JPH10260438A - Laser wavelength converting element and converting device - Google Patents

Laser wavelength converting element and converting device

Info

Publication number
JPH10260438A
JPH10260438A JP9087420A JP8742097A JPH10260438A JP H10260438 A JPH10260438 A JP H10260438A JP 9087420 A JP9087420 A JP 9087420A JP 8742097 A JP8742097 A JP 8742097A JP H10260438 A JPH10260438 A JP H10260438A
Authority
JP
Japan
Prior art keywords
wavelength conversion
laser
laser wavelength
crystal
optical crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9087420A
Other languages
Japanese (ja)
Inventor
Akiko Harasaki
亜紀子 原崎
Masakatsu Sugii
正克 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP9087420A priority Critical patent/JPH10260438A/en
Publication of JPH10260438A publication Critical patent/JPH10260438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3542Multipass arrangements, i.e. arrangements to make light pass multiple times through the same element, e.g. using an enhancement cavity

Abstract

PROBLEM TO BE SOLVED: To improve wavelength conversion efficiency by extending the interaction length between a basic wave and a wavelength-converted wave in nonlinear optical crystal by the wavelength converting element which utilizes the crystal. SOLUTION: An incidence end surface 1a and a projection end surface 1b of the nonlinear optical crystal 1 are partially coated with totally reflecting optical thin films 2a and 2b; and the remaining part of the incidence end surface 1a and the remaining part of the projection end surface 1b are coated with reflection preventive films 3a and 3b for the basic wave and the wavelength- converted wave respectively. The wavelength conversion efficiency increases in proportion to the square of the crystal length, so the totally reflecting optical thin films 2a and 2b reflect the light zigzag to extend the effective crystal length, thereby improving the wavelength conversion efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を所望の
波長へ効率よく波長変換するためのレーザ波長変換素子
及び該素子を用いたレーザ波長変換装置に関するもので
あり、レーザ測距等の遠隔計測装置、光情報処理装置、
半導体等の微細加工装置、分光装置、及び防衛機器に応
用が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser wavelength conversion device for efficiently converting a laser beam to a desired wavelength and a laser wavelength conversion device using the device. Measuring equipment, optical information processing equipment,
It can be applied to fine processing devices such as semiconductors, spectral devices, and defense equipment.

【0002】[0002]

【従来の技術】光学結晶の複屈折性を利用した波長変換
素子においては、波長変換効率は光学結晶の長さの2乗
に比例して増加する。従来の波長変換素子においては、
波長変換効率を向上させるために、(1)結晶長の長い
結晶を用いた例や、(2)結晶を複数個光軸上に並べて
長尺化した例がある。具体的には、(1)の代表例とし
てアプライドフィジックス B 第48巻(1989
年)第293頁から第297頁(Applied Physics B. V
ol.48(1989)pp.293-297)において論じられている形
式や、(2)の代表例としてオプティクス レターズ
第19巻(1994年)第713頁から第715頁(OP
TICS LETTERS Vol.19(1994)pp.713-715)において論じら
れている形式のものがある。
2. Description of the Related Art In a wavelength conversion element utilizing the birefringence of an optical crystal, the wavelength conversion efficiency increases in proportion to the square of the length of the optical crystal. In a conventional wavelength conversion element,
In order to improve the wavelength conversion efficiency, there are (1) an example in which a crystal having a long crystal length is used, and (2) an example in which a plurality of crystals are arranged on an optical axis to be longer. Specifically, as a representative example of (1), Applied Physics B Vol. 48 (1989)
Years) pp. 293-297 (Applied Physics B. V)
ol. 48 (1989) pp. 293-297), and as a representative example of (2), Optics Letters
Volume 19 (1994), pages 713 to 715 (OP
There is a form discussed in TICS LETTERS Vol.19 (1994) pp.713-715).

