JPH10260362A - Liquid-dip type objective - Google Patents

Liquid-dip type objective

Info

Publication number
JPH10260362A
JPH10260362A JP8464297A JP8464297A JPH10260362A JP H10260362 A JPH10260362 A JP H10260362A JP 8464297 A JP8464297 A JP 8464297A JP 8464297 A JP8464297 A JP 8464297A JP H10260362 A JPH10260362 A JP H10260362A
Authority
JP
Japan
Prior art keywords
lens
refractive index
index distribution
lens group
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8464297A
Other languages
Japanese (ja)
Inventor
Koichi Konishi
宏一 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8464297A priority Critical patent/JPH10260362A/en
Publication of JPH10260362A publication Critical patent/JPH10260362A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the liquid-dip type objective which has various aberrations compensated excellently by composing the lens of lens groups including a specific gradient index lens in order from the object side. SOLUTION: This lens consists of at least three groups, i.e., a 1st lens group which includes a a piano-convex single lens or piano-convex lens having a cemented surface greatly convex to the image side and has positive refracting power, a 2nd lens group which includes a gradient index lens with positive refracting power, and a 3rd lens group which includes a gradient index lens with negative refracting power in order from the object side. The refractive index N(r) of the gradient index lens used for the objective is represented as N(r)=N00 +N10 r<2> +N20r <4> +..., where (r) is the radial distance from the optical axis, N00 is the refractive index on the optical axis, N10 , N20 ... are secondary, biquadratic ... coefficients. Here, the gradient index lens can be reduced in the quantity of aberrations generated on its lens surfaces and the aberrations of the whole lens system can be compensated excellently even when the number of lenses is small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、屈折率分布レンズ
特に半径方向に屈折率が変化するいわゆるラジアル型屈
折率分布レンズを用いた液浸系顕微鏡対物レンズに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immersion microscope objective lens using a gradient index lens, particularly a so-called radial type gradient index lens whose refractive index changes in the radial direction.

【0002】[0002]

【従来の技術】対物レンズにおいて、球面収差、コマ収
差、像面湾曲、色収差等の諸収差を充分良好に補正する
ためには、レンズ枚数を多くしなければならず、コスト
の面で大きな問題があった。この問題を解決するために
は均質ガラスに較べて収差補正の自由度の大きな屈折率
分布レンズを用いることが知られている。
2. Description of the Related Art In an objective lens, in order to sufficiently correct various aberrations such as spherical aberration, coma, field curvature, and chromatic aberration, the number of lenses must be increased, which is a major problem in cost. was there. In order to solve this problem, it is known to use a refractive index distribution lens having a greater degree of freedom in correcting aberrations than homogeneous glass.

【0003】顕微鏡対物レンズに屈折率分布レンズを用
いた従来例として特開昭62−31816号公報に記載
されたレンズ系がある。しかしこの顕微鏡対物レンズ
は、屈折率分布レンズを3枚も使用しており、コストの
点で望ましくなくまたNAが0.46で小さい。
As a conventional example using a gradient index lens as a microscope objective, there is a lens system described in Japanese Patent Application Laid-Open No. Sho 62-31816. However, this microscope objective uses three refractive index distribution lenses, which is not desirable in terms of cost, and has a small NA of 0.46.

【0004】また、特開昭62−34117号公報に記
載されたレンズ系は、屈折率分布レンズを1枚用いたも
のであるが、色収差の補正については考慮されておら
ず、またNAが0.93までであって、NAが1.0を
超えるような液浸系対物レンズについては考慮されてい
ない。
The lens system described in Japanese Patent Application Laid-Open No. Sho 62-34117 uses one refractive index distribution lens, but does not consider chromatic aberration correction. .93, and no consideration is given to an immersion type objective lens whose NA exceeds 1.0.

【0005】また、特開平6−3598号公報、特開平
7−159697号公報に記載されているレンズ系は、
屈折率分布レンズが2〜3枚で少ないがNAが0.8ま
ででしかなくNAが1.0を超えるような液浸系対物レ
ンズについては考慮されていない。
Further, the lens systems described in JP-A-6-3598 and JP-A-7-159697 are described as follows.
An immersion type objective lens in which the number of refractive index distribution lenses is small in a few lenses but NA is only up to 0.8 and NA exceeds 1.0 is not considered.

【0006】[0006]

【発明が解決しようとする課題】本発明は、NAが1.
0を超える液浸系対物レンズで、諸収差が良好に補正さ
れた液浸系対物レンズを提供するものである。
SUMMARY OF THE INVENTION In the present invention, the NA is 1.
It is an object of the present invention to provide an immersion type objective lens exceeding 0, in which various aberrations are corrected well.

【0007】[0007]

【課題を解決するための手段】本発明の液浸系対物レン
ズは、物体側から順に、平凸単レンズ又は像側に強い凸
面を向けた接合面を持つ平凸レンズを含む正の屈折力の
第1レンズ群と、正の屈折力を持つ屈折率分布レンズを
含む第2レンズ群と、負の屈折力を持つ屈折率分布レン
ズを含む第3レンズ群とからなる少なくとも3群構成よ
りなることを特徴とする。
The immersion type objective lens of the present invention has, in order from the object side, a plano-convex single lens or a plano-convex lens having a cemented surface with a strong convex surface facing the image side. At least three groups including a first lens group, a second lens group including a gradient index lens having a positive refractive power, and a third lens group including a gradient index lens having a negative refractive power. It is characterized by.

