JPH10260744A - Overvoltage protector for reactive power compensator - Google Patents

Overvoltage protector for reactive power compensator

Info

Publication number
JPH10260744A
JPH10260744A JP9064061A JP6406197A JPH10260744A JP H10260744 A JPH10260744 A JP H10260744A JP 9064061 A JP9064061 A JP 9064061A JP 6406197 A JP6406197 A JP 6406197A JP H10260744 A JPH10260744 A JP H10260744A
Authority
JP
Japan
Prior art keywords
main switch
svc
reactive power
thyristor
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9064061A
Other languages
Japanese (ja)
Other versions
JP3531404B2 (en
Inventor
Hirayuki Nakajima
平之 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP06406197A priority Critical patent/JP3531404B2/en
Publication of JPH10260744A publication Critical patent/JPH10260744A/en
Application granted granted Critical
Publication of JP3531404B2 publication Critical patent/JP3531404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Power Conversion In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the voltage increase of power distribution system generated in the case of disconnection from the power distribution system through the main switch of reactive power compensator (SVC), the increase of voltage inside the SVC and the insulation breakdown of main switch or the like. SOLUTION: This device is provided with a reactive power detecting means for detecting the quantity of generated reactive power and a thyristor phase control circuit 17 for turning the quantity of generated reactive power just before the open of main switch 10 to 0 (KVAR) corresponding to a signal from an auxiliary contact linked with the main switch 10 and while suppressing the voltage fluctuation of power distribution system in the case of disconnecting the power distribution system of SVC through the main switch 10, by continuously generating the gate point arc pulse of thyristor 4 with the same phase even after the open of main switch 10, electrostatic energy residual inside the SVC is safely discharged so that the voltage increase of power distribution system or SVC inside and the insulation breakdown of main switch can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は配電系統の無効電力
調整や電圧安定のために供せられる無効電力補償装置の
過電圧保護装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overvoltage protection device for a reactive power compensator provided for adjusting reactive power and stabilizing voltage of a distribution system.

【0002】[0002]

【従来の技術】従来、無効電力補償装置を配電系統の母
線から主開閉器で開放するために、過電圧による破損防
止を行う過電圧保護装置として、特開平5−43211
号公報、特開平5−143183号公報、特開平7−2
36225号公報等に開示された装置が用いられた。
2. Description of the Related Art Conventionally, as an overvoltage protection device for preventing breakage due to overvoltage in order to open a reactive power compensator from a bus of a distribution system by a main switch, Japanese Patent Laid-Open No. 5-43211 is disclosed.
JP, JP-A-5-143183, JP-A-7-2
An apparatus disclosed in, for example, Japanese Patent No. 36225 is used.

【0003】以下それらの装置について図9,図10,
図11を参照しながら説明する。まず、第1従来例は図
9(特開平5−43211号公報)に示すように、サイ
リスタ4の両電極間に、主開閉器10の開放と同時に閉
じられ所定時間経過後に開放されるサイリスタ4の保護
スイッチ11を設けたものである。
[0003] These devices will be described below with reference to FIGS.
This will be described with reference to FIG. First, as shown in FIG. 9 (Japanese Unexamined Patent Application Publication No. 5-43211), the first conventional example is a thyristor 4 that is closed between the two electrodes of the thyristor 4 at the same time when the main switch 10 is opened and is opened after a lapse of a predetermined time. Is provided.

【0004】この第1従来例の構成は、無効電力補償装
置(SVC)のサイリスタ制御リアクトルTCRとフィ
ルタFCを、共通の主開閉器10を介して配電系統の母
線3に並列接続した場合に、主開閉器10の開放時に、
フィルタFC内の進相コンデンサ6に蓄積されたエネル
ギによってSVC内で共振が起こり、これによって発生
する過電圧からサイリスタ4を保護するサイリスタ過電
圧防止回路を開示している。
[0004] The configuration of the first conventional example is such that when a thyristor control reactor TCR of a reactive power compensator (SVC) and a filter FC are connected in parallel to a bus 3 of a power distribution system via a common main switch 10. When the main switch 10 is opened,
A thyristor overvoltage protection circuit that protects the thyristor 4 from overvoltage generated by resonance generated in the SVC by energy stored in the phase advance capacitor 6 in the filter FC is disclosed.

