JPH10259442A - High purity aluminum for foil - Google Patents

High purity aluminum for foil

Info

Publication number
JPH10259442A
JPH10259442A JP32518197A JP32518197A JPH10259442A JP H10259442 A JPH10259442 A JP H10259442A JP 32518197 A JP32518197 A JP 32518197A JP 32518197 A JP32518197 A JP 32518197A JP H10259442 A JPH10259442 A JP H10259442A
Authority
JP
Japan
Prior art keywords
foil
ppm
aluminum
purity
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32518197A
Other languages
Japanese (ja)
Inventor
Masahiko Katano
雅彦 片野
Takeshi Inoue
雄志 井上
Hidehiko Ishii
秀彦 石井
Jun Shimizu
遵 清水
Yoshinari Ashidaka
善也 足高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Original Assignee
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Nippon Light Metal Co Ltd filed Critical Toyo Aluminum KK
Priority to JP32518197A priority Critical patent/JPH10259442A/en
Publication of JPH10259442A publication Critical patent/JPH10259442A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain high purity aluminum for foil in which the generation of blistering in a producing process is prevented, small in fraction defective and easy to rolling by regulating each content of Na and K as inevitable impurities in high purity aluminum having specified purity to specified value or below. SOLUTION: In high purity aluminum having >=99.85% purity, the content of Na as inevitable impurities is regulated to <=0.05 ppm and that of K to <=0.02 ppm. Furthermore, preferably, each content of Si and Fe is regulated to about <=700 ppm and that of Cu to about <=100 ppm. Moreover, in the case the contents of Na and K are high, by using flux of chloride, fluoride series or the like contg. no Na and K, the molten metal of aluminum is subjected to flux treatment, or by using gaseous chlorine or gaseous fluorine for degassing treatment to the molten metal, Na and K can be removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主に電解コンデンサ
用箔に圧延加工して使用される高純度アルミニウムに係
り、該アルミニウムを圧延加工して得られた箔に焼鈍処
理を施しても膨れの発生が少い高純度アルミニウムを提
供しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity aluminum which is mainly used by rolling into foil for electrolytic capacitors. It is intended to provide high-purity aluminum with low generation.

【0002】[0002]

【従来の技術】高純度アルミニウムは電気化学的にエッ
チングすることにより表面積を拡大できること、そして
さらに陽極酸化により表面に耐電圧性の緻密な酸化皮膜
が形成され誘電体として利用できることを活用してコン
デンサ用箔として利用されている。例えば低圧用コンデ
ンサに利用されるアルミニウムはエッチング特性の上か
ら陽極箔としては純度99.97%以上、好ましくは99.
98%以上のアルミニウムをベースとし、また陰極用と
しては純度99.85%〜99.9%のアルミニウムをベー
スとし、これにその他の有意または不可避の不純物元素
を必要範囲内において配合または規制して溶製し、脱ガ
スやフィルターなどによる不純物除去等の処理を施した
のち、上下が開放した水冷式鋳型を用いるDC鋳造法で
厚さ約500mmのスラブを鋳造し、次いで液体化処理、
熱間圧延、冷間圧延して厚さ0.3mm程度の箔地となし、
更に箔圧延して厚さ約0.02〜0.1mm程度の電解コンデ
ンサ用箔とされる。
2. Description of the Related Art High-purity aluminum can be used as a capacitor by utilizing the fact that the surface area can be enlarged by electrochemical etching and that a dense voltage-resistant oxide film is formed on the surface by anodic oxidation and can be used as a dielectric. It is used as a foil. For example, aluminum used for a low-voltage capacitor has a purity of 99.97% or more, and preferably 99.97% or more, as an anode foil because of its etching characteristics.
Based on aluminum of 98% or more, and for cathode use, based on aluminum of 99.85% to 99.9% purity, other significant or unavoidable impurity elements are blended or regulated within the required range. After smelting and performing processes such as degassing and removal of impurities by a filter, etc., a slab having a thickness of about 500 mm is cast by a DC casting method using a water-cooled mold with an open top and bottom, and then a liquefaction process,
Hot rolled and cold rolled to give a foil of about 0.3mm thickness,
Further, the foil is rolled into a foil for an electrolytic capacitor having a thickness of about 0.02 to 0.1 mm.

