JPH10261823A - Manufacture of ferroelectric - Google Patents

Manufacture of ferroelectric

Info

Publication number
JPH10261823A
JPH10261823A JP6753997A JP6753997A JPH10261823A JP H10261823 A JPH10261823 A JP H10261823A JP 6753997 A JP6753997 A JP 6753997A JP 6753997 A JP6753997 A JP 6753997A JP H10261823 A JPH10261823 A JP H10261823A
Authority
JP
Japan
Prior art keywords
ferroelectric
powder
sol
firing
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6753997A
Other languages
Japanese (ja)
Inventor
Shinichi Sakamaki
酒巻  真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP6753997A priority Critical patent/JPH10261823A/en
Publication of JPH10261823A publication Critical patent/JPH10261823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To make low a firing temperature, to simplify the processes in the manufacturing method of a ferroelectric and also to obtain the ferroelectric, which is dense and excellent in piezoelectric performance, by a method wherein ferroelectric particles of a specified size or smaller are used for the manufacture of the ferroelectric. SOLUTION: Powder is synthesized by firing ferroelectric particles, which are 0.01 μm or shorter in particle diameter and contain the component of Pb, at 650 deg.C, for example, by a sol-gel method. The powder synthesized by the sol-gel method has little irregularity in the mean particle diameter and is excellent in uniformity compared with the powder synthesized by a solid phase method. Therefore, in the case where a ferroelectric is formed using these fine particles, the ferroelectric is excellent in the homogeneity of a ferroelectric and the dielectric breakdown strength characteristics of the ferroelectric are enhanced. Moreover, as there is not a grinding process in the sol-gel method unlike the solid phase method, impurities are never mixed in the powder due to an stirrer or the like and the piezoelectric performance of the ferroelectric is enhanced. Moreover, as the mean particle diameter of the powder is short, the fluidity of the power is good and in the case where the powder is molded by pressing, a pressure of one ton/cm<2> or thereabouts is usually required for the molding, but the pressure can be significantly reduced. Thereby, a molding process and a firing process can be simplified and the ferroelectric, which is low in cost and is excellent in homogeneity and piezo-electricity, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体の製造法
に関するものであり、特に圧電式インクジェット記録装
置における記録ヘッドのアクチュエーター製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a ferroelectric, and more particularly to a method of manufacturing an actuator for a recording head in a piezoelectric ink jet recording apparatus.

【0002】[0002]