【0003】[0003]

【発明が解決しようとする課題】上記技術の中で、結晶
長の長い光学結晶を用いる(1)の方法は、単結晶で大
型の結晶を育成することが困難であることと、価格が高
くつくという問題点がある。また、結晶を複数個光軸上
に並べて長尺化して変換効率を改善する(2)の方法
は、高出力レーザの波長変換法として優れてしる。しか
しこの方法では、結晶間を通過する際、空気の波長分散
により基本波と波長変換波との位相速度が異なるため、
その位相補償のために結晶間の距離を最適化する必要が
ある。また、結晶の個数分だけ費用がかかり、費用対効
果の点で問題がある。
Among the above techniques, the method (1) using an optical crystal having a long crystal length is difficult because it is difficult to grow a single crystal and a large crystal, and the method is expensive. There is a problem of sticking. The method (2) of improving the conversion efficiency by arranging a plurality of crystals on the optical axis and lengthening the crystals is excellent as a wavelength conversion method for a high-power laser. However, in this method, when passing between crystals, the phase velocity of the fundamental wave and the wavelength converted wave differs due to the wavelength dispersion of air,
It is necessary to optimize the distance between crystals for the phase compensation. In addition, the cost is increased by the number of crystals, which is problematic in terms of cost effectiveness.

【0004】本発明に係るレーザ波長変換素子及び変換
装置では、上記の問題点を解決するために、1個の光学
結晶のみを有効に活用し、レーザ光の波長変換効率をい
かに改善するかをその目的としている。
In order to solve the above-mentioned problems, the laser wavelength conversion element and the conversion device according to the present invention use effectively only one optical crystal to improve the wavelength conversion efficiency of laser light. That is the purpose.

【0005】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
[0005] Other objects and novel features of the present invention will be clarified in embodiments described later.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明のレーザ波長変換素子は、光学結晶の複屈折
性を利用したもので、前記光学結晶の入射面及び出射面
の1部に全反射光学薄膜をコーティングし、レーザ光を
ジグザグ状に折り返す導波構造にし、前記光学結晶内の
総合作用長を長くとることにより、レーザ光の波長変換
効率を改善したことを特徴としている。
In order to achieve the above object, a laser wavelength conversion element according to the present invention utilizes the birefringence of an optical crystal, and a part of an entrance surface and an exit surface of the optical crystal. Is coated with a total reflection optical thin film to form a waveguide structure in which the laser light is folded in a zigzag manner, and the overall working length in the optical crystal is increased to improve the wavelength conversion efficiency of the laser light.

【0007】また、本発明の第1のレーザ波長変換装置
は、光学結晶の複屈折性を利用したレーザ波長変換素子
を備える構成において、前記レーザ波長変換素子は前記
光学結晶の入射面及び出射面の1部に全反射光学薄膜を
コーティングし、レーザ光をジグザグ状に折り返す導波
構造であり、かつ該レーザ波長変換素子から出射したレ
ーザ光を元来た方向に折り返す全反射鏡が設けられてお
り、前記光学結晶内の総合作用長を長く取ることによ
り、レーザ光の波長変換効率を改善したことを特徴とし
ている。
The first laser wavelength conversion device of the present invention comprises a laser wavelength conversion element utilizing birefringence of an optical crystal, wherein the laser wavelength conversion element has an incident surface and an emission surface of the optical crystal. Is a waveguide structure in which a part of the laser light is coated in a zigzag shape by coating a total reflection optical thin film, and a total reflection mirror is provided for returning the laser light emitted from the laser wavelength conversion element in the original direction. In addition, the wavelength conversion efficiency of laser light is improved by increasing the total operating length in the optical crystal.

【0008】本発明の第2のレーザ波長変換装置は、光
学結晶の複屈折性を利用したレーザ波長変換素子を備え
る構成において、前記レーザ波長変換素子は前記光学結
晶の入射面及び出射面の1部に全反射光学薄膜をコーテ
ィングし、レーザ光をジグザグ状に折り返す導波構造で
あって、共振器内に配置されていることを特徴としてい
る。
A second laser wavelength conversion device according to the present invention includes a laser wavelength conversion element utilizing birefringence of an optical crystal, wherein the laser wavelength conversion element is one of an incident surface and an emission surface of the optical crystal. A waveguide structure in which a portion is coated with a total reflection optical thin film and a laser beam is folded in a zigzag shape, and is characterized in that it is disposed in a resonator.