【0003】上記のようにして得られた箔地ないし箔圧
延途中の箔は圧延加工し易くするために加熱焼鈍して軟
化される場合があり、また箔においても立方体方位の制
御や曲げ加工などをし易くするために200〜550℃
の温度に加熱保持して焼鈍処理されることもある。
[0003] The foil ground or foil being rolled obtained as described above may be softened by heat annealing in order to facilitate rolling, and the foil may also be controlled by controlling the cubic orientation or bending. 200 to 550 ° C to facilitate
, And may be annealed by heating to a temperature of

【0004】[0004]

【発明が解決しようとする課題】然し上記したような箔
は非常に薄く、わずかな傷で不良となる。すなわち加熱
焼鈍で膨れ(1〜3mm径の凸起)が発生し、溶湯に脱ガ
ス処理などを施しても焼鈍処理工程で膨れの発生しない
箔を提供することが困難であって、従来の高純度アルミ
ニウムは箔の製造過程で膨れ発生による不良発生率が高
い不利を有していた。
However, such foils as described above are very thin and are defective with slight scratches. That is, swelling (projection of 1 to 3 mm in diameter) occurs due to heat annealing, and it is difficult to provide a foil that does not cause swelling in the annealing process even if degassing or the like is performed on the molten metal. Pure aluminum has the disadvantage that the defective rate due to swelling during the production of the foil is high.

【0005】[0005]

【課題を解決するための手段】本発明者等は上記したよ
うな従来技術における課題を解決することについて検討
を重ねた結果、ある特定の不純物レベルを規制すること
により加熱焼鈍処理を施こしても箔の製造過程で膨れ発
生不良の少い高純度アルミニウムが得られることを見出
し本発明を完成したものであって、以下の如くである。
The inventors of the present invention have studied to solve the problems in the prior art as described above, and as a result, have performed a heat annealing treatment by regulating a specific impurity level. The present inventors have found that high-purity aluminum with little swelling and poor occurrence in the production process of the foil can be obtained and completed the present invention, and are as follows.

【0006】Al純度が99.85%以上であって、不可避
不純物としてのNaが0.05ppm 以下、Kが0.02ppm 以
下に規制されていることを特徴とする箔用高純度アルミ
ニウム。
A high-purity aluminum for foils, wherein the purity of Al is not less than 99.85%, Na as an unavoidable impurity is regulated to 0.05 ppm or less, and K is regulated to 0.02 ppm or less.

【0007】[0007]

【発明の実施の形態】上記したような本発明について、
更にその仔細を説明すると、先ずAl純度が99.85%以
上であって、かつ不可避不純物としてのNaが0.05ppm
以下、Kが0.02ppm 以下に規制することによって箔圧
延が容易で、焼鈍処理しても箔に膨れが生じない高純度
アルミニウムとなる。その他の不純物としては特に限定
されるものではないが、SiおよびFeは700ppm 以下、
Cuは100ppm 以下に規制することが箔の圧延性および
エッチング特性劣化防止の観点から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION
To further explain the details, first, the purity of Al is 99.85% or more, and 0.05 ppm of Na as an unavoidable impurity is contained.
Hereinafter, by controlling K to be 0.02 ppm or less, high-purity aluminum that can be easily rolled by foil and that does not cause swelling of the foil even after annealing treatment is obtained. Although other impurities are not particularly limited, Si and Fe are 700 ppm or less,
It is preferable to limit Cu to 100 ppm or less from the viewpoint of rollability of the foil and prevention of deterioration of etching characteristics.