【従来の技術】固相法により強誘電体粉末を作製する方
法について詳しく説明する。圧電体と強誘電体の位置づ
けは、圧電体の中で外部電界によって分極を反転できる
ものを強誘電体といい、ここでは代表的な圧電体であ
り、強誘電体でもあるPZTセラミックス(Pb(T
i,Zr)O3)について言及する。Pbを含む強誘電
体は、一般に残留分極・比誘電率・圧電定数が大きく、
圧電性・強誘電性に優れている事が知られている。ま
た、PZTセラミックにおける各元素のモル比が圧電性
に与える影響は大きく、各元素のモル比はがPb:Z
r:Ti=1:0.53:0.47の時に、誘電率・圧
電定数等が最大値を示す事が知られている。出発原料
は、PbO粉末とTiO2粉末とZrO2粉末であり、
まず原料粉末を所望のモル比となるように秤量し、鉱化
剤を適量添加し、ボールミル等で数十時間撹拌する。脱
脂乾燥後、仮焼きし、クラシャー等で粉砕後ふるいに通
し粗い粒子を除去後、ボールミルにて数十時間粉砕して
PZT微粉末を得る。均質性が不十分であれば、再度ボ
ールミル等で混合撹拌する。このようにして得られたP
ZTセラミックの平均粒径は、数μm程度である。その
後バインダー等を添加・混合後、造粒・成形し、続いて
焼成・加工を行い、PZTセラミック板を得る。前記P
ZTセラミック板の上下面に電極を形成し、分極処理を
行う事により、圧電素子となる。
2. Description of the Related Art A method for producing a ferroelectric powder by a solid phase method will be described in detail. A piezoelectric material and a ferroelectric material are referred to as a ferroelectric material in which the polarization can be reversed by an external electric field among the piezoelectric materials. Here, a typical piezoelectric material and a ferroelectric PZT ceramic (Pb (Pb ( T
i, Zr) O3). Ferroelectrics containing Pb generally have large remanent polarization, relative permittivity, and piezoelectric constant.
It is known that it has excellent piezoelectricity and ferroelectricity. In addition, the molar ratio of each element in the PZT ceramic greatly affects the piezoelectricity, and the molar ratio of each element is Pb: Z
It is known that, when r: Ti = 1: 0.53: 0.47, the permittivity, the piezoelectric constant, and the like show the maximum values. Starting materials are PbO powder, TiO2 powder and ZrO2 powder,
First, the raw material powder is weighed so as to have a desired molar ratio, an appropriate amount of a mineralizer is added, and the mixture is stirred with a ball mill or the like for several tens of hours. After degreased and dried, calcined, pulverized with a crusher or the like, passed through a sieve to remove coarse particles, and then pulverized with a ball mill for several tens of hours to obtain PZT fine powder. If the homogeneity is insufficient, mix and stir again with a ball mill or the like. The P thus obtained
The average particle size of the ZT ceramic is about several μm. Thereafter, after adding and mixing a binder and the like, the mixture is granulated and formed, and subsequently fired and processed to obtain a PZT ceramic plate. The P
By forming electrodes on the upper and lower surfaces of the ZT ceramic plate and performing polarization processing, a piezoelectric element is obtained.

【0003】[0003]

【発明が解決しようとする課題】一般に、固相法でセラ
ミックスを作製する場合、出発原料の粒径と焼結温度に
は、比例関係があり、粒径が小さい程表面の活性度が上
昇し焼成温度は下げられる。前記従来法で合成されたP
ZTセラミック粉末を使用する場合、焼成温度は通常1
200℃前後である。それ以下の温度で焼成した場合、
焼結が十分に進まず膜の密度が低下し、圧電性能は不十
分となる。
Generally, when producing ceramics by the solid phase method, there is a proportional relationship between the particle size of the starting material and the sintering temperature, and the smaller the particle size, the higher the surface activity increases. The firing temperature is reduced. P synthesized by the conventional method
When using ZT ceramic powder, the firing temperature is usually 1
It is around 200 ° C. If fired at a temperature below that,
Sintering does not proceed sufficiently and the density of the film decreases, and the piezoelectric performance becomes insufficient.

【0004】更に、PZTセラミック粉末中のPb元素
は、PbOであり、融点が886℃と蒸発しやすく、8
50℃前後から蒸発を開始してしまう為、通常PbOの
粉末を焼成炉中に一緒に入れ、Pbの飽和蒸気圧中で焼
成しなければならない。
Further, the Pb element in the PZT ceramic powder is PbO, which has a melting point of 886 ° C., and is easily evaporated.
Since evaporation starts at about 50 ° C., it is usually necessary to put PbO powder together in a firing furnace and fire at a saturated vapor pressure of Pb.

【0005】本発明の目的は、焼成温度が低くする事が
でき、その結果工程が簡素化するとともに緻密で圧電性
能に優れる強誘電体を提供することにある。
It is an object of the present invention to provide a ferroelectric substance which can be sintered at a low temperature, thereby simplifying the process, and is dense and excellent in piezoelectric performance.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は,0.01μm以下の強誘電体粒子を用
いる事を特徴としている。
In order to solve the above problems, the present invention is characterized by using ferroelectric particles having a size of 0.01 μm or less.