【0009】本発明の第3のレーザ波長変換装置は、光
学結晶の複屈折性を利用したレーザ波長変換素子を備え
る構成において、前記レーザ波長変換素子は前記光学結
晶の入射面及び出射面の1部に全反射光学薄膜をコーテ
ィングし、レーザ光をジグザグ状に折り返す導波構造で
あって、レーザ発振素子と共に共振器内に配置されてい
ることを特徴としている。
A third laser wavelength conversion device according to the present invention includes a laser wavelength conversion element utilizing birefringence of an optical crystal, wherein the laser wavelength conversion element is one of an incident surface and an emission surface of the optical crystal. A waveguide structure in which a portion is coated with a total reflection optical thin film and a laser beam is folded in a zigzag shape, and is characterized in that it is disposed in a resonator together with a laser oscillation element.

【0010】[0010]

【発明の実施の形態】以下、本発明に係るレーザ波長変
換素子及び変換装置の実施の形態を図面に従って説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a laser wavelength conversion device and a conversion device according to the present invention will be described below with reference to the drawings.

【0011】図1は本発明の第1の実施の形態であっ
て、光学結晶の複屈折性を利用したレーザ光の高次高調
波発生用又は和・差周波光混合用等に適した一方向通過
型レーザ波長変換素子を示す。この図において、1は位
相整合角にカットされた複屈折性を有する直方体状の非
線形光学結晶であり、結晶軸方向に対する結晶のカット
角θが位相整合角に等しくなるように設定されている。
非線形光学結晶1の入射端面1a及び出射端面1bの1
部には、全反射光学薄膜2a,2bをそれぞれコーティ
ングし、また入射端面1a及び出射端面1bの残りの部
分には反射防止膜3a,3bをそれぞれコーティングし
ている。ここで、全反射光学薄膜2a,2bは入射端面
1aの反射防止膜3aをコーティングした部分より入射
したレーザ光をジグザグ状に折り返す導波構造をなして
いる。この場合、レーザ光をジグザグ状に折り返すとき
に位相整合角が変化しないように、平坦な面に研磨する
時に結晶の入射端面1a及び出射端面1b相互の平行度
を出す必要がある。なお、反射防止膜3aは基本波に対
しての反射防止誘電体膜で構成され、反射防止膜3bは
波長変換波(波長変換光)に対しての反射防止誘電体膜
で構成されている。
FIG. 1 shows a first embodiment of the present invention, which is suitable for generating higher-order harmonics of laser light utilizing the birefringence of an optical crystal or for mixing sum / difference frequency light. 3 shows a direction-passing laser wavelength conversion element. In this figure, reference numeral 1 denotes a rectangular parallelepiped nonlinear optical crystal having birefringence cut to a phase matching angle, and the cut angle θ of the crystal with respect to the crystal axis direction is set to be equal to the phase matching angle.
One of the input end face 1a and the output end face 1b of the nonlinear optical crystal 1
The portions are coated with total reflection optical thin films 2a and 2b, respectively, and the remaining portions of the incident end face 1a and the output end face 1b are coated with antireflection films 3a and 3b, respectively. Here, the total reflection optical thin films 2a and 2b have a waveguide structure in which a laser beam incident from a portion of the incident end face 1a coated with the anti-reflection film 3a is folded in a zigzag manner. In this case, when the laser light is turned back in a zigzag manner, the parallelism between the incident end face 1a and the outgoing end face 1b of the crystal must be obtained when polishing the flat surface so that the phase matching angle does not change. The anti-reflection film 3a is made of an anti-reflection dielectric film for a fundamental wave, and the anti-reflection film 3b is made of an anti-reflection dielectric film for a wavelength-converted wave (wavelength-converted light).

【0012】この図1の第1の実施の形態では、励起光
(レーザ光)が結晶1に対して入射端面1aの反射防止
膜3aをコーティングした部分より入射し、基本波と波
長変換波が全反射光学薄膜2a,2bの部分でジグザグ
状に折り返して反射されて、出射端面1bの反射防止膜
3bをコーティングした部分より出射する構成となって
いる。
In the first embodiment shown in FIG. 1, excitation light (laser light) enters the crystal 1 from the portion of the incident end face 1a coated with the antireflection film 3a, and the fundamental wave and the wavelength-converted wave are converted. The light is reflected in a zigzag manner at the portions of the total reflection optical thin films 2a and 2b, and is emitted from the portion of the emission end face 1b coated with the antireflection film 3b.