【0008】然して、箔地または箔を加熱焼鈍すると表
面に膨れの発生する機構については次のように考えられ
る。即ち、大気または炉内雰囲気中には僅かではあるが
水分が存在し、アルミニウム箔が焼鈍温度である350
℃以上の温度に加熱されると、水分とアルミニウムが反
応して水素が発生することは周知の現象であって、この
ようにして発生した水素は、一部は大気へ放出され、ま
た他の一部はアルミニウム箔中へ拡散する。
[0008] However, the mechanism by which blisters are generated on the surface of the foil base or the foil when the foil is annealed by heating is considered as follows. That is, a small amount of water is present in the atmosphere or in the furnace atmosphere, and the aluminum foil has an annealing temperature of 350 ° C.
It is a well-known phenomenon that when heated to a temperature of at least ℃, water reacts with aluminum to generate hydrogen, and the hydrogen thus generated is partially released to the atmosphere, Some diffuse into the aluminum foil.

【0009】また、アルミニウム箔は一般的には多結晶
体からなり、平面的には網目状に結晶粒が観察され、こ
の結晶粒を取り囲むように結晶粒界が存在する。この結
晶粒界は粒内と比較すると不純物が集積しており、且つ
結晶格子が不揃いであって、一種の欠陥部分として知ら
れている。ところで、上述した水分とアルミニウムが反
応して発生した水素は、格子が不揃いな結晶粒界に拡散
し、比較的大きい晶出物や介在物、あるいは結晶粒界の
密に存在する所謂粒界の三重点としての欠陥部分に吸着
集合し易く、集合したガスの加熱による膨張圧力で、こ
の圧力に抗しきれない箔の一部が膨れとなるものと考察
される。元々箔中に含有されているガスは0.2cc/100g
以下であり、しかも全体的に含有されているものである
から、この膨れ発生の因子としてはあまり強く影響して
いないものと考えられる。
The aluminum foil is generally made of a polycrystalline material, and crystal grains are observed in a network in a plane, and a crystal grain boundary exists so as to surround the crystal grains. This crystal grain boundary is known as a kind of defect part because impurities are accumulated and the crystal lattice is irregular as compared with the inside of the crystal grain. By the way, the hydrogen generated by the reaction of the above-mentioned moisture and aluminum diffuses into the crystal grain boundaries having an irregular lattice, and relatively large crystallized substances and inclusions, or so-called grain boundaries which are densely present at the crystal grain boundaries. It is considered that the foil is likely to be adsorbed and aggregated at the defective portion as a triple point, and that the expansion pressure due to the heating of the aggregated gas causes a part of the foil that cannot withstand this pressure to expand. The gas originally contained in the foil is 0.2cc / 100g
Therefore, it is considered that the swelling does not have a strong influence because it is contained as a whole.

【0010】更に、アルカリ金属中のNaとKは固体アル
ミニウムに殆ど固溶せず、かつ焼鈍加熱中にアルミニウ
ム中を移動し易いので、それらは上述の水素と同様に欠
陥部分と考えられる結晶粒界に容易に移動集合し析出し
て粒界を脆化する。従って、NaとKの含有量の多いアル
ミニウム箔は、加熱焼鈍すると粒界が軟化し易く、集合
したガスのガス圧に抗しきれず膨れが発生し易くなるも
のと考えられる。然してこのようなNaとKについては、
Al純度が99.85%以上の箔地においてNa含有量を0.0
5ppm 以下とし、しかもK含有量を0.02ppm 以下に規
制することによって加熱焼鈍しても箔における膨れの発
生が明かに少くなることが確認された。
Further, since Na and K in the alkali metal hardly dissolve in solid aluminum and easily move in the aluminum during the annealing heating, they are crystal grains which are considered to be defective like the above-mentioned hydrogen. It easily migrates and assembles into the boundaries and precipitates to embrittle the grain boundaries. Therefore, it is considered that the aluminum foil having a large content of Na and K tends to soften the grain boundaries when heated and annealed, and cannot easily withstand the gas pressure of the aggregated gas, so that swelling is likely to occur. But for such Na and K,
In a foil material with an Al purity of 99.85% or more, the Na content is reduced to 0.0.
By controlling the K content to 5 ppm or less and the K content to 0.02 ppm or less, it was confirmed that the occurrence of blistering in the foil was clearly reduced even when annealing by heating.