【0005】また、第2従来例は図10(特開平5−1
43183号公報)に示すように、サイリスタ制御リア
クトルTCRと並列に、SVCの並列共振周波数を小さ
くする並列コンデンサ12を設けたものである。
A second prior art example is shown in FIG.
No. 43183), a parallel capacitor 12 for reducing the parallel resonance frequency of the SVC is provided in parallel with the thyristor control reactor TCR.

【0006】この第2従来例の構成により、SVCのサ
イリスタ制御リアクトルTCRとフィルタFCを、共通
の主開閉器10を介して配電系統の母線3に並列接続し
た場合に、主開閉器10の開放時に、フィルタFC内の
進相コンデンサ6に蓄積されたエネルギによって発生す
る並列共振による過電圧のピーク値を抑制し、過電圧か
らサイリスタ4を保護する構成としたものである。
According to the configuration of the second conventional example, when the thyristor control reactor TCR of the SVC and the filter FC are connected in parallel to the bus 3 of the distribution system via the common main switch 10, the main switch 10 is opened. Sometimes, the peak value of the overvoltage due to the parallel resonance generated by the energy stored in the phase advance capacitor 6 in the filter FC is suppressed, and the thyristor 4 is protected from the overvoltage.

【0007】さらに、第3従来例は図11(特開平7−
236225号公報)に示すように、過電圧検出時の切
離シーケンスを、フィルタFCを始めに遮断器14で切
離し、この切離し終了後に、サイリスタ制御リアクトル
TCRへの点弧パルスの供給を停止し、サイリスタ制御
リアクトルTCRの電流が0になった後に、このサイリ
スタ制御リアクトルTCRを遮断機13によって切離す
手順とする構成である。
Further, a third conventional example is shown in FIG.
As shown in JP-A-236225), the disconnection sequence at the time of overvoltage detection is disconnected by the circuit breaker 14 first using the filter FC, and after the disconnection is completed, the supply of the firing pulse to the thyristor control reactor TCR is stopped. After the current of the control reactor TCR becomes 0, the thyristor control reactor TCR is disconnected by the circuit breaker 13.

【0008】この第3従来例の構成により、系統の母線
の過電圧発生時に、SVCを配電系統の母線から切離す
場合において、遅相分を供給するサイリスタ制御リアク
トルTCRの点弧パルスを先に停止させる必要のため、
この後に開放されるSVCのフィルタFC内の進相コン
デンサによって過電圧が助長される減少をなくすもので
ある。
According to the configuration of the third conventional example, when the SVC is disconnected from the bus of the distribution system when an overvoltage occurs in the bus of the system, the firing pulse of the thyristor control reactor TCR for supplying the delayed phase is stopped first. Because of the need to
This prevents the reduction in overvoltage that is promoted by the phase-advancing capacitor in the SVC filter FC that is opened thereafter.

【0009】[0009]

【発明が解決しようとする課題】従来、SVCを開閉器
で開放する際には、第1にSVCの配電系統からの切離
し時の系統電圧動揺を半減する必要があった。
Conventionally, when an SVC is opened by a switch, first, it is necessary to halve system voltage fluctuations when the SVC is disconnected from a power distribution system.

【0010】また第2にSVC内部のコンデンサのエネ
ルギを安全に放電して過電圧からSVC内部機器を防護
する必要があった。
Second, it is necessary to safely discharge the energy of the capacitor inside the SVC to protect the SVC internal equipment from overvoltage.

【0011】さらに、第3に開閉器の遮断容量を少なく
する必要があった。以上3点のいずれかの課題を解決す
るため図9ないし図11に開示された手段が用いられて
いた。
Third, it is necessary to reduce the breaking capacity of the switch. The means disclosed in FIGS. 9 to 11 has been used to solve any of the above three problems.

【0012】ところが、第1従来例では、主開閉器10
に進相コンデンサ6に対する十分な遮断容量が必要であ
ること、およびサイリスタ4の保護スイッチ11が機械
式であるために、信頼性が低い等の課題があった。
However, in the first conventional example, the main switch 10
However, there are problems such as the fact that a sufficient breaking capacity for the phase-advancing capacitor 6 is required and that the protection switch 11 of the thyristor 4 is of a mechanical type, so that its reliability is low.