【0013】この実施の形態によれば、非線形光学結晶
1の複屈折性を利用したレーザ光の高調波発生用又は和
・差周波光混合用等のレーザ波長変換素子において、前
記光学結晶1の入射端面1a及び出射端面1bの1部に
全反射光学薄膜2a,2bをコーティングし、レーザ光
をジグザグ状に折り返す導波構造にしたので、前記光学
結晶内の総合作用長を長くとることにより、レーザ光の
波長変換効率を改善することができる。つまり、結晶内
に入射したレーザ光は、結晶内でジグザグ状に折り返さ
れ、基本波のエネルギーが波長変換波のエネルギーに変
換される。この過程で、結晶内での吸収係数が無視でき
るほど小さく、且つ励起光の減衰が無いと仮定出来る場
合には、波長変換の変換効率は折り返した回数の2乗倍
だけ増大する。十分に光路が長いと、光路長に関してハ
イパーポラデリック正接関数に従い100%の変換効率
に漸近することになる。
According to this embodiment, in a laser wavelength conversion element for generating harmonics of laser light or for mixing sum / difference frequency light utilizing the birefringence of the nonlinear optical crystal 1, A part of the incident end face 1a and a part of the exit end face 1b are coated with the total reflection optical thin films 2a and 2b to form a waveguide structure in which the laser light is folded in a zigzag shape. The wavelength conversion efficiency of laser light can be improved. That is, the laser light that has entered the crystal is folded back in a zigzag manner in the crystal, and the energy of the fundamental wave is converted into the energy of the wavelength-converted wave. In this process, if the absorption coefficient in the crystal is negligibly small and it can be assumed that there is no attenuation of the pump light, the conversion efficiency of the wavelength conversion increases by the square of the number of times of folding. If the optical path is long enough, it will approach 100% conversion efficiency with respect to the optical path length according to the hyperpolaric tangent function.

【0014】図2は本発明の第2の実施の形態であっ
て、光学結晶の複屈折性を利用したレーザ光の高次高調
波発生用又は和・差周波光混合用等のレーザ波長変換装
置を示す。図2のレーザ波長変換装置は、図1の第1の
実施の形態で示したレーザ波長変換素子10に加えて、
レーザ光の入射側に波長変換波取り出し用の2色性ミラ
ー4を設けるとともに、レーザ波長変換素子10から出
射したレーザ光を全反射する凹面全反射鏡5を設け、集
光されたビームウエストの場所に結晶1の出射端面を配
置した構成となっている。また、全反射光学薄膜2a,
2bを設けた残りの入射端面1aと出射端面1bの双方
に励起光及び波長変換波に対する反射防止膜3a,3b
をコーティングしている。
FIG. 2 shows a second embodiment of the present invention, in which laser wavelength conversion for generating higher-order harmonics of laser light or mixing for sum / difference frequency light utilizing the birefringence of an optical crystal. The device is shown. The laser wavelength conversion device shown in FIG. 2 includes, in addition to the laser wavelength conversion device 10 shown in the first embodiment in FIG.
A dichroic mirror 4 for extracting a wavelength-converted wave is provided on the incident side of the laser light, and a concave total reflection mirror 5 for totally reflecting the laser light emitted from the laser wavelength conversion element 10 is provided. The configuration is such that the emission end face of the crystal 1 is arranged at a location. Further, the total reflection optical thin film 2a,
Antireflection films 3a, 3b for the excitation light and the converted wavelength wave on both the remaining incident end face 1a and the exit end face 1b provided with
Is coated.