【0011】前記したようなNaとKは、Al純度99.85
%以上の高純度アルミニウム地金においては、通常Naで
0.01〜0.10ppm 程度、Kで0.01〜0.04ppm 含有
されている。また返り材としては種々の用途からのもの
が混入し結果的にNa、Kが相当に高い範囲に達すること
がある。従って本発明の前記レベルの如き純度の箔地を
溶製するには、NaとKの含有量の少ない地金を採用し、
また返り材等の原料を選ぶことが好ましく、それらを溶
解した結果、Na、Kの含有量が本発明の範囲より高いと
きはNaおよびKの含有されていない塩化物またはフッ化
物系等のフラックスを使用したフラックス処理をなして
溶湯中のNaとKを除去し、あるいは溶湯の脱ガス処理に
塩素系のガス或いはフッ素系のガスを使用して溶湯中の
NaとKを除去することができる。
Na and K as described above have an Al purity of 99.85.
% Of high-purity aluminum ingots
It is contained in an amount of about 0.01 to 0.10 ppm and 0.01 to 0.04 ppm in K. Also, as return materials, those from various uses are mixed, and as a result, Na and K may reach a considerably high range. Therefore, in order to smelt a foil material having a purity of the level of the present invention, a metal material having a small content of Na and K is used,
Also, it is preferable to select raw materials such as return materials, and as a result of dissolving them, when the content of Na and K is higher than the range of the present invention, a flux such as chloride or fluoride containing no Na and K is used. To remove Na and K in the molten metal by flux treatment, or use chlorine-based gas or fluorine-based gas for degassing of the molten metal.
Na and K can be removed.

【0012】[0012]

【実施例】【Example】

(実施例1)本発明によるものの具体的な実施例につい
て説明すると、Al純度99.98%以上の地金を使用して
溶解し、溶湯中のNa0.09ppm 、K0.04ppm に対して
塩素ガスを使用して脱ガス処理し、Naの含有量が0.00
5〜0.08ppm 、Kが0.007〜0.032ppm の範囲内
で種々の含有量を有している溶湯を準備し、これをDC
鋳造し、鋳塊を10mm面削した後600℃に4時間保持
して均質化処理し、熱間圧延、冷間圧延を施して厚さ0.
4mmのアルミニウム箔地を製作した。これらの箔地のそ
の他の組成は、Siが35〜39ppm 、Feが33〜37pp
m 、Cuが29〜32ppm であって、Al純度は99.98%
以上であった。また、ランズレーで測定した全ガス量は
0.1〜0.15cc/100gであった。
(Example 1) A specific example of the present invention will be described. The metal is melted by using a base metal having an Al purity of not less than 99.98%, and chlorine gas is added to Na 0.09 ppm and K 0.04 ppm in the molten metal. Degassing using Na, the content of Na is 0.00
A molten metal having various contents within a range of 5 to 0.08 ppm and a K of 0.007 to 0.032 ppm is prepared.
After casting, the ingot was subjected to 10 mm face milling, kept at 600 ° C. for 4 hours, homogenized, hot-rolled and cold-rolled to a thickness of 0.1 mm.
A 4 mm aluminum foil substrate was manufactured. Other compositions of these foils are: 35-39 ppm Si, 33-37 pp Fe
m and Cu are 29 to 32 ppm, and the Al purity is 99.98%
That was all. The total gas volume measured by Lansley is
It was 0.1 to 0.15 cc / 100 g.

【0013】各アルミニウム箔地に対する箔圧延は、冷
間圧延のみにより厚さ0.1mmの箔まで圧延し、焼鈍処理
を行った。
The foil rolling for each aluminum foil was rolled to a foil having a thickness of 0.1 mm only by cold rolling, followed by annealing.