【0013】また、第2従来例では、主開閉器10に進
相コンデンサ6に対する十分な遮断容量が必要でるこ
と、および過電圧のピークのみが抑えられるが、過電圧
そのものを抑制しているわけではない等の課題があっ
た。
In the second conventional example, the main switch 10 requires a sufficient breaking capacity for the phase-advancing capacitor 6 and only the peak of the overvoltage is suppressed, but the overvoltage itself is not suppressed. And other issues.

【0014】さらに、第3従来例では、遮断器13に進
相コンデンサ6に対する十分な遮断容量が必要であるこ
と、および遮断器13、14の2台が必要であることや
系統母線の電圧がフィルタFCを切離した後にサイリス
タ制御リアクトルTCRを切離すまで、急激に変動する
ことや、複雑な切離シーケンス回路が必要なこと等の課
題ががあった。
Further, in the third conventional example, it is necessary that the breaker 13 has a sufficient breaking capacity for the phase advance capacitor 6, that two breakers 13 and 14 are required, and that the voltage of the system bus is reduced. There have been problems such as abrupt fluctuation and a necessity of a complicated disconnection sequence circuit until the thyristor control reactor TCR is disconnected after the filter FC is disconnected.

【0015】本発明は上記課題を解決するもので、配電
系統からSVCを開放するために、複雑な切離しシーケ
ンスが不要で開閉器の遮断容量も少なくて良く、再点弧
などの事故を起こさず、1個の開閉器で開放できるSV
Cの過電圧防止装置を提供することを目的とする。
The present invention solves the above-mentioned problems. Since the SVC is released from the power distribution system, a complicated disconnection sequence is not required, the breaking capacity of the switch can be reduced, and an accident such as re-ignition does not occur. SV that can be opened with one switch
An object of the present invention is to provide a C overvoltage protection device.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、無効電力発生量を検出する無効電力検出
手段と、この無効電力検出手段の信号と主開閉器に連動
する補助接点との信号により、主開閉器の開放時前の無
効電力発生量を、0(KVar)にするようにサイリスタの
ゲート点弧パルスを発生し、主開閉器の開放後も、同様
に引続き同位相でサイリスタのゲート点弧パルスを発生
し続けるサイリスタ位相制御回路とを備えたものであ
る。
In order to achieve the above object, the present invention provides a reactive power detecting means for detecting an amount of reactive power generated, and an auxiliary contact interlocked with a signal of the reactive power detecting means and a main switch. , The thyristor gate firing pulse is generated so that the reactive power generation amount before the main switch is opened becomes 0 (KVar), and the same phase continues after the main switch is opened. And a thyristor phase control circuit that continuously generates a gate firing pulse for the thyristor.

【0017】[0017]

【発明の実施の形態】上記した構成により、サイリスタ
位相制御回路はSVCのフィルタの進相コンデンサによ
る進み無効電力発生量とサイリスタ制御リアクトルによ
る遅れ無効電力発生量を相殺させて0(KVar)とするよ
うに、サイリスタの点弧パルスを制御するため、SVC
の主開閉器の開放時に内部に過電圧を発生させることな
く、遮断容量の少ない主開閉器で信頼性良く開放を可能
にする作用を有するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS With the above configuration, the thyristor phase control circuit cancels the amount of advanced reactive power generated by the phase advance capacitor of the SVC filter and the amount of delayed reactive power generated by the thyristor control reactor to 0 (KVar). In order to control the firing pulse of the thyristor,
When the main switch is opened, an overvoltage is not generated inside the main switch, and the main switch having a small breaking capacity has an operation of reliably opening.

【0018】(実施の形態)以下、本発明の実施の形態
について図1から図8を参照しながら説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS.

【0019】図1は一般的なSVCへの適用を示し、図
2は高調波出力を抑制したSVCへの適用を示す。ま
た、図1および図2について開放動作は同一であるの
で、図1に沿って実施の形態を説明する。
FIG. 1 shows an application to a general SVC, and FIG. 2 shows an application to an SVC with suppressed harmonic output. Since the opening operation is the same for FIGS. 1 and 2, the embodiment will be described with reference to FIG.