【0008】上記本発明の対物レンズにて用いられる屈
折率分布レンズは、その屈折率分布N(r)が下記の式
(a)にて表わされる。 N(r)=N00+N102 +N204 +・・・ (a) この式(a)においてrは光軸から半径方向の距離、N
00は光軸上の屈折率、N10、N20、・・・は夫々2次、
4次、・・・の係数である。
The refractive index distribution N (r) of the gradient index lens used in the objective lens of the present invention is represented by the following equation (a). N (r) = N 00 + N 10 r 2 + N 20 r 4 +... (A) In this equation (a), r is the distance in the radial direction from the optical axis, and N
00 is the refractive index on the optical axis, N 10 , N 20 ,.
Fourth,... Coefficients.

【0009】一般に顕微鏡対物レンズは、作動距離や、
NA、倍率などの様々な諸要件を満たしながら諸収差を
充分に補正する必要があるため、レンズ枚数が多くな
り、複雑な光学系になり、コスト面で問題がある。
Generally, a microscope objective lens has a working distance,
Since it is necessary to sufficiently correct various aberrations while satisfying various requirements such as NA and magnification, the number of lenses increases, the optical system becomes complicated, and there is a problem in cost.

【0010】均質ガラスよりなるレンズは、レンズ面で
光線が屈折することにより収差が発生するが、レンズ枚
数の少ないレンズ系の場合、各面での光線の屈折角が大
になり、各面での収差発生量が大になる。そのために、
レンズ系を構成するレンズの枚数を多くし各面での光線
の屈折角を小にすることにより各面で発生する収差を小
さくしてレンズ系全体の収差を補正している。
In a lens made of homogeneous glass, aberration occurs due to refraction of light rays on the lens surface. However, in the case of a lens system with a small number of lenses, the refraction angle of light rays on each surface becomes large, and Causes a large amount of aberration. for that reason,
By increasing the number of lenses constituting the lens system and reducing the angle of refraction of light rays on each surface, aberrations occurring on each surface are reduced to correct the aberration of the entire lens system.

【0011】一方、屈折率分布型ガラスは媒質に屈折力
を持たせることにより収差補正が出来、したがって屈折
率分布レンズは、レンズ面で発生する収差量を小さくで
き、レンズ枚数が少なくてもレンズ系全体での収差を良
好に補正することができる。
On the other hand, the refractive index distribution type glass can correct the aberration by giving the medium a refractive power. Therefore, the refractive index distribution lens can reduce the amount of aberration generated on the lens surface. Aberrations in the entire system can be corrected well.

【0012】このように均質レンズよりも収差補正能力
の高い屈折率分布レンズを用いることにより対物レンズ
のレンズ枚数の削減が可能である。
As described above, the number of objective lenses can be reduced by using a refractive index distribution lens having a higher aberration correcting ability than a homogeneous lens.

【0013】本発明は、液浸系対物レンズでNAが1.
0以上と大きい対物レンズを得ることを目的とするもの
で、そのためには第1レンズ群を平凸正レンズまたは像
側に強い凸面を向けた接合面を持つ平凸形状の接合レン
ズとにて構成し、この平凸単レンズ又は平凸接合レンズ
の凸面を不遊条件を満足するように構成して球面収差の
発生を抑えるようにした。
The present invention relates to an immersion type objective lens having an NA of 1.
The objective is to obtain an objective lens as large as 0 or more. For this purpose, the first lens group is composed of a plano-convex positive lens or a plano-convex cemented lens having a cemented surface with a strong convex surface facing the image side. The plano-convex single lens or the plano-convex cemented lens has a convex surface which satisfies the aplanation condition to suppress the occurrence of spherical aberration.

【0014】この第1レンズ群は、正の屈折力を持ち光
線の発散を抑えて第2レンズ群へ導くようにしている。
又第2レンズ群は、全体として正の屈折力を持ち、色収
差を補正し又入射した光線を収斂光束として第3レンズ
群へ導く。又第3レンズ群は、レンズ系を焦点距離の短
い高倍率の対物レンズにするための主点位置を物点側へ
出さなければならず、負の屈折力を持つように構成して
ある。
The first lens group has a positive refractive power and suppresses the divergence of light rays to guide the light rays to the second lens group.
The second lens group has a positive refractive power as a whole, corrects chromatic aberration, and guides the incident light beam as a convergent light beam to the third lens group. The third lens group must have a principal point position on the object point side for making the lens system a high-power objective lens with a short focal length, and is configured to have a negative refractive power.

【0015】本発明の対物レンズは、高倍率の対物レン
ズにするため焦点距離が短くパワーが強く、屈折率分布
レンズを用いることにより、レンズ面で補正しきれない
諸収差を最適に補正している。つまり前記のように第2
レンズ群に正の屈折力の屈折率分布レンズを又第3レン
ズ群に負の屈折力の屈折率分布レンズを配置することに
より、前記構成の高倍率対物レンズにおいて諸収差を良
好に補正している。
The objective lens of the present invention has a short focal length and a high power to make it a high-magnification objective lens. By using a refractive index distribution lens, various aberrations that cannot be completely corrected on the lens surface are optimally corrected. I have. That is, as described above, the second
By disposing a refractive index distribution lens having a positive refractive power in the lens group and a refractive index distribution lens having a negative refractive power in the third lens group, various aberrations can be satisfactorily corrected in the high-power objective lens having the above-described configuration. I have.