【0007】固相法から強誘電体粉末の作製がさかんに
行われているが、平均粒径は数μmであり、焼結には1
200℃前後という高温が必要であり、Pbの蒸発対策
を必要とする。本発明は、焼成温度を下げられる為、P
bの蒸発対策が省略できる。
[0007] Ferroelectric powders are frequently produced from the solid-phase method.
A high temperature of about 200 ° C. is required, and a measure for evaporating Pb is required. In the present invention, since the firing temperature can be lowered, P
The measures for evaporating b can be omitted.

【0008】更に積層して性能向上を目指す場合、内部
電極材料がPtであれば問題ないが、コストの安い卑金
属材料を用いると、前記卑金属材料が焼成工程において
PZT膜中に拡散し、圧電性能を低下させてしまうが、
本発明は、焼成温度を低くできる為、卑金属材料で内部
電極を形成して積層する事が可能となる。
In order to improve performance by further laminating, if the internal electrode material is Pt, there is no problem. However, if a low-cost base metal material is used, the base metal material diffuses into the PZT film in the firing step, and the piezoelectric performance is reduced. Will decrease,
According to the present invention, since the firing temperature can be lowered, it is possible to form and laminate internal electrodes with a base metal material.

【0009】また、ゾルゲル法にて合成された粉末は、
固相法と比較し、平均粒径のバラツキが少なく均一性に
優れている為、前記微粒子を用いて作製した場合、圧電
体の均質性に優れ、絶縁耐圧特性が向上する。更に、固
相法のように粉砕工程が無い為、撹拌子等による不純物
の混入が無く、圧電性能を向上できる。
[0009] The powder synthesized by the sol-gel method is
Compared with the solid phase method, the dispersion of the average particle diameter is small and the uniformity is excellent. Therefore, when the fine particles are manufactured using the fine particles, the piezoelectric body is excellent in homogeneity and the withstand voltage characteristics are improved. Further, since there is no pulverizing step as in the solid phase method, no impurities are mixed by a stirrer or the like, and the piezoelectric performance can be improved.