【0020】図1において、SVCの設置点の無効電力
発生量を検出する無効電力検出手段として計器用変流器
CTと計器用変圧器VTと無効電力演算回路を有し、こ
の無効電力演算回路23の信号と主開閉器10の補助接
点20からの信号により、SVCの無効電力発生量を0
(KVar)にするようにサイリスタ4のゲート点弧パルス
を発生し、主開閉器の開放後も引続き同位相でゲート点
弧パルスを発生し続けるサイリスタ位相制御回路17を
備えたものである。
In FIG. 1, as reactive power detecting means for detecting the amount of reactive power generated at the installation point of the SVC, there are a current transformer CT, a transformer VT, and a reactive power calculation circuit. 23 and the signal from the auxiliary contact 20 of the main switch 10, the reactive power generation amount of the SVC is reduced to 0.
(KVar). The thyristor 4 includes a thyristor phase control circuit 17 that generates a gate firing pulse of the thyristor 4 and continues to generate a gate firing pulse in the same phase even after the main switch is opened.

【0021】なお、図1では降圧用トランス5とサイリ
スタ4のサイリスタ制御リアクタTCRに進相コンデン
サ6と直列リアクトル7とのフィルタFCを並列に接続
した一般的なSVCを示す。
FIG. 1 shows a general SVC in which a filter FC of a phase advance capacitor 6 and a series reactor 7 is connected in parallel to a step-down transformer 5 and a thyristor control reactor TCR of the thyristor 4.

【0022】また、図2では図1とは異なるSVCで、
降圧用トランス5と高調波吸収用リアクトルL1,L2
とサイリスタ4を直列に接続し、高調波吸収用リアクト
ルL2とサイリスタ4に並列に、直列リアクトル7と進
相コンデンサ6よりなるフィルタFCを接続した構成で
あり、高調波出力を吸収できる構成としたものである。
FIG. 2 shows an SVC different from that of FIG.
Step-down transformer 5 and reactors L1 and L2 for harmonic absorption
And a thyristor 4 are connected in series, and a filter FC including a series reactor 7 and a phase-advancing capacitor 6 is connected in parallel with the reactor L2 for harmonic absorption and the thyristor 4, so that the harmonic output can be absorbed. Things.

【0023】この構成により、主開閉器10の開放前
に、補助接点20より、開閉器切りの信号がサイリスタ
位相制御回路17に伝達される。さらに、このサイリス
タ位相制御装置17は無効電力演算回路23からの信号
により、SVCの無効電力出力が0(KVar)になるよう
にサイリスタ4のゲート点弧パルスを発生する。そし
て、SVCのサイリスタ4は高速で動作するので、主開
閉器10が開放される前に、SVCの出力を0(KVar)
にするため、主開閉器10は電流0にて、開放されるも
のである。
With this configuration, a switch-off signal is transmitted from the auxiliary contact 20 to the thyristor phase control circuit 17 before the main switch 10 is opened. Further, the thyristor phase controller 17 generates a gate firing pulse of the thyristor 4 based on a signal from the reactive power calculation circuit 23 so that the reactive power output of the SVC becomes 0 (KVar). Since the thyristor 4 of the SVC operates at a high speed, the output of the SVC is set to 0 (KVar) before the main switch 10 is opened.
Therefore, the main switch 10 is opened at a current of 0.

【0024】また、主開閉器10の開放後も、同位相の
ゲート点弧パルスをサイリスタ位相制御回路17が発生
し続けるため、進相コンデンサ6のエネルギはサイリス
タ4により、放電されるものである。
Since the thyristor phase control circuit 17 continues to generate gate firing pulses of the same phase even after the main switch 10 is opened, the energy of the phase advance capacitor 6 is discharged by the thyristor 4. .

【0025】この放電は、位相制御回路17のゲート点
弧パルスが電源周波数に同期しているために、放電電圧
は電源周波数に同期する波形となる。このことにより、
主開閉器10の一次側(電源側)と二次側(SVC側)
の同相極間電圧は0(v)となる。
In this discharge, the discharge voltage has a waveform synchronized with the power supply frequency because the gate firing pulse of the phase control circuit 17 is synchronized with the power supply frequency. This allows
Primary side (power supply side) and secondary side (SVC side) of main switch 10
Is 0 (v).