【0016】又、本発明の対物レンズは、上記構成のレ
ンズ系で、第2レンズ群に用いる屈折率分布レンズを、
軸上が最も肉厚が厚く光軸外に行くにしたがって肉厚が
薄くなる形状とし、又媒質の屈折力を正にして、諸収差
を一層良好に補正している。
In the objective lens according to the present invention, the refractive index distribution lens used for the second lens group in the lens system having the above-mentioned configuration is provided.
The thickness is made thickest on the axis and becomes thinner as it goes off the optical axis, and the refractive power of the medium is made positive to better correct various aberrations.

【0017】対物レンズ全系の諸収差を良好に補正する
ためには、第2レンズ群は正の屈折力を持つ必要があ
る。もし第2レンズ群が負の屈折力であると、第2レン
ズ群と第3レンズ群との合成の屈折力が強い負の屈折力
になり、それに応じて第1レンズ群も強い正の屈折力に
なる。液浸系対物レンズのようにNAが1.0以上の高
NA対物レンズの場合、第1レンズ群の正の屈折力が大
きくなりすぎると、全系の球面収差の補正が出来なくな
る。そのため第2レンズ群は正の屈折力を持つ必要があ
る。また第2レンズ群に用いる屈折率分布レンズの正の
パワーをレンズ面のパワーのみに持たせた場合、この面
のパワーが強くなり、球面収差の発生が大になり、補正
しきれない。
In order to favorably correct various aberrations of the entire objective lens system, the second lens group needs to have a positive refractive power. If the second lens group has a negative refractive power, the combined refractive power of the second lens group and the third lens group becomes a strong negative refractive power, and accordingly, the first lens group also has a strong positive refractive power. helpful. In the case of a high NA objective lens having an NA of 1.0 or more, such as an immersion objective lens, if the positive refractive power of the first lens group becomes too large, it becomes impossible to correct spherical aberration of the entire system. Therefore, the second lens group needs to have a positive refractive power. When only the power of the lens surface has the positive power of the refractive index distribution lens used for the second lens group, the power of this surface becomes strong, the spherical aberration becomes large, and the correction cannot be completed.

【0018】そのため本発明のレンズ系において正のパ
ワーの第2レンズ群中の屈折率分布レンズの形状を前記
のようにすると共にその媒質の屈折力を正にすることが
望ましい。このように媒質に正の屈折力を持たせること
により面の正のパワーを緩くすることにより諸収差の発
生を抑え、諸収差特に球面収差を最適に補正することが
望ましい。
Therefore, in the lens system of the present invention, it is desirable that the shape of the refractive index distribution lens in the second lens unit having a positive power be as described above, and that the refractive power of the medium be positive. It is desirable that the medium be given a positive refractive power so as to reduce the positive power of the surface to suppress the occurrence of various aberrations and to optimally correct various aberrations, especially spherical aberration.

【0019】次に本発明のレンズ系において、第3レン
ズ群中の屈折率分布レンズを軸上で肉厚が薄く光軸外に
行くにしたがって厚くなるような形状とし、又この屈折
率分布レンズの媒質の屈折力が負になるようにすること
が望ましい。
Next, in the lens system of the present invention, the refractive index distribution lens in the third lens group is formed to have a shape such that its thickness is thin on the axis and becomes thicker as it goes off the optical axis. It is desirable that the medium has a negative refractive power.

【0020】本発明の対物レンズは、高倍で焦点距離が
短いために、第1レンズ群、第2レンズ群は正の屈折力
を有し、これらレンズ群にて補正しきれない球面収差、
像面湾曲、コマ収差等の諸収差を補正する必要があり、
第3レンズ群は負の屈折力を持たせる必要がある。
Since the objective lens of the present invention has a high magnification and a short focal length, the first lens unit and the second lens unit have a positive refractive power, and spherical aberration which cannot be completely corrected by these lens units.
It is necessary to correct various aberrations such as curvature of field and coma,
The third lens group needs to have a negative refractive power.

【0021】本発明の対物レンズのような液浸系対物レ
ンズは、最も物体側のレンズ面(浸液と接触する面)に
浸液が入り込まないためにもしくは空気が入り込んで性
能を劣化させないためにこの最も物体側の面は平面であ
る必要があり、先玉は平凸レンズになる。このように先
玉が平凸レンズであると像面湾曲が十分補正出来ない。
この像面湾曲を補正するために本発明のレンズ系は、第
3レンズ群に負の屈折力を持たせた。
A liquid immersion type objective lens such as the objective lens of the present invention does not allow the immersion liquid to enter the lens surface closest to the object (the surface that comes into contact with the immersion liquid) or does not deteriorate the performance due to the entry of air. The surface closest to the object must be flat, and the front lens is a plano-convex lens. When the front lens is a plano-convex lens, the field curvature cannot be sufficiently corrected.
In order to correct this field curvature, in the lens system of the present invention, the third lens group has a negative refractive power.