【0014】前記のようにして得られた上記のようにNa
およびKレベルの異る31ロットの各箔についての膨れ
評価は次のようにして実施した。 加熱前処理:箔を1%、50℃のNaOH水溶液に60秒浸漬し、脱表面層処理を 行った。 加熱炉周囲の雰囲気:25℃、相対湿度が70%以上 加熱条件: 流気式電気炉にて450℃×5時間 膨れの定量: 目視にて3×3cm2 範囲中の膨れ量を定量 膨れ判定基準: 次の表1に示す如くである。 元素含有量分析: グロー放電質量分析装置
The above-obtained Na
The swelling of each foil of 31 lots having different K levels was evaluated as follows. Heating pretreatment: The foil was immersed in a 1% NaOH aqueous solution at 50 ° C. for 60 seconds to perform a surface removal treatment. Atmosphere around heating furnace: 25 ° C, relative humidity is 70% or more Heating condition: 450 ° C x 5 hours in flowing electric furnace Quantification of swelling: Quantification of swelling in 3 x 3 cm 2 range visually Criteria: As shown in Table 1 below. Element content analysis: glow discharge mass spectrometer

【0015】[0015]

【表1】 [Table 1]

【0016】また、次の表2にはガス量、Na量、K量お
よびふくれ判定結果の1例を示した。
Table 2 below shows one example of the gas amount, Na amount, K amount and the result of the blister determination.

【0017】[0017]

【表2】 [Table 2]

【0018】上記したような膨れ評価の結果をNaおよび
K含有量との関係でグラフとして示したのが図1であっ
て、この図1によればNaを0.05ppm 、Kを0.02ppm
以下に規制した領域においてはすべての箔地が膨れ量6
0個/9cm2 以下の合格となっていることが確認され
る。また表2の結果より、本発明例のロットAの如く箔
中の全ガス量が多くても、Na、Kが規制値以下の場合
は、ふくれの発生しないことが判る。一方、比較例のロ
ットBの如く箔中の全ガス量が少なくても、Na、Kが規
制値を超える場合は、ふくれの発生することが判る。
FIG. 1 is a graph showing the results of the swelling evaluation as described above in relation to the contents of Na and K. According to FIG. 1, 0.05 ppm of Na and 0.02 ppm of K are shown.
In the areas regulated below, the swelling amount of all foil
It is confirmed that the result is 0 pieces / 9 cm 2 or less. Also, from the results in Table 2, it can be seen that even when the total gas amount in the foil is large as in the lot A of the present invention, no blistering occurs when Na and K are below the regulated values. On the other hand, even when the total gas amount in the foil is small as in the lot B of the comparative example, it is found that blistering occurs when Na and K exceed the regulated values.

【0019】(実施例2)Al純度99.98%以上の地金
および返り材20%を使用して溶解し、溶湯中のNa:0.
10ppm 、K:0. 05ppm に対して塩素ガスを使用して
脱ガス処理し、Naの含有量が0.005〜0.09ppm 、K
が0.007〜0.038ppm の範囲内で種々の含有量を有
している溶湯を準備し、これを実施例1と同じ方法で厚
さ0.4mmのアルミニウム箔地を製作した。これらの箔地
のその他の組成は、Siが35〜39ppm 、Feが33〜3
7ppm 、Cuが29〜32ppm であって、Al純度は99.9
8%以上であった。また、ランズレーで測定した全ガス
量は0.1〜0.15cc/100g であった。
(Example 2) Melting was performed using a base metal having an Al purity of not less than 99.98% and a return material of 20%.
Degassing treatment using chlorine gas for 10 ppm and K: 0.05 ppm, and Na content of 0.005 to 0.09 ppm, K
Was prepared having various contents in the range of 0.007 to 0.038 ppm, and a 0.4 mm-thick aluminum foil fabric was manufactured in the same manner as in Example 1. Other compositions of these foils are as follows: 35 to 39 ppm Si, 33 to 3 Fe
7 ppm, Cu is 29 to 32 ppm, and Al purity is 99.9.
8% or more. The total amount of gas measured by Lansley was 0.1 to 0.15 cc / 100 g.

【0020】各アルミニウム箔地に対する箔圧延は、実
施例1と同様に冷間圧延のみにより厚さ0.1mmの箔まで
圧延し、焼鈍処理を行った。
The foil rolling on each aluminum foil substrate was performed by cold rolling only to a foil having a thickness of 0.1 mm and annealed in the same manner as in Example 1.