【0026】図3は本発明によらない場合の主開閉器1
0の開放後のゲート点弧を行わないときのSVCの内部
電圧波形を示すものである。この図3から主開閉器10
の開放後に、系統電源電圧と異なる周波数で、波高値が
高い電圧により、進相コンデンサ6の放電が発生してい
ることが分かる。
FIG. 3 shows a main switch 1 not according to the present invention.
8 shows an internal voltage waveform of the SVC when the gate is not fired after the opening of 0. From FIG. 3, the main switch 10
It can be seen that, after the opening of the capacitor, the phase-advancing capacitor 6 has been discharged by a voltage having a higher peak value at a frequency different from the system power supply voltage.

【0027】この結果、主開閉器10の一次側(電源
側)と二次側(SVC側)、および二次側異極間で過大
な電圧が発生する結果、図4および図5に示すような再
点弧が発生する。
As a result, an excessive voltage is generated between the primary side (power supply side) and the secondary side (SVC side) of the main switch 10 and the secondary side different polarity, as shown in FIGS. 4 and 5. Re-ignition occurs.

【0028】図6は本発明による主開閉器10の開放後
のゲート点弧を0(KVar)で行ったときのSVCの内部
電圧波形である。この図6により、主開閉器10の開放
後に、系統電源電圧と同じ周波数で、波高値が開放前の
電圧より漸減しながら、進相コンデンサ6の放電が発生
していることがわかる。
FIG. 6 shows the internal voltage waveform of the SVC when the gate is fired at 0 (KVar) after the main switch 10 is opened according to the present invention. FIG. 6 shows that after the main switch 10 is opened, the phase-advancing capacitor 6 is discharged at the same frequency as the system power supply voltage while the peak value gradually decreases from the voltage before the opening.

【0029】この結果、主開閉器10の一次側(電源
側)と二次側(SVC側)間の電圧は0(v)となり、
また二次側異極電圧も開放前より低くなるので、図4お
よび図5に示すような再点弧や再発弧が発生しない。
As a result, the voltage between the primary side (power supply side) and the secondary side (SVC side) of the main switch 10 becomes 0 (v),
In addition, since the secondary side different polarity voltage becomes lower than before the opening, re-ignition and re-arcing as shown in FIGS. 4 and 5 do not occur.

【0030】図7は主開閉器10の開放後のゲート点弧
を進み無効電力発生量で実施したときのSVCの内部電
圧波形である。
FIG. 7 shows the internal voltage waveform of the SVC when the operation is performed with the amount of reactive power generated by proceeding through the gate firing after the main switch 10 is opened.

【0031】この図7により、主開閉器10の開放後に
系統電源電圧と同じ周波数で、波高値が開放前の電圧波
形より一旦急激に増加した後に漸減しながら、進相コン
デンサ6の放電が発生している。
According to FIG. 7, after the main switch 10 is opened, at the same frequency as the system power supply voltage, the peak value once increases sharply from the voltage waveform before the opening and then gradually decreases, and then the discharge of the phase advance capacitor 6 occurs. doing.

【0032】この結果主開閉器10の一次側(電源側)
と二次側(SVC側)、および二次側異極間で過大な電
圧が発生する結果、図4および図5に示すような再点弧
や再発弧が発生する。
As a result, the primary side (power supply side) of the main switch 10
As a result of the generation of an excessive voltage between the secondary side (SVC side) and the secondary side different polarity, re-ignition and re-arcing occur as shown in FIGS.

【0033】図8は、主開閉器10開放後のゲート点弧
を遅れ無効電力発生量で実施したときのSVCの内部電
圧波形である。この図8から主開閉器10の開放後に、
瞬時に進相コンデンサ6の放電が発生する。
FIG. 8 shows the internal voltage waveform of the SVC when the gate is fired after the main switch 10 is opened with the amount of delayed reactive power generated. From FIG. 8, after opening the main switch 10,
Discharge of the phase advance capacitor 6 occurs instantaneously.

【0034】この結果、主開閉器10の一次側(電源
側)と二次側(SVC側)、および二次側異極間で過大
な電圧が発生しないが、サイリスタ4の誤点弧による故
障が発生しやすい。
As a result, no excessive voltage is generated between the primary side (power supply side) and the secondary side (SVC side) of the main switch 10 and the secondary side different polarity, but the thyristor 4 fails due to erroneous firing. Is easy to occur.