【0022】しかし、レンズ系の像面湾曲を良好に補正
するために第3レンズ群のレンズ面の負のパワーを強く
すると、球面収差やコマ収差を最適に補正できなくな
る。そのために、本発明のレンズ系において第3レンズ
群中の屈折率分布レンズを上記のような形状とし又媒質
の屈折力を負の値にして第3レンズ群中の負の面のパワ
ーを緩くして像面湾曲の補正と共に球面収差やコマ収差
を最適に補正することが好ましい。
However, if the negative power of the lens surface of the third lens group is increased in order to satisfactorily correct the curvature of field of the lens system, spherical aberration and coma cannot be optimally corrected. Therefore, in the lens system of the present invention, the refractive index distribution lens in the third lens group is formed as described above, and the power of the negative surface in the third lens group is reduced by setting the refractive power of the medium to a negative value. In addition, it is preferable that spherical aberration and coma are optimally corrected together with the correction of the field curvature.

【0023】本発明の顕微鏡対物レンズにおいて、第2
レンズ群の屈折率分布レンズの厚さdが下記条件(1)
を満足することが望ましい。 (1) d>30/f ただし、fは対物レンズ全系の焦点距離である。
In the microscope objective lens of the present invention, the second
The thickness d of the refractive index distribution lens of the lens group is the following condition (1).
It is desirable to satisfy (1) d> 30 / f where f is the focal length of the entire objective lens system.

【0024】屈折率分布レンズの媒質の屈折力をφM
すると、φM は次の式(b)にて近似できる。 φM =−2・N10d (b)
Assuming that the refractive power of the medium of the gradient index lens is φ M , φ M can be approximated by the following equation (b). φ M = −2 · N 10 d (b)

【0025】この式(b)より、第2レンズの屈折率分
布レンズが、前記条件(1)を満足すれば、媒質で充分
な屈折力を持ちかつN10の値を小さくできる。したがっ
て、屈折率分布レンズにおいて光軸と外径近傍の屈折率
差を小さくでき、屈折率分布レンズの製造が容易とな
る。
[0025] From this equation (b), the refractive index distribution lens of the second lens, to satisfy the condition (1), it is possible to reduce the value of having and N 10 sufficient power in the medium. Therefore, the refractive index difference between the optical axis and the vicinity of the outer diameter of the gradient index lens can be reduced, and the manufacture of the gradient index lens becomes easy.

【0026】逆に上記条件(1)を満足しないとN10
値が大きくなり屈折率分布レンズの光軸と外径周辺との
屈折率差が大になり製造が困難になる。
[0026] Conversely to the refractive index difference between the optical axis and the outside diameter periphery of the condition (1) is not satisfied when the value of N 10 is increased refractive index lens becomes large production becomes difficult.

【0027】又、本発明の対物レンズにおいて、第2レ
ンズ群、第3レンズ群の屈折率分布レンズのいずれか一
方の分数係数V10が負であることが色収差を良好に補正
する等の点から望ましい。
[0027] Further, in the objective lens of the present invention, the second lens group, the point of view of one of the fractional coefficients V 10 of the refractive index distribution lens of the third lens unit to satisfactorily correct the chromatic aberration that is negative Desirable.

【0028】ラジアル型屈折率分布レンズの軸上色収差
PACは次の式(c)のように表すことができる。 PAC=K(φS /V00+φM /V10) (c) ここでφS 、φM は夫々屈折率分布レンズの面および媒
質の屈折力、又V00、V10は下記の式にて与えられる値
である。 V00=(N00d −1)/(N00F −N00C ) V10=N10d /(N10F −N10C ) ただし、N00d 、N00F 、N00C は夫々d線、F線、C
線の光軸上の屈折率、N10d N10F 、N10C は夫々d
線、F線、C線に対する屈折率分布係数N10を表わす。
The axial chromatic aberration PAC of the radial type gradient index lens can be expressed by the following equation (c). PAC = K (φ S / V 00 + φ M / V 10) (c) where phi S, phi M is the refractive power of the surface and the medium of the respective gradient index lens, also V 00, V 10 in the following formula Is a value given by V 00 = (N 00d -1) / (N 00F -N 00C ) V 10 = N 10d / (N 10F -N 10C ) where N 00d , N 00F , and N 00C are d-line, F-line, and C-line, respectively.
The refractive indices on the optical axis of the line, N 10d N 10F and N 10C are d
It represents linear, F line, the refractive index distribution coefficient N 10 for the C line.

【0029】上記式(c)より、V10の値を変化させる
ことにより、媒質で発生する軸上色収差を変化させるこ
とができる。
[0029] from the formula (c), by changing the value of V 10, it is possible to vary the axial chromatic aberration generated in the medium.

【0030】又、式(c)において、第2レンズ群の屈
折率分布レンズの面の屈折力を表わすφS は、正の値を
とるため、軸上色収差を小さくするためにはφM の項が
負の値をとらなければならない。しかし前述のように第
2レンズ群の屈折率分布レンズの媒質の屈折力φM は、
収差をバランス良く補正するために正の屈折力を持つ必
要があり、レンズ系の軸上色収差を最適に補正するため
には、V10が負の値であるとの条件を満足しなければな
らない。
In equation (c), φ S representing the refractive power of the surface of the refractive index distribution lens of the second lens group is a positive value, and φ M is required to reduce the axial chromatic aberration. The term must be negative. However, as described above, the refractive power φ M of the medium of the refractive index distribution lens of the second lens group is
Must have a positive refractive power in order to correct the aberration in good balance, in order to optimally correct the axial chromatic aberration of the lens system, V 10 must satisfy the condition that a negative value .