【0021】前記のようにして得られた上記のようにNa
およびKレベルの異なる15ロットの各箔についての膨
れ評価は実施例1と同じようにして実施した。
The above-obtained Na
The swelling of each foil of 15 lots having different K levels was evaluated in the same manner as in Example 1.

【0022】また、次の表3にはガス量、Na量、K量お
よびふくれ判例結果の1例を示した。
Table 3 below shows one example of the gas amount, the Na amount, the K amount, and the result of the blister case.

【0023】[0023]

【表3】 [Table 3]

【0024】上記したような膨れ評価の結果をNaおよび
K含有量との関係でグラフとして示したのが図2であっ
て、この図2によればNaを0.05ppm 、Kを0.2ppm 以
下に規制した領域においてはすべての箔地が膨れ量60
個/9cm2 以下の合格となっていることが確認される。
また表3の結果より、本発明のロットCの如く箔中の全
ガス量が多くてもNa、Kが規制値以下の場合は、ふくれ
の発生しないことが判る。一方、比較例のロットDの如
く箔中の全ガス量が少なくても、Na、Kが規制値を超え
るばあいは、ふくれの発生することが判る。
FIG. 2 is a graph showing the results of the swelling evaluation as described above in relation to the contents of Na and K. According to FIG. 2, 0.05 ppm of Na and 0.2 ppm of K are shown. In the area regulated below, the swelling amount of all foil
It is confirmed that the result is less than 9 pieces / 9 cm 2 .
Further, from the results in Table 3, it can be seen that blistering does not occur when Na and K are below the regulated values even if the total gas amount in the foil is large as in lot C of the present invention. On the other hand, even if the total gas amount in the foil is small as in the lot D of the comparative example, when Na and K exceed the regulated values, blistering is found to occur.

【0025】[0025]

【発明の効果】以上説明したような本発明による箔用高
純度アルミニウムによるときは箔を圧延して各種の製品
を得る場合に不可欠的な加熱焼鈍処理にも膨れの発生が
少くて好ましい電解コンデンサ用等の箔を歩留高く得る
ことができることとなり、工業的にその効果の大きい発
明である。
According to the high purity aluminum for foil according to the present invention as described above, the electrolytic capacitor is preferable because it does not generate much swelling even in the heat annealing treatment which is indispensable when rolling the foil to obtain various products. This is an invention having a large industrial effect because foils for use and the like can be obtained with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実施例1についてNaおよびK含有
量と焼鈍時の膨れ発生状態を整理して示した図表であ
る。
FIG. 1 is a table summarizing the Na and K contents and the state of blistering during annealing in Example 1 according to the present invention.

【図2】本発明の実施例2についてのNaおよびK含有量
と焼鈍時の膨れ発生状態を整理して示した図表である。
FIG. 2 is a table showing the contents of Na and K and the occurrence of blistering during annealing in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 雄志 静岡県庵原郡蒲原町蒲原161番地 日本軽 金属株式会社蒲原製造所内 (72)発明者 石井 秀彦 愛知県稲沢市小池1丁目11番1号 日本軽 金属株式会社名古屋工場内 (72)発明者 清水 遵 大阪府大阪市中央区久太郎町三丁目6番8 号 東洋アルミニウム株式会社内 (72)発明者 足高 善也 大阪府大阪市中央区久太郎町三丁目6番8 号 東洋アルミニウム株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yushi Inoue 161 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Inside the Nippon Light Metal Co., Ltd. Kambara Works (72) Inventor Hidehiko Ishii 1-11-1 Koike, Inazawa-shi, Aichi Japan Japan Inside the Nagoya Factory of Light Metal Co., Ltd. (72) Inventor: Shimizu Zun 3-6-8, Kutaro-cho, Chuo-ku, Osaka-shi, Osaka Inside Toyo Aluminum Co., Ltd. (72) Inventor: Yoshiya Ashidaka Kutaro-cho, Chuo-ku, Osaka-shi, Osaka 6-8, Toyo Aluminum Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Al純度が99.85%以上であって、不可
避不純物としてのNaが0.05ppm 以下、Kが0.02ppm
以下に規制されていることを特徴とする箔用高純度アル
ミニウム。
An Al purity of at least 99.85%, Na as an unavoidable impurity is 0.05 ppm or less, and K is 0.02 ppm.
High-purity aluminum for foil characterized by the following restrictions.
JP32518197A 1997-01-20 1997-11-12 High purity aluminum for foil Pending JPH10259442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32518197A JPH10259442A (en) 1997-01-20 1997-11-12 High purity aluminum for foil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-38642 1997-01-20
JP3864297 1997-01-20
JP32518197A JPH10259442A (en) 1997-01-20 1997-11-12 High purity aluminum for foil