【0010】また、平均粒径が非常に小さいので、流動
性が良く、加圧成形する場合通常1トン/cm2程度の
圧力を必要とするが、それを大幅に低減できる。以上よ
り、成形工程・焼成工程を簡略化でき、低コストで均質
性・圧電性に優れた強誘電体を製造できる。
Also, since the average particle size is very small, the fluidity is good and a pressure of about 1 ton / cm 2 is usually required for pressure molding, but this can be greatly reduced. As described above, the forming step and the sintering step can be simplified, and a ferroelectric excellent in homogeneity and piezoelectricity can be manufactured at low cost.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)以下、本発明による実施例を以下に説明す
る。圧電体と強誘電体の位置づけは、圧電体の中で外部
電界によって分極を反転できるものを強誘電体といい、
ここでは代表的な圧電体であり、強誘電体でもあるPZ
Tセラミックスについて言及する。Pbを含む強誘電体
は、一般に残留分極・比誘電率・圧電定数が大きく、圧
電性・強誘電性に優れる事が知られている。ゾルゲル法
とは金属アルコキシドをアルコール中に溶解し、酸触媒
下で加水分解を行う事により、金属原子と金属原子を酸
素原子を介して結合させ、加水分解の時間により溶液は
ゾルからゲルへと移行し、架橋密度が上昇する。ゾルゲ
ル法の最大のメリットは、酸化物を低温合成できる事で
あり、その結果、省エネルギー・蒸発ロスが少ない・大
気汚染が少ない・容器からの汚染が少ない等のメリット
を享受する事が可能となる。更に溶液から作製する為、
均質性が良く、純度が高い等のメリットも存在する。ま
た、形状付与が可能である為、現在実用化されている光
ファイバーは従来法からゾルゲル法に置き換わってい
る。ゾルゲル法で強誘電体を作製する方法について詳細
に説明する。まず、強誘電体でり圧電体であるPZTセ
ラミックスは、Pb、Zr、Ti元素から構成される酸
化物であるので、それぞれの金属アルコキシド、即ちジ
エトキシ鉛、チタンテトライソプロポキシド、ジルコニ
ウムテトラノルマルブトキシドを用意する。最初にチタ
ンテトライソプロポキシド2.67g(0.0094モ
ル)を100gのイソプロパノールに溶解し、その溶液
に0.001規定塩酸のイソプロパノール溶液100g
を徐じょに加えて、8時間還流する。この反応によりT
i原子とTi原子が酸素原子を介して結合し、高分子量
化が促進される。この反応後に0.0188モルのエト
キシエタノールを20g添加し、0.5時間還流する。
この溶液をチタン前駆体溶液とする。次にジルコニウム
テトラノルマルブトキシド4.06g(0.0106モ
ル)を100gのイソプロパノールに溶解し、その溶液
に0.0212モルのエトキシエタノールを20g添加
し更に0.001規定塩酸のイソプロパノール溶液10
0gを徐じょに加えて、8時間還流する。この反応によ
りTiと同様にZrの高分子量化が促進され、この溶液
をジルコニウム前駆体溶液とする。チタン前駆体溶液と
ジルコニウム前駆体溶液を混合した後、0.5時間還流
する。この混合溶液にジエトキシ鉛5.94g(0.0
2モル)を添加し、更に0.5時間還流し、PZT前駆
体溶液とする。PZTセラミックスにおいて、今回秤量
した組成比、即ちPb:Zr:Ti=1:0.53:
0.47の時、比誘電率・圧電定数等が最大値を示し、
それからずれると大幅に比誘電率・圧電定数が低下する
事が知られている。
Embodiment 1 Hereinafter, an embodiment according to the present invention will be described. The positioning of the piezoelectric body and the ferroelectric is called ferroelectric if the polarization can be reversed by an external electric field in the piezoelectric.
Here, PZ which is a typical piezoelectric substance and also a ferroelectric substance
Reference is made to T ceramics. It is known that ferroelectrics containing Pb generally have large residual polarization, relative permittivity, and piezoelectric constant, and are excellent in piezoelectricity and ferroelectricity. With the sol-gel method, a metal alkoxide is dissolved in alcohol and hydrolyzed under an acid catalyst, whereby the metal atom and the metal atom are bonded via an oxygen atom, and the solution changes from the sol to the gel depending on the time of hydrolysis. Transfer and the crosslink density increases. The greatest advantage of the sol-gel method is that oxides can be synthesized at a low temperature, and as a result, it is possible to enjoy the advantages such as energy saving, less evaporation loss, less air pollution, and less pollution from containers. . In order to make it from solution,
There are also advantages such as good homogeneity and high purity. In addition, the optical fiber currently in practical use has been replaced by the sol-gel method from the conventional method because the shape can be provided. A method for producing a ferroelectric substance by a sol-gel method will be described in detail. First, PZT ceramics, which are ferroelectric and piezoelectric, are oxides composed of elements Pb, Zr, and Ti. Therefore, respective metal alkoxides, namely, diethoxy lead, titanium tetraisopropoxide, and zirconium tetranormal butoxide are used. Prepare First, 2.67 g (0.0094 mol) of titanium tetraisopropoxide is dissolved in 100 g of isopropanol, and 100 g of a 0.001 N hydrochloric acid solution in isopropanol is added to the solution.
And refluxed for 8 hours. This reaction causes T
The i atom and the Ti atom are bonded via the oxygen atom, and the high molecular weight is promoted. After this reaction, 20 g of 0.0188 mol of ethoxyethanol is added, and the mixture is refluxed for 0.5 hour.
This solution is used as a titanium precursor solution. Next, 4.06 g (0.0106 mol) of zirconium tetranormal butoxide was dissolved in 100 g of isopropanol, and 20 g of 0.0212 mol of ethoxyethanol was added to the solution, and a solution of 0.001 N hydrochloric acid in isopropanol 10 was added.
Add 0 g slowly and reflux for 8 hours. This reaction promotes Zr to have a high molecular weight similarly to Ti, and this solution is used as a zirconium precursor solution. After mixing the titanium precursor solution and the zirconium precursor solution, the mixture is refluxed for 0.5 hour. 5.94 g of diethoxy lead (0.04 g) was added to this mixed solution.
2 mol) and refluxed for another 0.5 hour to obtain a PZT precursor solution. In PZT ceramics, the composition ratio weighed this time, that is, Pb: Zr: Ti = 1: 0.53:
At 0.47, the relative permittivity, piezoelectric constant, etc. show the maximum values,
It is known that the relative permittivity / piezoelectric constant is greatly reduced when deviated from that.