【0031】又、第3レンズ群中の屈折率分布レンズ
は、式(c)における面の屈折力を表わすφS が負の値
をとるために、軸上色収差を小さくするためには、φM
の項が正の値をとらなければならない。しかし、前述の
ように第3レンズ群の屈折率分布レンズは収差をバラン
ス良く補正するために媒質の屈折力φM は負の値であ
る。そのため軸上色収差を最適に補正するためには、第
3レンズ群中の屈折率分布レンズV10の値が負の値であ
るとの条件を満足することが望ましい。
[0031] Also, the refractive index distribution lens in the third lens group, in order to phi S representing the refractive power of the surface in the formula (c) is a negative value, in order to reduce the axial chromatic aberration, phi M
Must take a positive value. However, as described above, in the refractive index distribution lens of the third lens group, the refractive power φ M of the medium is a negative value in order to correct aberrations in a well-balanced manner. Therefore in order to optimally correct the axial chromatic aberration, it is desirable that the value of the gradient index lens V 10 in the third lens group satisfies the condition that it is a negative value.

【0032】又本発明のレンズ系において、第3レンズ
群中の屈折率分布レンズは、下記条件(2)を満足する
ことが望ましい。 (2) φM(3)/V10(3) >0.001 ただし、φM(3)は第3レンズ群中の屈折率分布レンズの
媒質の屈折力、V10(3) は第3レンズ群中の屈折率分布
レンズの分散を表わすV10の値である。
In the lens system according to the present invention, it is desirable that the gradient index lens in the third lens group satisfies the following condition (2). (2) φ M (3) / V 10 (3)> 0.001 where φ M (3) is the refractive power of the medium of the refractive index distribution lens in the third lens unit, and V 10 (3) is the third power. is the value of V 10 representing the dispersion of the refractive index distribution lens in the lens group.

【0033】上記条件(2)を満足すれば、第3レンズ
群中の屈折率分布レンズの媒質の屈折力による諸収差と
色収差とを最適なバランスにて補正し得る。この条件
(2)を満足しないと上記のバランスが崩れ諸収差をバ
ランス良く補正することが困難になる。
If the above condition (2) is satisfied, it is possible to correct various aberrations and chromatic aberration caused by the refractive power of the medium of the refractive index distribution lens in the third lens group in an optimal balance. If the condition (2) is not satisfied, the above-mentioned balance is lost and it becomes difficult to correct various aberrations in a well-balanced manner.

【0034】[0034]

【発明の実施の形態】次に本発明の液浸系対物レンズの
実施の形態について、各実施例にもとづき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the immersion objective lens according to the present invention will be described based on respective examples.

【0035】図1〜図3は、本発明のレンズ系の実施例
1〜3の断面図で、これら実施例のデータは下記の通り
である。
1 to 3 are cross-sectional views of Examples 1 to 3 of the lens system according to the present invention. Data of these Examples is as follows.

【0036】 実施例1 f=1.8 ,NA=1.25,像高 10.5 ,WD=0.168 r1 =∞ d1 =0.375 n1 =1.51742 ν1 =52.41 r2 =-0.9 d2 =2.99 n2 =1.883 ν2 =40.78 r3 =-2.65 d3 =0.1 r4 =61.22 d4 =30 屈折率分布レンズ1 r5 =-19.57 d5 =8.61 r6 =-7.119 d6 =6.65 屈折率分布レンズ2 r7 =17.646 屈折率分布レンズ1 N00102030 d線 1.7 -1.9538 ×10-3 1.8434×10-6 4.4850×10-900=50 V10=-77.334 屈折率分布レンズ2 N00102030 d線 1.7 1.4085×10-3 -6.3656 ×10-5 1.1066×10-600=55 V10=-4.3066 f2 =12.1875 ,f3 =-5.634,φM(3)=-4×10-4 Example 1 f = 1.8, NA = 1.25, Image Height 10.5, WD = 0.168 r 1 = ∞ d 1 = 0.375 n 1 = 1.51742 ν 1 = 52.41 r 2 = -0.9 d 2 = 2.99 n 2 = 1.883 ν 2 = 40.78 r 3 = −2.65 d 3 = 0.1 r 4 = 61.22 d 4 = 30 Refractive index distributed lens 1 r 5 = -19.57 d 5 = 8.61 r 6 = -7.119 d 6 = 6.65 Refractive index distributed lens 2 r 7 = 17.646 Refractive index distribution lens 1 N 00 N 10 N 20 N 30 d-line 1.7 -1.9538 × 10 -3 1.8434 × 10 -6 4.4850 × 10 -9 V 00 = 50 V 10 = -77.334 Refractive index distribution lens 2 N 00 N 10 N 20 N 30 d line 1.7 1.4085 × 10 -3 -6.3656 × 10 -5 1.1066 × 10 -6 V 00 = 55 V 10 = -4.3066 f 2 = 12.1875, f 3 = -5.634, φ M (3 ) = -4 × 10 -4