Publications (1)

Publication Number Publication Date
JPH10259442A true JPH10259442A (en) 1998-09-29

Family

ID=26377914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32518197A Pending JPH10259442A (en) 1997-01-20 1997-11-12 High purity aluminum for foil

Country Status (1)

Country Link
JP (1) JPH10259442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042181A (en) * 2005-12-12 2013-02-28 Tdk Corp Method of manufacturing a capacitor
JP2018104762A (en) * 2016-12-26 2018-07-05 日新製鋼株式会社 PRODUCTION METHOD OF MOLTEN Al-BASED PLATED SHEET STEEL, AND MOLTEN Al-BASED PLATED SHEET STEEL
WO2019186645A1 (en) * 2018-03-26 2019-10-03 日新製鋼株式会社 Hot-dip al-plated steel sheet production method, and hot-dip al-plated steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042181A (en) * 2005-12-12 2013-02-28 Tdk Corp Method of manufacturing a capacitor
JP2013062531A (en) * 2005-12-12 2013-04-04 Tdk Corp Capacitor and manufacturing method of the same
JP2018104762A (en) * 2016-12-26 2018-07-05 日新製鋼株式会社 PRODUCTION METHOD OF MOLTEN Al-BASED PLATED SHEET STEEL, AND MOLTEN Al-BASED PLATED SHEET STEEL
WO2019186645A1 (en) * 2018-03-26 2019-10-03 日新製鋼株式会社 Hot-dip al-plated steel sheet production method, and hot-dip al-plated steel sheet

Similar Documents

Publication Publication Date Title
TWI493066B (en) Planar or tubular sputtering target and method for the production thereof
US9013009B2 (en) Method for producing high-purity lanthanum, high-purity lanthanum, sputtering target formed from high-purity lanthanum, and metal gate film having highy-purity lanthanum as main component
TW201329257A (en) Silver alloy sputtering target for forming conductive film, and method for manufacturing the same
TWI535876B (en) Silver alloy sputtering target for forming conductive film, and method for manufacturing the same
KR20080027835A (en) Doped iridium with improved high-temperature properties
WO2001038598A1 (en) Titanium target for sputtering
JP3634208B2 (en) Electrode / wiring material for liquid crystal display and sputtering target
WO2012073831A1 (en) Al-based alloy sputtering target
JP6214126B2 (en) Titanium copper and method for producing the same, as well as copper products and electronic device parts using titanium copper
JPH10259442A (en) High purity aluminum for foil
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP2000219922A (en) High purity titanium and its production
JP2004319794A (en) Aluminum material for electrolytic capacitor electrode, its manufacturing method and electrolytic capacitor
US6406512B2 (en) Method for producing high-purity niobium
JP2006152394A (en) Aluminum foil for electrolytic capacitor
JP5094025B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2006219742A (en) Aluminum alloy foil for cathode of electrolytic capacitor and its production method
JP4023282B2 (en) Iridium sputtering target manufacturing method and target obtained by the method
JP2007131922A (en) Aluminum foil for electrolytic capacitor
JP4582627B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
KR102655452B1 (en) Manufacturing method of high-purity fe-ni alloy for fine metal mask and high-purity fe-ni alloy manufactured thereby
JP4874471B2 (en) Method for producing high purity iridium sputtering target
JP2008121089A (en) Method for manufacturing aluminum foil for electrolytic capacitor electrode
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JPH1161392A (en) Production of sputtering target for forming ru thin film