JPH10261417A - Organic polymer thin film electrode and its manufacture - Google Patents

Organic polymer thin film electrode and its manufacture

Info

Publication number
JPH10261417A
JPH10261417A JP9063074A JP6307497A JPH10261417A JP H10261417 A JPH10261417 A JP H10261417A JP 9063074 A JP9063074 A JP 9063074A JP 6307497 A JP6307497 A JP 6307497A JP H10261417 A JPH10261417 A JP H10261417A
Authority
JP
Japan
Prior art keywords
organic polymer
thin film
electrode
film
film electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9063074A
Other languages
Japanese (ja)
Inventor
Tsutomu Nonaka
勉 野中
Masato Atobe
真人 跡部
Seiji Fuwa
誠二 不破
Naotake Sato
尚武 佐藤
Masao Sekimoto
正生 関本
Yoshinori Nishiki
善則 錦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP9063074A priority Critical patent/JPH10261417A/en
Publication of JPH10261417A publication Critical patent/JPH10261417A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic polymer thin film electrode by performing electrolytic polymerization of monomers, and then to provide a highly uniform organic polymer thin film electrode with high density. SOLUTION: This electrode 1 has an organic polymer film 3 electrochemically formed while irradiating a conductive base material 2 with ultrasonic waves. At the time of manufacturing the thin film electrode 1 having a thin film comprising the organic polymer film 3, electrolytic polymerization of organic compounds capable of forming said organic polymer is performed while irradiating it with ultrasonic waves, thereby forming the thin film comprising the organic polymer film 3 on the conductive base material 2. The frequency of irradiation ultrasonic waves is preferably in the range of 5 to 100 kHz. The thickness of the organic polymer film 3 is preferably in the range of 0.001 to 1mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池、素子、電気分
解に用いることができる有機高分子膜からなる薄膜電極
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, a device, a thin film electrode comprising an organic polymer film which can be used for electrolysis, and a method for producing the same.

【0002】[0002]

【従来の技術】例えば、導電性基材上に芳香族有機高分
子薄膜などのような有機高分子薄膜を形成した電極は、
通常の金属電極にはない3次元的な構造を有しており、
その中に種々の触媒や導電性物質、光応答性材料を取り
込める性質があるため、新規な機能性材料として注目さ
れている(高分子機能電極、高分子学会編、1983、
学会出版センター刊、第3章、p.39、第5章、p.
95、第6章、p.117)。現在では、このような種
類の電極は、ポリマー電池材料、電子デバイスとしての
エレクトロクロミズム素子、選択性を生かしたセンサ
ー、電解合成用電極材料などへの利用が盛んに行われて
いる。有機ポリマー電池では従来の無機系電池に比較し
て格段に軽量化できることが報告されている(日本化学
会、化学と工業、1996、第49巻、12号、p.1
643)。
2. Description of the Related Art For example, an electrode in which an organic polymer thin film such as an aromatic organic polymer thin film is formed on a conductive substrate,
It has a three-dimensional structure not found in ordinary metal electrodes,
Among them, it has the property of being able to incorporate various catalysts, conductive substances, and photoresponsive materials, and is attracting attention as a novel functional material (Polymer Functional Electrode, edited by The Society of Polymer Science, 1983,
Published by Gakkai Shuppan Center, Chapter 3, p. 39, Chapter 5, p.
95, Chapter 6, p. 117). At present, these types of electrodes are actively used for polymer battery materials, electrochromic elements as electronic devices, sensors utilizing selectivity, electrode materials for electrolytic synthesis, and the like. It has been reported that organic polymer batteries can be significantly reduced in weight compared to conventional inorganic batteries (The Chemical Society of Japan, Chemistry and Industry, 1996, Vol. 49, No. 12, p. 1).
643).