【0015】この場合、励起光は2色性ミラー4を透過
してレーザ波長変換素子10の入射端面1aの反射防止
膜3aを設けた部分に入射し、基本波と波長変換波が結
晶1内でジグザグ状に折り返されて出射端面1bの反射
防止膜3bを設けた部分から出射し、さらに凹面全反射
鏡5で元来た方向に折り返され、再度結晶1内でジグザ
グ状に折り返されて入射端面1aの反射防止膜3aを設
けた部分から出射して2色性ミラー4に到達する。基本
波は反射されずに2色性ミラー4を通過し、波長変換波
のみが2色性ミラー4で反射されて取り出される。
In this case, the excitation light is transmitted through the dichroic mirror 4 and is incident on the portion of the incident end face 1a of the laser wavelength conversion element 10 where the antireflection film 3a is provided. The light exits from the portion where the antireflection film 3b is provided on the exit end face 1b, is further folded back in the original direction by the concave total reflection mirror 5, and is again folded in a zigzag shape in the crystal 1 and enters. The light exits from the end face 1a where the antireflection film 3a is provided and reaches the dichroic mirror 4. The fundamental wave passes through the dichroic mirror 4 without being reflected, and only the wavelength-converted wave is reflected by the dichroic mirror 4 and extracted.

【0016】図2の第2の実施の形態のレーザ波長変換
装置の場合、出射光を元来た方向に折り返す凹面全反射
鏡5を設けて、さらに結晶内の総合作用長を長く取るよ
うに工夫しており、有効結晶長が図1の2倍となる利点
がある。
In the case of the laser wavelength converter according to the second embodiment shown in FIG. 2, a concave total reflection mirror 5 which folds outgoing light in the original direction is provided so that the overall working length in the crystal can be made longer. There is an advantage that the effective crystal length is twice that of FIG.

【0017】図3は本発明の第3の実施の形態であっ
て、光学結晶の複屈折性を利用したレーザ光の光パラメ
トリック発振器用又は外部共振型第2高調波発生器用等
のレーザ波長変換装置を示す。図3の装置は、2色性ミ
ラー4と出力結合鏡6とからなる外部共振器内に非線形
光学結晶1を持つレーザ波長変換素子10を配置したも
のであり、とくに光パラメトリック発振器や連続発振型
の波高値の低いレーザを励起光源とする場合に用いられ
る。前記出力結合鏡6は基本波に対しては100%の反
射率で波長変換波に対しては100%未満の適度の反射
率(例えば40〜90%)を持つものである。
FIG. 3 shows a third embodiment of the present invention, which is a laser wavelength converter for an optical parametric oscillator or an external resonance type second harmonic generator utilizing the birefringence of an optical crystal. The device is shown. The device shown in FIG. 3 has a laser wavelength conversion element 10 having a non-linear optical crystal 1 disposed in an external resonator including a dichroic mirror 4 and an output coupling mirror 6, and is particularly suitable for an optical parametric oscillator or a continuous oscillation type. Is used when a laser having a low peak value is used as an excitation light source. The output coupling mirror 6 has an appropriate reflectance (for example, 40 to 90%) of 100% for the fundamental wave and less than 100% for the converted wavelength wave.

【0018】この場合、励起光は、2色性ミラー4を透
過してレーザ波長変換素子10の入射端面1aの反射防
止膜3aを設けた部分に入射し、基本波と波長変換波が
結晶1内でジグザグ状に折り返されて出射端面1bの反
射防止膜3bを設けた部分から出射し、さらに出力結合
鏡6で元来た方向に折り返され、再度結晶1内でジグザ
グ状に折り返されて入射端面1aの反射防止膜3aを設
けた部分から出射して2色性ミラー4に到達する。基本
波は反射されずに2色性ミラー4を通過するが、波長変
換波は2色性ミラー4で反射されて上記動作を繰り返
し、増幅されて出力結合鏡6から取り出される。
In this case, the excitation light passes through the dichroic mirror 4 and is incident on the portion of the incident end face 1a of the laser wavelength conversion element 10 where the antireflection film 3a is provided, and the fundamental wave and the wavelength-converted wave are converted into the crystal 1 The light exits from the portion provided with the antireflection film 3b on the emission end face 1b, is further folded back in the original direction by the output coupling mirror 6, and is again folded in the zigzag shape within the crystal 1 and enters. The light exits from the end face 1a where the antireflection film 3a is provided and reaches the dichroic mirror 4. The fundamental wave passes through the dichroic mirror 4 without being reflected, but the wavelength-converted wave is reflected by the dichroic mirror 4 and repeats the above operation, amplified, and extracted from the output coupling mirror 6.