【0037】 実施例2 f=1.8 ,NA=1.25,像高 10.5 ,WD=0.168 r1 =∞ d1 =3.367 n1 =1.883 ν1 =40.78 r2 =-3.9643 d2 =0.1 r3 =146.449 d3 =26.83 屈折率分布レンズ1 r4 =-31.6762 d4 =8.5 r5 =-9.1565 d5 =9.93 屈折率分布レンズ2 r6 =10.179 屈折率分布レンズ1 N00102030 d線 1.7 -2.9563 ×10-3 3.6355×10-6 2.5749×10-900=50 V10=-5.2481 ×102 屈折率分布レンズ2 N00102030 d線 1.7 3.0107×10-4 -5.573×10-5 5.7221×10-700=55 V10=-1.5448 f2 =10.1124 ,f3 =-5.4159 ,φM(3)=-2.8×10-2 [0037] Example 2 f = 1.8, NA = 1.25 , the image height 10.5, WD = 0.168 r 1 = ∞ d 1 = 3.367 n 1 = 1.883 ν 1 = 40.78 r 2 = -3.9643 d 2 = 0.1 r 3 = 146.449 d 3 = 26.83 Refractive index distributed lens 1 r 4 = -31.6762 d 4 = 8.5 r 5 = -9.1565 d 5 = 9.93 Refractive index distributed lens 2 r 6 = 10.179 Refractive index distributed lens 1 N 00 N 10 N 20 N 30 d line 1.7 -2.9563 × 10 -3 3.6355 × 10 -6 2.5749 × 10 -9 V 00 = 50 V 10 = -5.2481 × 10 2 gradient index lens 2 N 00 N 10 N 20 N 30 d line 1.7 3.0107 × 10 - 4 -5.573 × 10 -5 5.7221 × 10 -7 V 00 = 55 V 10 = -1.5448 f 2 = 10.1124, f 3 = -5.4159, φ M (3) =-2.8 × 10 -2

【0038】 実施例3 f=3 ,NA=1.25,像高 10.5 ,WD=0.168 r1 =∞ d1 =0.375 n1 =1.51742 ν1 =52.41 r2 =-0.9 d2 =2.99 n2 =1.883 ν2 =40.78 r3 =-2.65 d3 =0.1 r4 =46.791 d4 =33.9 屈折率分布レンズ1 r5 =-19.657 d5 =6.97 r6 =-9.876 d6 =4.44 屈折率分布レンズ2 r7 =-30 屈折率分布レンズ1 N00102030 d線 1.7 -1.5914 ×10-3 6.7574×10-7 8.6123×10-900=50 V10=-64.37 屈折率分布レンズ2 N00102030 d線 1.7 6.6418×10-3 -4.964 ×10-5 2.5591×10-700=55 V10=-25.93 f2 =12.1875 ,f3 =-5.634,φM(3)=-5.9×10-2 ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。
Example 3 f = 3, NA = 1.25, Image Height 10.5, WD = 0.168 r 1 = ∞ d 1 = 0.375 n 1 = 1.51742 ν 1 = 52.41 r 2 = -0.9 d 2 = 2.99 n 2 = 1.883 ν 2 = 40.78 r 3 = −2.65 d 3 = 0.1 r 4 = 46.791 d 4 = 33.9 refractive index distribution lens 1 r 5 = -19.657 d 5 = 6.97 r 6 = -9.876 d 6 = 4.44 refractive index distribution lens 2 r 7 = -30 Refractive index distribution lens 1 N 00 N 10 N 20 N 30 d line 1.7 -1.5914 × 10 -3 6.7574 × 10 -7 8.6123 × 10 -9 V 00 = 50 V 10 = -64.37 Refractive index distribution lens 2 N 00 N 10 N 20 N 30 d-line 1.7 6.6418 × 10 -3 -4.964 × 10 -5 2.5591 × 10 -7 V 00 = 55 V 10 = -25.93 f 2 = 12.1875, f 3 = -5.634, φ M ( 3) = − 5.9 × 10 −2 where r 1 , r 2 ,... Are the radii of curvature of the respective surfaces of the lens, d
.. , D 2 ,...
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens.

【0039】実施例1は、図1に示す通りの構成で、第
1レンズ群が像側に強い凸面を向けた接合面を有する接
合レンズよりなり、第2レンズ群が両凸形状つまり光軸
上の肉厚が大で光軸から離れるにつれて肉厚が小になる
形状であって、媒質の屈折力が正である屈折率分布レン
ズよりなり、第3レンズ群が両凹形状つまり光軸上の肉
厚が小で光軸から離れるにつれて肉厚が大になる形状で
あって媒質の屈折力が負である屈折率分布レンズよりな
る対物レンズである。
In the first embodiment, the first lens unit is composed of a cemented lens having a cemented surface with a strong convex surface facing the image side, and the second lens unit is of a biconvex shape, that is, the optical axis. The third lens group is a biconcave shape, that is, on the optical axis, which has a shape in which the upper thickness is large and the thickness decreases with distance from the optical axis, and the medium has a positive refractive power. Is an objective lens comprising a refractive index distribution lens in which the thickness is small and the thickness increases with distance from the optical axis, and the medium has a negative refractive power.