【0003】このような有機高分子薄膜電極は、いずれ
の用途においても有機高分子薄膜の均一性、特性が安定
していることが期待されている。製法としては、原料で
あるモノマー(重合により有機高分子を形成し得る有機
化合物)を溶解した電解液に基材を陽極として浸漬し、
適当な電流を付加する。電解条件を決めることにより、
ある程度再現性のある薄膜が得られているが、機械的強
度、構造の均一性の面では不十分な面があり、特に低密
度であることは致命的であり、これを改善する必要があ
った。
[0003] Such an organic polymer thin film electrode is expected to have stable organic polymer thin film uniformity and characteristics in any application. As a production method, the base material is immersed in an electrolytic solution in which a monomer (an organic compound capable of forming an organic polymer by polymerization) as a raw material is dissolved,
Appropriate current is applied. By determining the electrolysis conditions,
Although a reproducible thin film has been obtained to some extent, it has insufficient mechanical strength and structural uniformity, and particularly low density is fatal and needs to be improved. Was.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述した従
来技術の種々の問題点を解消し、高密度で均一性の高い
有機高分子薄膜電極とその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned various problems of the prior art and to provide a high-density, highly uniform organic polymer thin film electrode and a method for producing the same. .

【0005】[0005]

【問題を解決するための手段】本発明の特徴を分かり易
く述べると、つぎのようになる。 1)導電性基材の上に有機高分子の薄膜を形成するため
に、超音波を照射しながら電気化学的に有機高分子の薄
膜を形成した電解重合膜電極であり、 2)導電性基材の上に有機高分子の薄膜を形成するため
に、超音波を照射しながら電気化学的にこれを行うこと
を特徴とする電解重合膜の製造方法である。具体的に
は、 3)電解重合物がポリアニリン、ポリフェノールあるい
はポリピロールであり、その厚さが0.001〜1mm
であり、 4)5kHz〜100kHzの超音波を照射することを
特徴とする製造方法である。金属の電気メッキでは超音
波を照射することにより、良好なメッキ層の得られるこ
とは知られているが、有機高分子薄膜電極では先例はな
い。
SUMMARY OF THE INVENTION The features of the present invention will be described in the following. 1) an electropolymerized membrane electrode formed by electrochemically forming an organic polymer thin film while irradiating ultrasonic waves to form an organic polymer thin film on a conductive substrate; This is a method for producing an electrolytic polymerized film, which comprises electrochemically performing irradiation with ultrasonic waves to form a thin film of an organic polymer on a material. Specifically, 3) the electrolytic polymer is polyaniline, polyphenol or polypyrrole, and its thickness is 0.001 to 1 mm
And 4) irradiating ultrasonic waves of 5 kHz to 100 kHz. It is known that a good plating layer can be obtained by irradiating ultrasonic waves in metal electroplating, but there is no precedent for an organic polymer thin film electrode.

【0006】[0006]

【発明の実施の形態】以下にその具体的製造方法の一例
を示す。図1は本電極の製作セルの一例を示すもので、
縦断面図を示している。導電性基材として厚さ0.1m
mの白金板2上に厚さ0.01mmのポリアニリン薄膜
3を形成した有機高分子薄膜電極1を示す。電極基体と
する導電性基材としては、白金、チタン、ニオブ、タン
タル、ステンレス鋼、ニッケル、ジルコニウム、カーボ
ン、銀などの耐食性を有する板、金網、それらの粉末か
ら成る焼結体、金属繊維焼結体、発泡体等の多孔性材料
を用いることができる。対極には安定な白金、銅、銀、
ニッケルなどの板を用いる。電気化学的処理する際に
は、前処理としてその表面を脱脂、研磨することが好ま
しい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a specific manufacturing method will be described below. FIG. 1 shows an example of a production cell of the present electrode.
It shows a longitudinal section. 0.1m thickness as conductive substrate
1 shows an organic polymer thin film electrode 1 in which a 0.01 mm thick polyaniline thin film 3 is formed on a platinum plate 2 of m. Examples of the conductive base material used as the electrode base include a plate, a wire net, a sintered body made of the powder, a sintered body made of the powder, a metal fiber sintered body, such as platinum, titanium, niobium, tantalum, stainless steel, nickel, zirconium, carbon and silver. A porous material such as a binder or a foam can be used. The opposite pole is stable platinum, copper, silver,
A plate made of nickel or the like is used. When performing the electrochemical treatment, it is preferable that the surface is degreased and polished as a pretreatment.

