JPH10259374A - Production of infrared-excited illuminant improved in moisture resistance - Google Patents

Production of infrared-excited illuminant improved in moisture resistance

Info

Publication number
JPH10259374A
JPH10259374A JP6754697A JP6754697A JPH10259374A JP H10259374 A JPH10259374 A JP H10259374A JP 6754697 A JP6754697 A JP 6754697A JP 6754697 A JP6754697 A JP 6754697A JP H10259374 A JPH10259374 A JP H10259374A
Authority
JP
Japan
Prior art keywords
infrared
luminescent material
excited luminescent
excited
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6754697A
Other languages
Japanese (ja)
Other versions
JP3428352B2 (en
Inventor
Akira Nishihara
明 西原
Yukiya Yamashita
行也 山下
Hideaki Sakurai
英章 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP06754697A priority Critical patent/JP3428352B2/en
Publication of JPH10259374A publication Critical patent/JPH10259374A/en
Application granted granted Critical
Publication of JP3428352B2 publication Critical patent/JP3428352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an infrared-excited illuminant sufficiently improved in moisture resistance. SOLUTION: The moisture resistance of an infrared-excited illuminant represented by the formula: R1x R2(1-x) Baz Cl(3+2z) (R1 is a rare earth element; 0.01<x<=1 R2 is a rare earth element other than R1; and 1<z<4) is sufficiently improved by treating the surface thereof with a gaseous fluorinating agent, etc., to form a fluoride layer on the surface. Examples of the fluorinating agent are a hydrogen fluoride gas and a fluorine gas. In the above formula, R1 is pref. at least one element selected from among Er, Tm, Ho, Nd, Pr, and Dy; and R2 is pref. at least one element selected from among Yb, Gd, Y, Lu, Eu, Ce, and La.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外励起によって
可視光を発光する、表面をフッ素化された発光体、およ
びフッ素処理による赤外励起発光体の耐湿性改善方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorinated luminous body which emits visible light by infrared excitation, and a method for improving the moisture resistance of an infrared-excited luminous body by fluorine treatment.

【0002】[0002]

【従来の技術】現在、光通信の光源として半導体レーザ
が実用化されているが、光通信で用いる半導体レーザー
は石英ファイバでの光損失が少ない波長1.33μm、
1.55μmを発振するように構成されている。またデ
ジタルオーディオやレーザプリンタなどでも波長780
nm程度の半導体レーザが広く利用されている。他方、
波長780nm以上の赤外光は目に見えないため、レー
ザ光を可視光領域で利用できるように短波長のレーザ発
振素子の開発が進められている。ところが現在実用化さ
れている半導体レーザの波長は650nm程度の赤色レ
ーザ光であり、これより波長の短い緑色や青色のレーザ
光を発振する発光素子は実用化されていない。
2. Description of the Related Art At present, semiconductor lasers have been put into practical use as light sources for optical communications. However, semiconductor lasers used in optical communications have a wavelength of 1.33 μm, which has a small optical loss in a quartz fiber.
It is configured to oscillate at 1.55 μm. Wavelengths of 780 are also used for digital audio and laser printers.
Semiconductor lasers of about nm are widely used. On the other hand,
Since infrared light having a wavelength of 780 nm or more is invisible, a laser oscillator having a short wavelength has been developed so that the laser light can be used in the visible light region. However, the wavelength of a semiconductor laser currently in practical use is red laser light of about 650 nm, and a light emitting element that emits green or blue laser light having a shorter wavelength than this has not been put to practical use.

【0003】そこで、アップコンバージョン現象を利用
し赤外半導体レーザ光を青・緑色に変換するアップコン
バージョンレーザの開発が期待されている。アップコン
バージョンとは励起波長よりも波長の短い光を放出する
現象を云い、希土類イオンの中にこの発光特性を有する
ものがある。これは希土類イオンが2つ以上のフォトン
によって励起され、励起光よりも大きなエネルギーを有
する発光を生じるものである。
Therefore, development of an up-conversion laser that converts infrared semiconductor laser light into blue and green light using the up-conversion phenomenon is expected. Up-conversion refers to a phenomenon in which light having a wavelength shorter than the excitation wavelength is emitted. Some rare earth ions have this emission characteristic. In this method, a rare earth ion is excited by two or more photons, and emits light having energy larger than that of the excitation light.