【0012】次に前記PZT前駆体をるつぼ等の所定の
容器中に注ぎ、650℃で焼成する事によって、PZT
微粒子が得られる。本方式で合成されたPZT微粒子
は、平均粒径が0.1μm以下と非常に小さく、粒度分
布も少なくきわめて均一性に優れた微粒子である。
Next, the PZT precursor is poured into a predetermined container such as a crucible or the like and baked at 650 ° C.
Fine particles are obtained. The PZT fine particles synthesized by this method are very small having an average particle size of as small as 0.1 μm or less, having a small particle size distribution, and having extremely excellent uniformity.

【0013】前記PZT微粒子に400kg/cmの圧
力を加えて成形した後、800℃で焼成して、PZTセ
ラミックスを得た。図1に前記方法で作製したサンプル
の破断面を示す。見てわかるとうり、非常に緻密で均質
性に優れたPZTセラミックスを得た。
The PZT fine particles were molded by applying a pressure of 400 kg / cm, and then fired at 800 ° C. to obtain PZT ceramics. FIG. 1 shows a fractured surface of the sample produced by the above method. As can be seen, very dense PZT ceramics having excellent homogeneity were obtained.

【0014】加える粉体の量を制御する事によって、容
易に膜厚を制御できる。
By controlling the amount of powder to be added, the film thickness can be easily controlled.

【0015】出発原料であるPZT微粒子の平均粒径が
0.1μm以下であり、今回試作したサンプルの平均粒
径が0.8μm程度であるので、粒径は10倍弱増加
し、850℃という低温で焼結している事を確認した。
Since the average particle diameter of the PZT fine particles as the starting material is 0.1 μm or less, and the average particle diameter of the sample produced this time is about 0.8 μm, the particle diameter increases slightly less than 10 times to 850 ° C. It was confirmed that it was sintered at a low temperature.

【0016】更に、今回のサンプルをメノウ製乳鉢中で
粉砕し、XRDにて結晶構造を解析した所、PZT相で
ある事を確認した。
Further, this sample was crushed in an agate mortar, and the crystal structure was analyzed by XRD. As a result, it was confirmed that the sample was a PZT phase.

【0017】本発明では、ゾルゲル法で合成したPZT
微粒子のみを加圧成形して強誘電体を得たが、溶媒・バ
インダー等を前記微粒子に添加し、スラリーとしたの
ち、テープ成形・印刷等の手法を用いて強誘電体を作製
しても、加圧成形と同様の効果が得られる事は容易に推
察できる。
In the present invention, PZT synthesized by the sol-gel method is used.
Although a ferroelectric material was obtained by pressure-molding only the fine particles, a solvent / binder or the like was added to the fine particles to form a slurry, and then a ferroelectric material was produced using a method such as tape molding / printing. It can be easily inferred that the same effect as that obtained by pressure molding can be obtained.

【0018】(実施例2)前記PZT微粒子を850℃
で焼成した所、やはり緻密なPZTセラミックスを得
た。焼成温度が実施例1より50℃高いので、平均粒径
は800℃焼成の時より若干増加していた。図2にサン
プルの破断面を示す。
Example 2 The above PZT fine particles were heated at 850 ° C.
After that, dense PZT ceramics were obtained. Since the firing temperature was 50 ° C. higher than that in Example 1, the average particle size was slightly increased from that at 800 ° C. firing. FIG. 2 shows a fracture surface of the sample.