【0035】上記過電圧発生の防止作用と、0(KVar)
で開放するために0電流開放となる結果、主開閉器10
の遮断責務は容易になり、主開閉器10は遮断容量の低
いもので十分である。
The function of preventing the occurrence of overvoltage and 0 (KVar)
As a result, the main switch 10
The main switching device 10 having a low breaking capacity is sufficient.

【0036】また、外部からみた、SVCの出力変動
は、主開閉器10の開放直前に0(KVar)となるだけ
で、系統電圧変動が少ない。
The output fluctuation of the SVC from the outside only becomes 0 (KVar) immediately before the main switch 10 is opened, and the system voltage fluctuation is small.

【0037】さらに、無効電力検出手段や位相制御回路
17などは、本来SVCが具備していることが通常であ
るので、主開閉器10の開放のために、複雑な切離シー
ケンスを新たに構築する必要はない。
Further, since the reactive power detecting means and the phase control circuit 17 are normally provided in the SVC, a complicated disconnection sequence is newly constructed for opening the main switch 10. do not have to.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
によれば、系統電源からSVCを切離す主開閉器の開放
前の無効電力発生量を0(KVar)とする点弧パルスを発
生し、主開閉器の開放後も引続き同位相でサイリスタの
ゲート点弧パルスを発生し続ける位相制御回路を備えた
構成により、SVCの系統母線3から主開閉器10の一
台のみでSVCを切離し、配電系統やSVC内部の過電
圧の発生を完全に防止し、遮断容量の低い開閉器を用い
ることができ、開放信頼性の高いSVCの過電圧保護装
置を実現することができる優れた効果を奏するものであ
る。
As is apparent from the above description, according to the present invention, an ignition pulse is generated in which the reactive power generation amount before opening the main switch for disconnecting the SVC from the system power supply is 0 (KVar). With the configuration including the phase control circuit that continues to generate the thyristor gate firing pulse in the same phase even after the main switch is opened, the SVC is disconnected from only the single main switch 10 from the SVC system bus 3. It has an excellent effect of completely preventing the occurrence of overvoltage in the distribution system or SVC, using a switch having a low breaking capacity, and realizing an SVC overvoltage protection device with high open reliability. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1におけるSVCの過電圧
保護装置を示す系統回路図
FIG. 1 is a system circuit diagram illustrating an SVC overvoltage protection device according to a first embodiment of the present invention.

【図2】同実施の形態における別の適用例を示す系統回
路図
FIG. 2 is a system circuit diagram showing another application example of the embodiment.

【図3】本発明によらない主開閉器開放時のSVC内部
の電圧波形図
FIG. 3 is a voltage waveform diagram inside the SVC when the main switch is opened according to the present invention.

【図4】同再点弧の例を示す電圧波形図FIG. 4 is a voltage waveform chart showing an example of restriking.

【図5】同再発弧の例を示す電圧波形図FIG. 5 is a voltage waveform diagram showing an example of the re-arcing.

【図6】本発明による主開閉器開放時のSVC内部の電
圧波形図
FIG. 6 is a voltage waveform diagram inside the SVC when the main switch is opened according to the present invention.

【図7】本発明によらない進み無効電力のSVC内部の
電圧波形図
FIG. 7 is a voltage waveform diagram inside the SVC of the advanced reactive power not according to the present invention.

【図8】本発明によらない遅れ無効電力のSVC内部の
電圧波形図
FIG. 8 is a voltage waveform diagram inside the SVC of delayed reactive power not according to the present invention.

【図9】第1従来例を示すSVCの系統回路図FIG. 9 is a system circuit diagram of an SVC showing a first conventional example.

【図10】第2従来例を示すSVCの系統回路図FIG. 10 is a system circuit diagram of an SVC showing a second conventional example.

【図11】第3従来例を示すSVCの系統回路図FIG. 11 is a system circuit diagram of an SVC showing a third conventional example.