【0004】この種の発光素子として、YLiF4 :E
rなどのフッ化物単結晶体あるいはZBLANガラスに
代表される重金属フッ化物ガラスなどの材料を用いたも
の(Wilfried Lenth他、Optics & Photonics News, 3,
[3], pp.3-15(1992))、希土類塩化物材料(特開平7-97
572 )などが報告されており、その中でも特に希土類塩
化物材料は光変換効率が優れ発光強度が極めて高いた
め、利用価値は高く注目を集めている。
A light emitting element of this type is YLiF 4 : E
r using materials such as fluoride single crystal or heavy metal fluoride glass represented by ZBLAN glass (Wilfried Lenth et al., Optics & Photonics News, 3,
[3], pp. 3-15 (1992)), rare earth chloride materials (Japanese Unexamined Patent Publication No. 7-97
572) have been reported, and among them, rare earth chloride materials are particularly attracting attention because of their high light conversion efficiency and extremely high luminous intensity.

【0005】しかし、塩化物、特に希土類塩化物蛍光体
は潮解性(吸湿性)が高く、表面処理を施さずに大気中
に放置すると直ちに吸湿して劣化するため、これを保護
するための表面処理を施す必要がある。
However, chlorides, particularly rare earth chloride phosphors, have a high deliquescent (hygroscopicity) property, and when left in the air without any surface treatment, they immediately absorb moisture and deteriorate. Processing needs to be performed.

【0006】一般に、耐湿性を向上させるための表面処
理方法としては、フッ化物ガラスに代表される無機フッ
化物では、イオン注入やイオンめっき、PVDやCVD
により酸化物や耐湿性のより高いフッ化物層で表面被覆
する手法が取られている。
Generally, surface treatment methods for improving moisture resistance include ion implantation, ion plating, PVD and CVD for inorganic fluorides represented by fluoride glass.
A method of covering the surface with an oxide or a fluoride layer having higher moisture resistance is adopted.

【0007】これに対し、無機塩化物や無機臭化物、無
機ヨウ化物などのフッ化物に比べて格段に深刻な潮解性
をもつ材料では、蒸着などで耐湿性の高い酸化物や硫化
物、フッ化物等の無機物で表面コートしたり、高分子溶
液に含浸後乾燥して表面被覆する手法が取られている。
[0007] On the other hand, in materials having a much more severe deliquescent than fluorides such as inorganic chlorides, bromides and iodides, oxides, sulfides and fluorides having high moisture resistance by vapor deposition and the like are used. The surface is coated with an inorganic substance such as, or a technique of impregnating with a polymer solution and then drying to coat the surface.

【0008】しかし、これらの手法は全て母体材料を他
の材料で表面コートする方法であり、被覆のむらが出来
やすく耐湿性改善効果が不十分であることや、汎用性に
乏しいなどの問題がある。
However, these methods are all methods of surface-coating a base material with another material, and have problems such as uneven coating, insufficient effect of improving moisture resistance, and poor versatility. .

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、潮解
性の大きな赤外励起発光体の表面層のみを直接フッ素化
することにより、耐湿性の大幅に向上した赤外励起発光
体および耐湿性改善を目的とした表面処理方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an infrared-excited light-emitting device having a greatly improved moisture resistance by directly fluorinating only the surface layer of the infrared-excited light-emitting device having a large deliquescent property. An object of the present invention is to provide a surface treatment method for improving the property.