【0019】更に、今回のサンプルをメノウ製乳鉢中で
粉砕し、XRDにて結晶構造を解析した所、PZT相で
ある事を確認した。
Further, this sample was ground in an agate mortar, and the crystal structure was analyzed by XRD. As a result, it was confirmed that the sample was a PZT phase.

【0020】(実施例3)前記PZT微粒子を700℃
で焼成した所、気孔が発生したが、平均粒径は0.4μ
m程度と出発原料であるPZT微粒子の4倍に増加して
おり、700℃という低い温度でも焼結している事を確
認した。この事から焼結開始温度は700℃未満である
事が判明した。図3にサンプルの断面図を示す。
Example 3 The above PZT fine particles were heated at 700 ° C.
After firing, pores were generated, but the average particle size was 0.4μ.
m, which is four times as large as that of PZT fine particles as a starting material, and it was confirmed that sintering was performed even at a low temperature of 700 ° C. From this, it was found that the sintering start temperature was less than 700 ° C. FIG. 3 shows a cross-sectional view of the sample.

【0021】更に、今回のサンプルをメノウ製乳鉢中で
粉砕し、XRDにて結晶構造を解析した所、PZT相で
ある事を確認した。
Further, this sample was ground in an agate mortar, and the crystal structure was analyzed by XRD. As a result, it was confirmed that the sample was a PZT phase.

【0022】[0022]

【発明の効果】以上、ゾルゲル法で合成された強誘電体
微粒子を用いて強誘電体セラミックスを作製すると、平
均粒径が0.1μm以下と非常に小さいので、粒子表面
が活性であり、焼成温度を下げられる。焼成温度を下げ
られると、Pbを含む強誘電体セラミックスの場合、P
bの蒸発対策を行わなくて済む為、焼成工程が簡略化で
きる、積層する場合の内部電極材料の選択の幅が広が
る、成形圧力を低減できる等の利点を有する。更に、ゾ
ルゲル法で合成された微粒子の粒径バラツキは少ない
為、成形圧力を低減できる、均質性に優れた強誘電体膜
を作製する事ができる。以上より、ゾルゲル法により合
成された強誘電体微粒子を用いる事により強誘電特性に
優れた強誘電体を製造する事が可能となる。
As described above, when ferroelectric ceramics are produced using ferroelectric fine particles synthesized by the sol-gel method, the average particle diameter is very small, 0.1 μm or less, and the particle surface is active. Can lower the temperature. When the firing temperature can be lowered, in the case of ferroelectric ceramics containing Pb, P
Since there is no need to take measures against evaporation of b, there are advantages that the firing step can be simplified, the range of selection of the internal electrode material for lamination can be widened, and the molding pressure can be reduced. Further, since the particle size variation of the fine particles synthesized by the sol-gel method is small, a ferroelectric film excellent in homogeneity, which can reduce molding pressure and can be manufactured. As described above, by using the ferroelectric fine particles synthesized by the sol-gel method, it is possible to manufacture a ferroelectric substance having excellent ferroelectric properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により800℃で焼成して作成したサン
プルの破断面を示す写真である。
FIG. 1 is a photograph showing a fracture surface of a sample prepared by firing at 800 ° C. according to the present invention.

【図2】本発明により850℃で焼成して作成したサン
プルの破断面を示す写真である。
FIG. 2 is a photograph showing a fracture surface of a sample prepared by firing at 850 ° C. according to the present invention.