【0019】図4は本発明の第4の実施の形態であっ
て、光学結晶の複屈折性を利用したレーザ光の内部共振
型高次高調波発生器用等のレーザ波長変換装置を示す。
図4の装置は、全反射鏡5と出力結合鏡6間にレーザ発
振素子7を配置した内部共振器内に非線形光学結晶1を
持つレーザ波長変換素子10を配置したものである。
FIG. 4 shows a fourth embodiment of the present invention, which is a laser wavelength converter for an internal resonance type high-order harmonic generator of laser light utilizing the birefringence of an optical crystal.
The apparatus shown in FIG. 4 has a laser wavelength conversion element 10 having a nonlinear optical crystal 1 in an internal resonator in which a laser oscillation element 7 is arranged between a total reflection mirror 5 and an output coupling mirror 6.

【0020】この場合、レーザ発振素子7で励起された
レーザ光はレーザ波長変換素子10の入射端面1aの反
射防止膜3aを設けた部分に入射し、基本波と波長変換
波が結晶1内でジグザグ状に折り返されて出射端面1b
の反射防止膜3bを設けた部分から出射し、さらに出力
結合鏡6で元来た方向に折り返され、再度結晶1内でジ
グザグ状に折り返されて入射端面1aの反射防止膜3a
を設けた部分から出射して全反射鏡5に至る。このよう
な動作の繰り返しにより増幅された波長変換波が出力結
合鏡6から取り出される。
In this case, the laser light excited by the laser oscillation element 7 is incident on the portion of the incident end face 1a of the laser wavelength conversion element 10 where the antireflection film 3a is provided, and the fundamental wave and the converted wavelength wave are formed in the crystal 1. Output end face 1b folded in a zigzag shape
Out of the portion provided with the anti-reflection film 3b, is further turned back by the output coupling mirror 6 in the original direction, is turned back again in a zigzag manner in the crystal 1, and the anti-reflection film 3a on the incident end face 1a is formed.
The light exits from the portion where is provided and reaches the total reflection mirror 5. The wavelength converted wave amplified by the repetition of such an operation is taken out of the output coupling mirror 6.

【0021】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、非線形
光学結晶による波長変換効率の改善を一つの結晶で可能
にする。また、前記結晶内でレーザ光をジグザグ状に折
り返す導波構造で波長変換を行っているので、複数個結
晶を光軸上に並べて光路長を延ばす構造に比べて、大気
及び強誘電体膜による基本波と波長変換波の屈折率分散
が生じないので位相差補償の必要が無い。
As described above, according to the present invention, it is possible to improve the wavelength conversion efficiency of a nonlinear optical crystal with a single crystal. Further, since the wavelength conversion is performed by a waveguide structure in which the laser light is folded in a zigzag shape in the crystal, compared with a structure in which a plurality of crystals are arranged on the optical axis to extend the optical path length, the air and the ferroelectric film are used. Since no refractive index dispersion occurs between the fundamental wave and the wavelength-converted wave, there is no need for phase difference compensation.