【0040】又、実施例2は図2に示す通りであって、
第1レンズ群が平凸単レンズよりなる点で実施例1と相
違する。
The second embodiment is as shown in FIG.
The third embodiment differs from the first embodiment in that the first lens group is formed of a plano-convex single lens.

【0041】又実施例3は図3に示す通りの構成で、実
施例1の対物レンズと同様の構成である。
The third embodiment has the same configuration as that shown in FIG. 3 and is similar to the objective lens of the first embodiment.

【0042】これら実施例1〜3の対物レンズは、いず
れも対物レンズより射出する光束が平行光束である無限
遠補正型であってそれ自体では結像しない。そのため図
4に示し、下記データを有するレンズ系のような結像レ
ンズと組み合わせて使用される。 R1 =68.7541 D1 =7.7321 N1 =1.48749 V1 =70.20 R2 =-37.5679 D2 =3.4742 N2 =1.80610 V2 =40.95 R3 =-102.8477 D3 =0.6973 R4 =84.3099 D4 =6.0238 N3 =1.83400 V3 =37.16 R5 =-50.7100 D5 =3.0298 N4 =1.64450 V4 =40.82 R6 =40.6619 実施例1〜3の収差状況は夫々図5〜7に示す通りであ
る。この収差曲線図は、いずれも前記図4に示す結像レ
ンズと組合わせた時のものである。
Each of the objective lenses of Examples 1 to 3 is an infinity-correction type in which a light beam emitted from the objective lens is a parallel light beam, and does not form an image by itself. Therefore, it is used in combination with an imaging lens such as the lens system shown in FIG. 4 and having the following data. R 1 = 68.7541 D 1 = 7.7321 N 1 = 1.48749 V 1 = 70.20 R 2 = -37.5679 D 2 = 3.4742 N 2 = 1.80610 V 2 = 40.95 R 3 = -102.8477 D 3 = 0.6973 R 4 = 84.3099 D 4 = 6.0238 aberration of N 3 = 1.83400 V 3 = 37.16 R 5 = -50.7100 D 5 = 3.0298 N 4 = 1.64450 V 4 = 40.82 R 6 = 40.6619 examples 1-3 are shown respectively Figures 5-7. Each of the aberration curve diagrams is obtained when the lens is combined with the imaging lens shown in FIG.

【0043】又前記データ中r、d、R、D等の単位は
mmである。
In the above data, the unit of r, d, R, D, etc. is
mm.

【0044】実施例は無限遠対物レンズで設計している
が、勿論有限系対物レンズも設計は容易であり、本発明
は、無限遠補正型対物レンズに限定されるものではな
い。
Although the embodiment is designed with an infinity objective lens, a finite system objective lens is of course easy to design, and the present invention is not limited to an infinity correction type objective lens.

【0045】特許請求の範囲に記載する対物レンズのほ
か次の各項に記載する対物レンズも本発明の目的を達成
し得るものである。
In addition to the objective lens described in the claims, the objective lens described in each of the following items can also achieve the object of the present invention.

【0046】(1)特許請求の範囲の請求項1、2又は
3に記載するレンズ系で、第2レンズ群の屈折率分布レ
ンズが下記条件(1)を満足することを特徴とする液浸
系対物レンズ。 (1) d>30/f
(1) In the lens system according to any one of claims 1, 2 and 3, the refractive index distribution lens of the second lens group satisfies the following condition (1). System objective lens. (1) d> 30 / f

【0047】(2)特許請求の範囲の請求項1、2又は
3あるいは前記の(1)の項に記載するレンズ系で、第
2レンズ群、第3レンズ群の一方又は両方の屈折率分布
レンズの分散係数V10が共に負であることを特徴とする
液浸系対物レンズ。
(2) The refractive index distribution of one or both of the second lens unit and the third lens unit in the lens system according to claim 1, 2 or 3, or the lens system according to the above (1). immersion objective lens, wherein the dispersion coefficient V 10 of the lens is negative both.

【0048】(3)特許請求の範囲の請求項1、2又は
3あるいは前記の(1)又は(2)の項に記載するレン
ズ系で、第3レンズ群の屈折率分布レンズの分散係数V
10(3) が下記条件(2)を満足することを特徴とする液
浸系対物レンズ。 (2) φM(3)/V10(3) >0.001
(3) In the lens system according to claim 1, 2, or 3, or (1) or (2), the dispersion coefficient V of the refractive index distribution lens in the third lens group is set.
10 An immersion objective lens characterized in that (3) satisfies the following condition (2). (2) φ M (3) / V 10 (3)> 0.001

【0049】[0049]

【発明の効果】本発明の対物レンズは、NAが1.0を
超える液浸系対物レンズで少ないレンズ枚数の小型なレ
ンズ系で諸収差が良好に補正されている。
The objective lens of the present invention is a liquid immersion type objective lens having an NA exceeding 1.0, and various aberrations are well corrected by a small lens system having a small number of lenses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】上記実施例の対物レンズと組合わせて用いられ
る結像レンズの1例を示す図
FIG. 4 is a diagram showing an example of an imaging lens used in combination with the objective lens of the embodiment.

【図5】本発明の実施例1の収差曲線図FIG. 5 is an aberration curve diagram according to the first embodiment of the present invention.