【図3】本発明により700℃で焼成して作成したサン
プルの破断面を示す写真である。
FIG. 3 is a photograph showing a fracture surface of a sample prepared by firing at 700 ° C. according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒子の平均粒径が0.1μm以下である
強誘電体微粒子を用いる事を特徴とする強誘電体作製方
法。
1. A method for producing a ferroelectric material, comprising using ferroelectric fine particles having an average particle size of 0.1 μm or less.
【請求項2】 前記微粒子がゾルゲル法により合成され
た事を特徴とする請求項1記載の強誘電体作製方法。
2. The method of claim 1, wherein the fine particles are synthesized by a sol-gel method.
【請求項3】 前記微粒子がPb成分を含む事を特徴と
する請求項1記載の強誘電体作製方法。
3. The method according to claim 1, wherein the fine particles contain a Pb component.
JP6753997A 1997-03-21 1997-03-21 Manufacture of ferroelectric Pending JPH10261823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6753997A JPH10261823A (en) 1997-03-21 1997-03-21 Manufacture of ferroelectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6753997A JPH10261823A (en) 1997-03-21 1997-03-21 Manufacture of ferroelectric

Publications (1)

Publication Number Publication Date
JPH10261823A true JPH10261823A (en) 1998-09-29

Family

ID=13347890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6753997A Pending JPH10261823A (en) 1997-03-21 1997-03-21 Manufacture of ferroelectric

Country Status (1)

Country Link
JP (1) JPH10261823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173301A (en) * 1998-12-10 2000-06-23 Seiko Epson Corp Piezoelectric light emission element, display device and manufacture thereof
JP2009170695A (en) * 2008-01-17 2009-07-30 Seiko Epson Corp Method for manufacturing ferroeletric memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173301A (en) * 1998-12-10 2000-06-23 Seiko Epson Corp Piezoelectric light emission element, display device and manufacture thereof
JP2009170695A (en) * 2008-01-17 2009-07-30 Seiko Epson Corp Method for manufacturing ferroeletric memory

Similar Documents

Publication Publication Date Title
CN104291817A (en) High-Curie-temperature PZT piezoceramic material and preparation method thereof
CN102649643A (en) Lead lutecium niobate-lead zirconate titanate piezoceramic material
JP2003002739A (en) Method for manufacturing barium titanate powder, barium titanate powder and its evaluation method, dielectric ceramic and laminated ceramic capacitor
JP2002308672A (en) Method for manufacturing piezoelectric ceramic, piezoelectric ceramic and piezoelectric ceramic device
JP5816371B2 (en) Piezoelectric device and method for manufacturing piezoelectric device
JPH08259323A (en) Compound lanthanum/lead/zirconium/titanium perovskite, ceramic composition and actuator
JPH10261823A (en) Manufacture of ferroelectric
KR101722391B1 (en) Method of forming lead zirconate titanate sintered compact, lead zirconate titanate sintered compact and lead zirconate titanate sputtering target
JP3629285B2 (en) Production method of piezoelectric ceramic
JP2003020274A (en) Piezoelectric paste, and piezoelectric film and piezoelectric parts using the same
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JPH1087372A (en) Production of powdery ceramic material
WO1984002521A1 (en) Low firing ceramic dielectric for temperature compensating capacitors
EP3766856A1 (en) Piezoelectric ceramic, ceramic electronic component, and production method for piezoelectric ceramic
JP3710100B2 (en) Manufacturing method of oxide piezoelectric material
CN114804874B (en) Quaternary piezoelectric ceramic and preparation method and application thereof
JP4092542B2 (en) Piezoelectric porcelain composition and piezoelectric element using the same
JPH08283069A (en) Piezoelectric ceramic and its production
KR101110365B1 (en) Method for manufacturing ferroelectric ceramics
CN117534463A (en) Temperature-stable lead zirconate titanate-based high-temperature piezoelectric ceramic and preparation method thereof
US6627105B1 (en) Method of fabricating a piezoelectric ceramic
JPH05139828A (en) Production of piezoelectric ceramic
JP3084401B1 (en) High performance piezoelectric ceramics and their manufacturing method
JPH107458A (en) Piezoelectric porcelain material
JPH06116024A (en) Production of bismuth laminar compound