【0023】さらに、非線形光学定数が小さい結晶では
励起光のパワー密度を上げるため強く集光して(レーザ
光のビームを小さくして)入射させるので、結晶の入射
面の大きさが生かせないことがある。本発明の構成を用
いることで非線形光学結晶の大きさを無駄にすることな
く、1個の非線形光学結晶のみで高い変換効率が得られ
る。
Further, in the case of a crystal having a small nonlinear optical constant, it is strongly focused (increased laser beam size) and made incident in order to increase the power density of the excitation light, so that the size of the incident surface of the crystal cannot be utilized. There is. By using the configuration of the present invention, high conversion efficiency can be obtained with only one nonlinear optical crystal without wasting the size of the nonlinear optical crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態であって一方向通過
型レーザ波長変換素子の正面及び底面を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a front surface and a bottom surface of a one-way-pass laser wavelength conversion element according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態であってレーザ波長
変換装置を示す構成図である。
FIG. 2 is a configuration diagram showing a laser wavelength converter according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態であって外部共振器
を備えるレーザ波長変換装置を示す構成図である。
FIG. 3 is a configuration diagram illustrating a laser wavelength conversion device including an external resonator according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態であって内部共振器
を備えるレーザ波長変換装置を示す構成図である。
FIG. 4 is a configuration diagram illustrating a laser wavelength conversion device including an internal resonator according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 非線形光学結晶 2a,2b 全反射光学薄膜 3a,3b 反射防止膜 4 2色性ミラー 5 全反射鏡 6 出力結合鏡 7 レーザ発振素子 DESCRIPTION OF SYMBOLS 1 Nonlinear optical crystal 2a, 2b Total reflection optical thin film 3a, 3b Antireflection film 4 Dichroic mirror 5 Total reflection mirror 6 Output coupling mirror 7 Laser oscillation element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光学結晶の複屈折性を利用したレーザ波
長変換素子において、前記光学結晶の入射面及び出射面
の1部に全反射光学薄膜をコーティングし、レーザ光を
ジグザグ状に折り返す導波構造にし、前記光学結晶内の
総合作用長を長くとることにより、レーザ光の波長変換
効率を改善したことを特徴とするレーザ波長変換素子。
1. A laser wavelength conversion element utilizing the birefringence of an optical crystal, wherein a part of an incident surface and an outgoing surface of the optical crystal is coated with a total reflection optical thin film to guide a laser beam in a zigzag manner. A laser wavelength conversion element having a structure and a wavelength conversion efficiency of laser light improved by increasing a total action length in the optical crystal.
【請求項2】 光学結晶の複屈折性を利用したレーザ波
長変換素子を備えるレーザ波長変換装置において、前記
レーザ波長変換素子は前記光学結晶の入射面及び出射面
の1部に全反射光学薄膜をコーティングし、レーザ光を
ジグザグ状に折り返す導波構造であり、かつ該レーザ波
長変換素子から出射したレーザ光を元来た方向に折り返
す全反射鏡が設けられており、前記光学結晶内の総合作
用長を長く取ることにより、レーザ光の波長変換効率を
改善したことを特徴とするレーザ波長変換装置。
2. A laser wavelength conversion device comprising a laser wavelength conversion element utilizing birefringence of an optical crystal, wherein the laser wavelength conversion element has a total reflection optical thin film on a part of an entrance surface and an exit surface of the optical crystal. A waveguide structure that coats and folds the laser light in a zigzag shape, and is provided with a total reflection mirror that folds the laser light emitted from the laser wavelength conversion element in the original direction. A laser wavelength conversion device characterized by improving the wavelength conversion efficiency of laser light by increasing the length.
【請求項3】 光学結晶の複屈折性を利用したレーザ波
長変換素子を備えるレーザ波長変換装置において、前記
レーザ波長変換素子は前記光学結晶の入射面及び出射面
の1部に全反射光学薄膜をコーティングし、レーザ光を
ジグザグ状に折り返す導波構造であって、共振器内に配
置されていることを特徴とするレーザ波長変換装置。
3. A laser wavelength conversion device including a laser wavelength conversion element utilizing birefringence of an optical crystal, wherein the laser wavelength conversion element has a total reflection optical thin film on a part of an entrance surface and an exit surface of the optical crystal. A laser wavelength conversion device having a waveguide structure which is coated and folds a laser beam in a zigzag shape, and which is disposed in a resonator.
【請求項4】 光学結晶の複屈折性を利用したレーザ波
長変換素子を備えるレーザ波長変換装置において、前記
レーザ波長変換素子は前記光学結晶の入射面及び出射面
の1部に全反射光学薄膜をコーティングし、レーザ光を
ジグザグ状に折り返す導波構造であって、レーザ発振素
子と共に共振器内に配置されていることを特徴とするレ
ーザ波長変換装置。
4. A laser wavelength conversion device provided with a laser wavelength conversion element utilizing birefringence of an optical crystal, wherein the laser wavelength conversion element has a total reflection optical thin film on a part of an entrance surface and an exit surface of the optical crystal. A laser wavelength conversion device having a waveguide structure which is coated and folds a laser beam in a zigzag shape, and which is disposed in a resonator together with a laser oscillation element.
JP9087420A 1997-03-20 1997-03-20 Laser wavelength converting element and converting device Pending JPH10260438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9087420A JPH10260438A (en) 1997-03-20 1997-03-20 Laser wavelength converting element and converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9087420A JPH10260438A (en) 1997-03-20 1997-03-20 Laser wavelength converting element and converting device