【0007】安定性、経済性の観点から、電気化学的処
理用(電解重合用)の電解液としては、目的の高分子の
原料であるモノマーを0.01〜1M、電解質として適
宜に酸、塩基、塩を0.05〜10M、モノマーが水に
不溶である場合は適宜に極性有機溶媒を加えて調製す
る。適度に攪拌しながら電解重合させる。この間、電極
電位を反応が進行できる電位に保持するか、或いは電位
を繰り返し掃引することが好ましい。この「電位を繰り
返し掃引する」とは、電位を高い値から低い値(最低は
0)に順次低下させ、再び高い値に順次戻し、この変動
を繰り返すことをいう。このとき超音波発生端子を挿入
し発振させておく。振動数、エネルギー出力としては、
製造条件下においてキャビテーションが生起するように
選択する。その超音波の周波数としては、5kHz〜1
00kHzの範囲とすることが好ましい。電解後は生成
した電解重合膜を溶媒で十分に洗浄する。
From the viewpoints of stability and economy, the electrolytic solution for electrochemical treatment (for electrolytic polymerization) contains 0.01 to 1M of a monomer which is a raw material of a target polymer, and an acid, When the base and the salt are 0.05 to 10M and the monomer is insoluble in water, it is prepared by appropriately adding a polar organic solvent. Electropolymerize with moderate stirring. During this time, it is preferable to maintain the electrode potential at a potential at which the reaction can proceed, or to repeatedly sweep the potential. The term “repeatedly sweeping the potential” means that the potential is sequentially reduced from a high value to a low value (the minimum is 0), and then returned to a high value again, and this change is repeated. At this time, the ultrasonic generating terminal is inserted and oscillated. As frequency and energy output,
The choice is made so that cavitation occurs under the manufacturing conditions. The frequency of the ultrasonic wave is 5 kHz to 1
It is preferable to be in the range of 00 kHz. After the electrolysis, the formed electropolymerized film is sufficiently washed with a solvent.

【0008】本発明による有機高分子薄膜の密度を測定
したところ、超音波を照射しない場合に比較して10倍
以上の値となり、配向が整っているため透過性も向上す
ることが観察された。配向性が改善される理由としては
十分に解明されていないため不明な点があるが、超音波
によりモノマーが緻密に重なり合い、同一方向に規則正
しく重合反応が進行するのであると推定される。本発明
による電気化学的処理においては電解重合が行われる
が、その反応は電解酸化に伴って重合が行われるため
に、その重合により生成する有機高分子としては、一般
的には芳香族有機高分子であり、酸化部位を有するもの
であって、この点から本発明においては芳香族有機酸化
高分子が生成しているものが好ましい。本発明により得
られる有機高分子薄膜としては、ポリアニリン、ポリフ
ェノール、ポリピロール、ポリチオフェン、ポリフェニ
レンビニレン、ポリフェニレンアセチレン、ポリアセチ
レンなどの薄膜が挙げられ、このうち、好ましくはポリ
アニリン、ポリフェノール、ポリピロールの薄膜が挙げ
られる。
When the density of the organic polymer thin film according to the present invention was measured, the density was 10 times or more as compared with the case where no ultrasonic wave was irradiated, and it was observed that the transmittance was improved because the orientation was adjusted. . The reason why the orientation is improved has not been sufficiently elucidated, and thus there is no known point. However, it is presumed that the monomers are densely overlapped by ultrasonic waves and the polymerization reaction proceeds regularly in the same direction. In the electrochemical treatment according to the present invention, electrolytic polymerization is carried out. Since the reaction is carried out in conjunction with electrolytic oxidation, the organic polymer produced by the polymerization is generally an aromatic organic polymer. It is a molecule having an oxidized site, and in this respect, a molecule in which an aromatic organic oxidized polymer is generated is preferable in the present invention. Examples of the organic polymer thin film obtained by the present invention include thin films of polyaniline, polyphenol, polypyrrole, polythiophene, polyphenylenevinylene, polyphenyleneacetylene, polyacetylene, and the like, and among them, thin films of polyaniline, polyphenol, and polypyrrole are preferable.

【0009】[0009]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこれらの実施例のみに限定される
ものではない。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to only these examples.