【0010】[0010]

【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、赤外励起発光体をガス状フッ素化剤で表
面処理することにより耐湿性が大幅に改善されることを
見出し、本発明の耐湿性を改善された赤外励起発光体お
よび耐湿性改善を目的とした表面処理方法を完成するに
至った。ここに、本発明は以下の通りである。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the surface treatment of an infrared-excited luminescent material with a gaseous fluorinating agent significantly improves the moisture resistance. Thus, an infrared-excited luminescent material with improved moisture resistance and a surface treatment method for improving moisture resistance according to the present invention have been completed. Here, the present invention is as follows.

【0011】(1)表面にフッ化物層を有することを特
徴とする赤外励起発光体。 (2)表面のフッ化物層がガス状フッ素化剤と母体の赤
外励起発光体との反応によって得られたことを特徴とす
る上記(1)に記載の赤外励起発光体。 (3)ガス状フッ素化剤がフッ素ガスであることを特徴
とする上記(2)に記載の赤外励起発光体。 (4)ガス状フッ素化剤がフッ化水素ガスであることを
特徴とする上記(2)に記載の赤外励起発光体。 (5)表面のフッ化物層が1μmから100μmである
ことを特徴とする上記(1)〜(4)のいずれかに記載
の赤外励起発光体。 (6)赤外励起発光体が一般式、R1X R2(1-X) Ba
Z Cl3+2Z(R1は希土類元素、0.01<x≦1、R
2はR1以外の希土類元素、1<z<4)で表されるこ
とを特徴とする上記(1)〜(5)のいずれかに記載の
赤外励起発光体。 (7)(6)に記載の一般式において、R1がEr、T
m、Ho、Nd、PrまたはDyから選択される1種ま
たは2種以上の希土類元素であることを特徴とする上記
(6)に記載の赤外励起発光体。 (8)(6)に記載の一般式において、R2がYb、G
d、Y、Lu、Ce、LaまたはEuから選択される1
種または2種以上の希土類元素であることを特徴とする
上記(6)または(7)のいずれかに記載の赤外励起発
光体。 (9)赤外励起発光体をガス状フッ素化剤で表面処理す
ることを特徴とする上記(1)〜(8)のいずれかに記
載の赤外励起発光体の製造方法。 (10)圧力1〜760Torrのガス状フッ素化剤で
表面処理することを特徴とする上記(9)に記載の赤外
励起発光体の製造方法。 (11)ガス状フッ素化剤がフッ素ガスであることを特
徴とする上記(9)または(10)のいずれかに記載の
赤外励起発光体の製造方法。 (12)ガス状フッ素化剤がフッ化水素ガスであること
を特徴とする上記(9)または(10)のいずれかに記
載の赤外励起発光体の製造方法。
(1) An infrared-excited luminescent material having a fluoride layer on its surface. (2) The infrared-excited luminescent material according to the above (1), wherein the fluoride layer on the surface is obtained by a reaction between the gaseous fluorinating agent and the parent infrared-excited luminescent material. (3) The infrared-excited luminescent material according to the above (2), wherein the gaseous fluorinating agent is a fluorine gas. (4) The infrared-excited luminescent material according to (2), wherein the gaseous fluorinating agent is hydrogen fluoride gas. (5) The infrared-excited luminescent material according to any one of (1) to (4), wherein the surface fluoride layer has a thickness of 1 μm to 100 μm. (6) The infrared-excited luminescent material is represented by the general formula: R1 X R2 (1-X) Ba
Z Cl 3 + 2Z (R1 is a rare earth element, 0.01 <x ≦ 1, R
2. The infrared-excited luminescent material according to any one of (1) to (5), wherein 2 is a rare earth element other than R1 and 1 <z <4). (7) In the general formula described in (6), R1 is Er, T
The infrared-excited luminescent material according to (6), wherein the luminescent material is one or two or more rare earth elements selected from m, Ho, Nd, Pr, and Dy. (8) In the general formula described in (6), R2 is Yb, G
1 selected from d, Y, Lu, Ce, La or Eu
The infrared-excited luminescent material according to any one of the above (6) or (7), which is a kind or two or more kinds of rare earth elements. (9) The method for producing an infrared-excited luminescent material according to any one of the above (1) to (8), wherein the surface of the infrared-excited luminescent material is treated with a gaseous fluorinating agent. (10) The method for producing an infrared-excited luminescent material according to (9), wherein the surface is treated with a gaseous fluorinating agent at a pressure of 1 to 760 Torr. (11) The method for producing an infrared-excited luminescent material according to any of (9) or (10), wherein the gaseous fluorinating agent is a fluorine gas. (12) The method for producing an infrared-excited luminescent material according to any one of (9) and (10), wherein the gaseous fluorinating agent is hydrogen fluoride gas.