Publications (1)

Publication Number Publication Date
JPH10260438A true JPH10260438A (en) 1998-09-29

Family

ID=13914396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9087420A Pending JPH10260438A (en) 1997-03-20 1997-03-20 Laser wavelength converting element and converting device

Country Status (1)

Country Link
JP (1) JPH10260438A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036195A (en) * 2005-06-21 2007-02-08 National Institute Of Information & Communication Technology Laser apparatus using nonlinear optical crystal or solid slab laser rod of multiplex optical path
US7649680B2 (en) 2008-02-19 2010-01-19 Panasonic Corporation Wavelength converting apparatus
US20180307117A1 (en) * 2017-04-19 2018-10-25 Coherent Scotland Limited Frequency-conversion crystal for femtosecond-laser pulses
CN110244499A (en) * 2018-05-09 2019-09-17 中国科学院理化技术研究所 Nonlinear frequency conversion crystal
JP2020079939A (en) * 2018-11-13 2020-05-28 国立大学法人電気通信大学 Wavelength conversion device and laser device using the same
CN114389137A (en) * 2021-12-30 2022-04-22 武汉光谷航天三江激光产业技术研究院有限公司 Slab nonlinear crystal optical parameter oscillation device and conversion method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036195A (en) * 2005-06-21 2007-02-08 National Institute Of Information & Communication Technology Laser apparatus using nonlinear optical crystal or solid slab laser rod of multiplex optical path
US7649680B2 (en) 2008-02-19 2010-01-19 Panasonic Corporation Wavelength converting apparatus
US20180307117A1 (en) * 2017-04-19 2018-10-25 Coherent Scotland Limited Frequency-conversion crystal for femtosecond-laser pulses
WO2018193224A1 (en) * 2017-04-19 2018-10-25 Coherent Scotland Limited Frequency-conversion crystal for femtosecond-laser pulses
US10444597B2 (en) 2017-04-19 2019-10-15 Coherent Scotland Limited Frequency-conversion crystal for femtosecond-laser pulses
CN110244499A (en) * 2018-05-09 2019-09-17 中国科学院理化技术研究所 Nonlinear frequency conversion crystal
CN110244499B (en) * 2018-05-09 2022-07-15 同方中科超光科技有限公司 Nonlinear frequency conversion crystal
JP2020079939A (en) * 2018-11-13 2020-05-28 国立大学法人電気通信大学 Wavelength conversion device and laser device using the same
CN114389137A (en) * 2021-12-30 2022-04-22 武汉光谷航天三江激光产业技术研究院有限公司 Slab nonlinear crystal optical parameter oscillation device and conversion method

Similar Documents

Publication Publication Date Title
JP2721436B2 (en) Second harmonic generator
US5222088A (en) Solid-state blue laser device capable of producing a blue laser beam having high power
JP2000261081A (en) Laser
JPH07318996A (en) Wavelength conversion waveguide type laser device
JPH04107536A (en) Second harmonic generation device
KR0174775B1 (en) Lasing system with wavelength=conversion waveguide
JPH10260438A (en) Laser wavelength converting element and converting device
KR100863199B1 (en) Laser Apparatus and Method for Harmonic Beam Generation
US6834063B2 (en) Efficient angle tunable output from a monolithic serial KTA optical parametric oscillator
US5594745A (en) Laser light generating apparatus
JPS63121829A (en) Harmonic generating device
JPS60112023A (en) Light wavelength conversion element
JPH1168210A (en) Laser oscillation device
JP2921208B2 (en) Wavelength conversion element and short wavelength laser light source
JP3848883B2 (en) Optical resonator and optical frequency comb generator
EP0450557B1 (en) Laser light wavelength shifter
KR100360474B1 (en) Second harmonic generator
JP2760302B2 (en) Optical wavelength converter
JPH06265955A (en) Wavelength converting element
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
JPH08102564A (en) Wavelength converting laser device
JP2007322695A (en) Wavelength conversion element
JPH0715061A (en) Wavelength converter for laser
JPH05299751A (en) Laser-diode pumping solid-state laser
JP2000299520A (en) Laser oscillator