【符号の説明】[Explanation of symbols]

4 サイリスタ 5 降圧用トランス 6 進相コンデンサ 7 直列リアクトル 10 主開閉器 17 サイリスタ位相制御装置 20 補助接点 21 計器用変流器CT(無効電力検出手段) 22 計器用変圧器VT(無効電力検出手段) 23 無効電力演算回路(無効電力検出手段) TCR サイリスタ制御リアクトル FC フィルタ REFERENCE SIGNS LIST 4 thyristor 5 step-down transformer 6 phase capacitor 7 series reactor 10 main switch 17 thyristor phase control device 20 auxiliary contact 21 instrument current transformer CT (reactive power detection means) 22 instrument transformer VT (reactive power detection means) 23 Reactive Power Calculation Circuit (Reactive Power Detection Means) TCR Thyristor Control Reactor FC Filter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無効電力発生量を検出する無効電力検出手
段と、この無効電力検出手段の信号と主開閉器に連動す
る補助接点との信号により、主開閉器の開放前の無効電
力発生量を0(KVar)にするようにサイリスタのゲート
点弧パルスを発生し、主開閉器の開放後も引続き同位相
でサイリスタのゲート点弧パルスを発生し続けるサイリ
スタ位相制御回路とを備えた無効電力補償装置の過電圧
保護装置。
A reactive power detection means for detecting a reactive power generation amount, and a reactive power generation amount before the main switch is opened, based on a signal from the reactive power detection means and a signal from an auxiliary contact linked to the main switch. A thyristor phase control circuit that generates a thyristor gate firing pulse so as to make 0 (KVar) and continues to generate a thyristor gate firing pulse in the same phase even after the main switch is opened. Overvoltage protection device for compensator.
JP06406197A 1997-03-18 1997-03-18 Overvoltage protection device for reactive power compensator Expired - Fee Related JP3531404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06406197A JP3531404B2 (en) 1997-03-18 1997-03-18 Overvoltage protection device for reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06406197A JP3531404B2 (en) 1997-03-18 1997-03-18 Overvoltage protection device for reactive power compensator

Publications (2)

Publication Number Publication Date
JPH10260744A true JPH10260744A (en) 1998-09-29
JP3531404B2 JP3531404B2 (en) 2004-05-31

Family

ID=13247210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06406197A Expired - Fee Related JP3531404B2 (en) 1997-03-18 1997-03-18 Overvoltage protection device for reactive power compensator

Country Status (1)

Country Link
JP (1) JP3531404B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559129A4 (en) * 2010-04-14 2015-07-29 Alstom Grid Oy Arrangement and method for reactive power compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559129A4 (en) * 2010-04-14 2015-07-29 Alstom Grid Oy Arrangement and method for reactive power compensation
US9257844B2 (en) 2010-04-14 2016-02-09 Alstom Grid Oy Arrangement and method for reactive power compensation

Also Published As

Publication number Publication date
JP3531404B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
EP3107172B1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
CA2178356C (en) A high voltage electric power line current limiter
JPH11299105A (en) Power phase modifier and transmission system
JPH05344746A (en) Power converter
CN103441501A (en) Method for achieving arc suppression coil function by using high-voltage cascading type SVG
JP3242181B2 (en) Current limiting device and current limiting control method
JPH10260744A (en) Overvoltage protector for reactive power compensator
EP3985850A1 (en) Power conversion system
JP2004248345A (en) Distributed power source system
JPH11254144A (en) Arc ignition device for plasma working device
JP7147071B2 (en) Commutation type DC circuit breaker and its method
JP2003111278A (en) Controllable series compensating device and energy absorption method therefor
US12095237B2 (en) Spark gap arrangement with ignition apparatus for protecting a high-voltage device and ignition apparatus therefor
JP3185541B2 (en) High voltage circuit breaker synthesis test equipment
JP2002110006A (en) Direct current breaker
JP4434499B2 (en) DC cutoff system
US4780622A (en) Apparatus for reducing stresses that initiate restrike of breakers in disconnecting capacitor banks
JP2597694B2 (en) Power switchgear
JP3103240B2 (en) Residual voltage discharge device
JP3114351B2 (en) SVC control circuit
JP3302857B2 (en) Test method of breaking performance
JP2001176363A (en) Direct-current breaker
JP3926980B2 (en) Series capacitor controlled protection device controlled by thyristor
JP2001185008A (en) Direct current breaker
CN116845847A (en) Output reverse irrigation protection method, arc extinction inverter and computer readable storage medium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees