carbon layer and a tungsten layer are formed from the fiber side at the interface between the fiber and the matrix. .
JP7332497A 1997-03-26 1997-03-26 Silicon carbide series fiber-reinforced titanium-alum. series intermetallic compound composite material Withdrawn JPH10265869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7332497A JPH10265869A (en) 1997-03-26 1997-03-26 Silicon carbide series fiber-reinforced titanium-alum. series intermetallic compound composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7332497A JPH10265869A (en) 1997-03-26 1997-03-26 Silicon carbide series fiber-reinforced titanium-alum. series intermetallic compound composite material

Publications (1)

Publication Number Publication Date
JPH10265869A true JPH10265869A (en) 1998-10-06

Family

ID=13514886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7332497A Withdrawn JPH10265869A (en) 1997-03-26 1997-03-26 Silicon carbide series fiber-reinforced titanium-alum. series intermetallic compound composite material

Country Status (1)

Country Link
JP (1) JPH10265869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029487A1 (en) * 2005-09-07 2007-03-15 E & F Corporation Titanium alloy composite material, method for production of the material, titanium clad material using the material, and method for manufacture of the clad
CN115896737A (en) * 2022-11-17 2023-04-04 航天特种材料及工艺技术研究所 High-temperature-resistant wave-absorbing tungsten/carbon core silicon carbide fiber and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029487A1 (en) * 2005-09-07 2007-03-15 E & F Corporation Titanium alloy composite material, method for production of the material, titanium clad material using the material, and method for manufacture of the clad
JP2007070697A (en) * 2005-09-07 2007-03-22 E & F Corp Titanium alloy composite material and its manufacturing method
KR100867290B1 (en) 2005-09-07 2008-11-06 가부시키가이샤 이앤드에프 Titanium alloy composite material, method of producing the titanium alloy composite material, titanium clad material using the titanium alloy composite material, and method of producing the titanium clad material
US7892653B2 (en) 2005-09-07 2011-02-22 E & F Corporation Titanium alloy composite material, titanium clad material using the titanium alloy composite material, and method of producing the titanium clad material
CN115896737A (en) * 2022-11-17 2023-04-04 航天特种材料及工艺技术研究所 High-temperature-resistant wave-absorbing tungsten/carbon core silicon carbide fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
US5955391A (en) Ceramic matrix composite and method of manufacturing the same
EP0828697B1 (en) Improved interface coating for ceramic fibers
JP6917770B2 (en) Long fiber reinforced silicon carbide member, its manufacturing method, and reactor structural member
US5354398A (en) Method of manufacturing fiber-reinforced composites having a gradient function
EP3252278A1 (en) High temperature composites with enhanced matrix
JP2004001215A (en) Cutter, manufacturing method and use
JP2003506308A (en) Silicon nitride parts with protective coating
US5426000A (en) Coated reinforcing fibers, composites and methods
WO1996013472A9 (en) Improved interface coating for ceramic fibers
US5074923A (en) Method for id sizing of filament reinforced annular objects
JPH10265869A (en) Silicon carbide series fiber-reinforced titanium-alum. series intermetallic compound composite material
US5262235A (en) Coated ceramic fiber system
JP2941589B2 (en) SiC fiber reinforced TiAl composite material
GB2241913A (en) Shaping filament reinforced annular objects.
US5271776A (en) Asymmetrical method for hiping filament reinforced annular objects
JP3260986B2 (en) Member with diamond composite film
JP6797605B2 (en) Long fiber reinforced silicon carbide member and its manufacturing method
D'Angio Microwave enhanced chemical vapour infiltration of silicon carbide fibre preforms
JPH06172033A (en) Surface-coated carbon-fiber reinforced composite material and its production
US5447680A (en) Fiber-reinforced, titanium based composites and method of forming without depletion zones
US11702369B2 (en) Method of fabricating a ceramic composite
JPH10121165A (en) Silicon carbide fiber reinforced titanium matrix composite
JP3046143B2 (en) Manufacturing method of fiber reinforced ceramics
Sandhu et al. Interfacial studies in titanium aluminide/SiCf composites
GB2399351A (en) Method for forming a film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601