【図6】本発明の実施例2の収差曲線図FIG. 6 is an aberration curve diagram according to the second embodiment of the present invention.

【図7】本発明の実施例3の収差曲線図FIG. 7 is an aberration curve diagram according to the third embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、平凸単レンズ又は像側に
強い凸面を向けた接合面を持つ平凸レンズを含み正の屈
折力を持つ第1レンズ群と、正の屈折力を持ち屈折率分
布が下記式(a)にて表わされる屈折率分布レンズを含
む第2レンズ群と、負の屈折力を持ち屈折率分布が下記
の式(a)にて表わされる屈折率分布レンズを含む第3
レンズ群とからなる少なくとも3群構成の液浸系対物レ
ンズ。 N(r)=N00+N102 +N204 +・・・ (a) ただし、rは光軸からの半径方向の距離、N00は光軸上
の屈折率、N10、N20、・・・は夫々2次、4次、・・
・の係数である。
1. A first lens group having a positive refractive power including a plano-convex single lens or a plano-convex lens having a cemented surface with a strong convex surface facing the image side, and a refractive lens having a positive refractive power in order from the object side. A second lens group including a refractive index distribution lens whose refractive index distribution is represented by the following equation (a), and a refractive index distribution lens having a negative refractive power and a refractive index distribution represented by the following equation (a): Third
An immersion type objective lens having at least three groups including a lens group. N (r) = N 00 + N 10 r 2 + N 20 r 4 +... (A) where r is the distance in the radial direction from the optical axis, N 00 is the refractive index on the optical axis, N 10 , N 20 , ... are the second, fourth, etc. respectively
The coefficient of
【請求項2】前記第2レンズ群の屈折率分布レンズが軸
上で最も肉厚が厚く、光軸外に行くに従って肉厚が薄く
なる形状であって媒質の屈折力が正であることを特徴と
する請求項1の液浸系顕微鏡対物レンズ。
2. The refractive index distribution lens of the second lens group has a shape in which the thickness is the largest on the axis and the thickness is reduced toward the outside of the optical axis, and the refractive power of the medium is positive. 2. The immersion microscope objective lens according to claim 1, wherein:
【請求項3】前記第3レンズ群の屈折率分布レンズが、
軸上で最も肉厚が薄く、光軸外に行くに従って肉厚が厚
くなる形状であって媒質の屈折力が負であることを特徴
とする請求項1又は2の液浸系顕微鏡対物レンズ。
3. The refractive index distribution lens of the third lens group,
3. The immersion microscope objective lens according to claim 1, wherein the thickness of the medium is thinnest on the axis, and the thickness increases toward the outside of the optical axis, and the refractive power of the medium is negative.
JP8464297A 1997-03-19 1997-03-19 Liquid-dip type objective Withdrawn JPH10260362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8464297A JPH10260362A (en) 1997-03-19 1997-03-19 Liquid-dip type objective

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8464297A JPH10260362A (en) 1997-03-19 1997-03-19 Liquid-dip type objective

Publications (1)

Publication Number Publication Date
JPH10260362A true JPH10260362A (en) 1998-09-29

Family

ID=13836358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8464297A Withdrawn JPH10260362A (en) 1997-03-19 1997-03-19 Liquid-dip type objective

Country Status (1)

Country Link
JP (1) JPH10260362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048085A (en) * 2007-08-22 2009-03-05 Olympus Corp Small-diameter objective optical system
CN109643010A (en) * 2016-07-14 2019-04-16 利格纳米有限公司 Object lens attachment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048085A (en) * 2007-08-22 2009-03-05 Olympus Corp Small-diameter objective optical system
EP2028519A3 (en) * 2007-08-22 2009-08-19 Olympus Corporation Small-diameter objective optical system
US7733583B2 (en) 2007-08-22 2010-06-08 Olympus Corporation Small-diameter objective optical system
CN109643010A (en) * 2016-07-14 2019-04-16 利格纳米有限公司 Object lens attachment

Similar Documents

Publication Publication Date Title
US4606607A (en) Photographic lens system with a short overall length
JPH06281864A (en) Immersion objective lens for microscope
JPH1078543A (en) Optical system
JP3313163B2 (en) Microscope objective lens
JP2006113486A (en) Immersion system microscope objective
JP6552436B2 (en) Immersion objective lens
US4235521A (en) Photographic lens system
JPH06324264A (en) Wide angle lens
JPH07120671A (en) Wide angle lens
JP4915990B2 (en) Eyepiece
JP2843311B2 (en) Small wide-angle lens
JPH06308384A (en) Large-diameter wide-angle photographic lens
JPH11149039A (en) Achromatic lens system
JP3335391B2 (en) High magnification microscope objective
JPH08201686A (en) Triplet lens with behind diaphragm
JP2000035541A (en) Immersion system microscopic objective lens
JPH08136816A (en) Objective lens of microscope
JPH07333502A (en) Zoom lens
JPH07234357A (en) Loupe
JPH10133120A (en) Microscope objective lens
JP3038974B2 (en) Small wide-angle lens
JPH10260362A (en) Liquid-dip type objective
JPH06230277A (en) Lens for reading
JPH09222565A (en) Microscope objective
JPH10133119A (en) Microscope objective lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601