【0010】実施例1 厚さ0.1mmで高さ、幅が1cmの白金製の板を基体
とし、前処理として表面を脱脂後、0.5ミクロンのア
ルミナ研磨剤で研磨した。この白金板を陽極として用
い、対極にも同様な白金板を用いた。電極間距離を2c
mとした。電解液としてはアニリン0.1M、電解質と
して塩酸4Mを用いる。適度に攪拌しながら、電極電位
を0.0〜1.0V(vs.SCE電位基準)の範囲に
保ちながら、0.1V/sec.の速度で繰り返し掃引
を50回行った。このとき電極から1cm離れた位置に
超音波発生端子を掃引し発振させた。振動数としては、
20kHz、エネルギー出力としては7Wであった。終
了後の分析では厚さとしては5ミクロンで良好な均一性
及び高密度の薄膜が得られた。電解後はアセトンで十分
に洗浄した。電流電位曲線から求められる電気化学的な
活性容量は3.8×10-3A/cm2 であった。この電
解重合により得られたポリアニリン薄膜の密度を測定し
たところ、0.1g/cm3 であり、超音波を照射しな
い場合に比較して10倍の値となり、ほぼ理論的に予想
される密度となった。配向が整っているため透過性も向
上することが観察された。前記薄膜の密度としては、理
論的には10%の充実率であった。
Example 1 A platinum plate having a thickness of 0.1 mm, a height and a width of 1 cm was used as a substrate, and the surface was degreased as a pretreatment, and then polished with a 0.5 micron alumina abrasive. This platinum plate was used as an anode, and a similar platinum plate was used as a counter electrode. 2c distance between electrodes
m. Aniline 0.1 M is used as an electrolyte, and 4 M hydrochloric acid is used as an electrolyte. While maintaining the electrode potential in the range of 0.0 to 1.0 V (vs. SCE potential reference) with appropriate stirring, 0.1 V / sec. The sweep was repeated 50 times at a speed of. At this time, the ultrasonic wave generating terminal was swept to a position 1 cm away from the electrode and oscillated. As the frequency,
20 kHz and energy output was 7 W. After the analysis, a thin film with good uniformity and high density was obtained with a thickness of 5 microns. After the electrolysis, it was sufficiently washed with acetone. The electrochemically active capacity determined from the current-potential curve was 3.8 × 10 −3 A / cm 2 . When the density of the polyaniline thin film obtained by this electrolytic polymerization was measured, it was 0.1 g / cm 3 , which was 10 times the value in the case where no ultrasonic wave was irradiated. became. It was observed that the transmittance was improved because the orientation was adjusted. The density of the thin film was theoretically 10%.

【0011】比較例1 超音波を利用しなかった事及び電位掃引を15回とした
こと以外は実施例1と同様な方法で、活性容量(3.8
×10-3A/cm2 )を有するポリアニリン薄膜を合成
したところ、終了後の分析では、厚さとしては40ミク
ロンであったが、一部剥離が生じていた。不透明であ
り、機械強度が乏しかった。良好な均一性及び高密度の
薄膜は得られなかった。膜の密度としては、0.01g
/cm3 であり、1%の充実率であった。
Comparative Example 1 An active capacity (3.8) was obtained in the same manner as in Example 1 except that no ultrasonic wave was used and the potential sweep was performed 15 times.
When a polyaniline thin film having (× 10 −3 A / cm 2 ) was synthesized, the analysis after the completion showed that the thickness was 40 μm, but some peeling occurred. It was opaque and had poor mechanical strength. A thin film with good uniformity and high density was not obtained. The density of the film is 0.01 g
/ Cm 3, which is a 1% fulfillment rate.

【0012】実施例2 正逆電位掃引する代わりに一定電流密度1mA/c
2 、15分とした以外は実施例1と同様にしてポリア
ニリン薄膜を合成した。このときの電極電位は0.85
Vvs.SCEに保持され、不変であった。生成した膜
の活性容量と密度は実施例1と同様のものが得られた。 比較例2 超音波を照射しなかったこと以外は実施例2と同様にし
てポリアニリン薄膜を合成した。このときの薄膜の活性
容量と密度は、実施例2の各々約1/2及び1/6であ
った。
Example 2 Instead of sweeping forward and reverse potentials, a constant current density of 1 mA / c
A polyaniline thin film was synthesized in the same manner as in Example 1 except that m 2 and 15 minutes were used. The electrode potential at this time is 0.85
Vvs. Retained by SCE and unchanged. The active capacity and density of the formed film were the same as those in Example 1. Comparative Example 2 A polyaniline thin film was synthesized in the same manner as in Example 2 except that no ultrasonic wave was applied. The active capacity and density of the thin film at this time were about 1 / and 及 び of Example 2, respectively.

【0013】実施例3 電解液としてN−メチルピロール0.05M、電解質と
してテトラエチルアンモニム過塩素酸塩0.1Mを加え
たアセトニトリルを用い、0.0〜0.85Vvs.S
CEの電位範囲としたこと以外は、実施例1と同様にし
て重合した。得られたポリ−N−メチルピロール膜は活
性容量が5.0×10-3A/cm2 、膜厚10ミクロ
ン、密度0.15g/cm3 であった。 比較例3 超音波を照射しなかったことおよび掃引回数を20回と
したこと以外は、実施例3と同様にしてポリ−N−メチ
ルピロール膜薄膜を合成した。得られたポリ−N−メチ
ルピロール膜は、活性容量が4.8×10-3A/c
2 、膜厚70ミクロン、密度0.02g/cm3 であ
った。
EXAMPLE 3 Acetonitrile containing 0.05 M of N-methylpyrrole as an electrolytic solution and 0.1 M of tetraethylammonium perchlorate as an electrolyte was used. S
Polymerization was carried out in the same manner as in Example 1 except that the potential range of CE was set. The obtained poly-N-methylpyrrole film had an active capacity of 5.0 × 10 −3 A / cm 2 , a film thickness of 10 μm, and a density of 0.15 g / cm 3 . Comparative Example 3 A poly-N-methylpyrrole film thin film was synthesized in the same manner as in Example 3 except that no ultrasonic wave was applied and the number of sweeps was set to 20 times. The obtained poly-N-methylpyrrole film has an active capacity of 4.8 × 10 −3 A / c.
m 2 , thickness 70 μm, density 0.02 g / cm 3 .

【0014】[0014]

【発明の効果】本発明の電気化学処理方法により得られ
る有機高分子薄膜電極は、従来の電解重合法により得ら
れている有機高分子薄膜に比較して密度が高く、活性容
量も大きく、電池材料としては出力容量を大きくできる
ため、工業的利用価値が高い。性能が安定しており、セ
ンサーなどの検出機能の再現性が向上している。また、
本発明の有機高分子薄膜電極の製造方法は、これまでの
電解重合法について超音波を照射しながら行えばよいの
で、その簡単に行えることができ、しかも従来よりも密
度が高く、活性容量も大きい有機高分子薄膜電極を得る
ことができる。
The organic polymer thin film electrode obtained by the electrochemical treatment method of the present invention has a higher density and a larger active capacity than the organic polymer thin film obtained by the conventional electrolytic polymerization method. As a material, the output capacity can be increased, so that it has high industrial use value. The performance is stable, and the reproducibility of detection functions such as sensors is improved. Also,
The method for producing an organic polymer thin film electrode of the present invention can be performed easily by irradiating ultrasonic waves with respect to the conventional electrolytic polymerization method. A large organic polymer thin film electrode can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機高分子薄膜電極の縦断面図を示
す。
FIG. 1 is a longitudinal sectional view of an organic polymer thin film electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 有機高分子薄膜電極 2 導電性基材 3 有機高分子薄膜 1 Organic polymer thin film electrode 2 Conductive substrate 3 Organic polymer thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 尚武 愛知県名古屋市天白区久方2−2 豊田工 業大学第2久方寮102 (72)発明者 関本 正生 神奈川県大和市福田2−33−11 (72)発明者 錦 善則 神奈川県藤沢市藤沢1−1−23−304 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naotake Sato 2-2 Kugakata, Tenpaku-ku, Nagoya-shi, Aichi 102 102 Kumagata Dormitory 2, Toyota Technological University (72) Inventor Masao Sekimoto 2-Fukuda, Yamato-shi, Kanagawa 33-11 (72) Inventor Yoshinori Nishiki 1-1-23-304 Fujisawa, Fujisawa-shi, Kanagawa

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性基材上に、超音波を照射しながら
電気化学的に形成した有機高分子膜を有することを特徴
とする薄膜電極。
1. A thin film electrode comprising an organic polymer film electrochemically formed on a conductive substrate while being irradiated with ultrasonic waves.
【請求項2】 前記有機高分子膜が芳香族有機酸化高分
子であることを特徴とする請求項1の薄膜電極。
2. The thin film electrode according to claim 1, wherein said organic polymer film is an aromatic organic oxide polymer.
【請求項3】 前記有機高分子膜の厚さが0.001〜
1mmであることを特徴とする請求項1又は請求項2の
薄膜電極。
3. The method according to claim 1, wherein said organic polymer film has a thickness of 0.001 to 0.001.
The thin-film electrode according to claim 1 or 2, wherein the thickness is 1 mm.
【請求項4】 有機高分子膜からなる薄膜を有する薄膜
電極の製造に当たり、前記有機高分子を形成し得る有機
化合物の電解重合を超音波を照射しながら行うことによ
り導電性基材上に有機高分子膜からなる薄膜を形成する
ことを特徴とする薄膜電極の製造方法。
4. In producing a thin-film electrode having a thin film composed of an organic polymer film, an organic compound capable of forming the organic polymer is subjected to electrolytic polymerization while irradiating ultrasonic waves, thereby forming an organic polymer on the conductive substrate. A method for manufacturing a thin film electrode, comprising forming a thin film made of a polymer film.
【請求項5】 照射する超音波の周波数が5kHz〜1
00kHzであることを特徴とする請求項4の薄膜電極
の製造方法。
5. The ultrasonic wave to be irradiated has a frequency of 5 kHz to 1
5. The method according to claim 4, wherein the frequency is 00 kHz.
JP9063074A 1997-03-17 1997-03-17 Organic polymer thin film electrode and its manufacture Pending JPH10261417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9063074A JPH10261417A (en) 1997-03-17 1997-03-17 Organic polymer thin film electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9063074A JPH10261417A (en) 1997-03-17 1997-03-17 Organic polymer thin film electrode and its manufacture

Publications (1)

Publication Number Publication Date
JPH10261417A true JPH10261417A (en) 1998-09-29

Family

ID=13218843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9063074A Pending JPH10261417A (en) 1997-03-17 1997-03-17 Organic polymer thin film electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPH10261417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510141A (en) * 2008-01-22 2011-03-31 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for producing conductive polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510141A (en) * 2008-01-22 2011-03-31 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for producing conductive polymer
JP2014159567A (en) * 2008-01-22 2014-09-04 Hc Starck Clevios Gmbh Method for producing electroconductive polymer

Similar Documents

Publication Publication Date Title
EP2909364B1 (en) Electropolymerization of a coating onto an electrode material
US4749451A (en) Electrochemical coating of carbon fibers
JPS63249323A (en) Solid electrolytic capacitor
Sakmeche et al. Usefulness of aqueous anionic micellar media for electrodeposition of poly-(3, 4-ethylenedioxythiophene) films on iron, mild steel and aluminium
US4728399A (en) Preparation of laminates of metals and electrically conductive polymers
JPH0831400B2 (en) Solid electrolytic capacitor
Arrieta Almario et al. Study of kinetic formation and the electrochemical behavior of polypyrrole films
US5189770A (en) Method of making solid electrolyte capacitor
US5166008A (en) Polymer gel-coated conductor, method of producing the same, and electric cell making use of the same
Aynaou et al. Nucleation, growth and electrochemical performances of polyaniline electrodeposited on ITO substrate
JPH10261417A (en) Organic polymer thin film electrode and its manufacture
JPH0678493B2 (en) Method for producing conductive polymer composition
JPH0467767B2 (en)
US4753715A (en) Process for the production of electrically conducting organic polymer compounds as thick film electrode materials for rechargeable galvanic elements
US5961810A (en) Method for fabricating a conductive polymer energy storage device
JP3076873B2 (en) Supporting electrolyte composition for manufacturing solid electrolytic capacitors
Atobe et al. Preparation and Application of Electroconductive Films Electrooxidatively Polymerized in Ultrasonic and Centrifugal Acceleration Fields
Aouzal et al. Electrochemical, spectroscopic and microscopic investigation of PEDOT coated nickel plate from aqueous micellar solutions and its anti-corrosion performances
AU573623B2 (en) Preparation of nickel-oxide hydroxide electrode
JP3242432B2 (en) Method for manufacturing solid electrolytic capacitor
JP2809958B2 (en) Method for producing polypyrrole molded article
GB2217333A (en) Polymer-gel-coated conductor
JP2653048B2 (en) Conductive polymer composite and method for producing the same
JPH01157060A (en) Polyaniline electrode
JP2783038B2 (en) Capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050406