【0012】以下、本発明の構成をその作用とともに詳
しく説明する。本発明に用いるガス状フッ素化剤は、特
に限定されず赤外励起発光体の表面を均一にフッ素化で
きるものであればよい。一般的なガス状フッ素化剤とし
ては、フッ素ガス(F2 )、フッ化水素(HF)、三フ
ッ化塩素(ClF3 )、四フッ化硫黄(SF4 )、三フ
ッ化ボロン(BF3 )、四フッ化ゲルマニウム(GeF
4 )、五フッ化ヒ素(AsF5 )等が知られているが、
反応性の高さや汎用性の観点からF2 やHFが好まし
い。
Hereinafter, the structure of the present invention will be described in detail together with its operation. The gaseous fluorinating agent used in the present invention is not particularly limited as long as it can uniformly fluorinate the surface of the infrared-excited luminescent material. Common gaseous fluorinating agents include fluorine gas (F 2 ), hydrogen fluoride (HF), chlorine trifluoride (ClF 3 ), sulfur tetrafluoride (SF 4 ), and boron trifluoride (BF 3). ), Germanium tetrafluoride (GeF
4 ), arsenic pentafluoride (AsF 5 ) and the like are known,
F 2 and HF are preferred from the viewpoint of high reactivity and versatility.

【0013】本発明によって得られる赤外励起発光体表
面のフッ化物層の膜厚は耐湿性向上効果と発光特性、特
に発光強度のバランスから決定され、好ましくは1〜1
00μm、より好ましくは1〜50μmに制御されるの
が良い。フッ化物層膜厚が1μm以下だと耐湿性改善が
不十分となりやすく、発光体は潮解性が大きいため大気
中での取扱が難しく、100μm以上では発光体の光学
特性、特に発光強度が低下しやすく、且つ母体とフッ化
物層間で剥離が確認される場合もある。
The thickness of the fluoride layer on the surface of the infrared-excited luminescent material obtained by the present invention is determined from the balance between the effect of improving the moisture resistance and the luminous characteristics, particularly the luminous intensity, and is preferably from 1 to 1.
It is good to control it to 00 μm, more preferably 1 to 50 μm. When the thickness of the fluoride layer is 1 μm or less, the improvement of the moisture resistance tends to be insufficient, and the luminescent material has a large deliquescence, which makes it difficult to handle in the air. In some cases, peeling is observed between the base and the fluoride layer.

【0014】また本発明の赤外励起発光体は、特に限定
されないが、好ましくは次の一般式で表される複合塩化
物である。 R1X R2(1-X) BaZ Cl3+2Z (R1は希土類元素、0.01<x≦1、R2はR1以
外の希土類元素、1<z<4) 上記一般式において、R1の希土類元素は発光源であ
り、代表的にはEr、Tm、Hoが挙げられ、この他に
Nd、Pr、Dyなどが含まれる。これらの中では、E
r、Tm、Ho、Ndが好ましい。これらの希土類元素
は赤外光が照射されたときに、そのイオンのエネルギー
準位が基底準位から励起準位へと段階的に遷移し、この
遷移エネルギーによって可視光を発光する。なお、R1
は1種に限らず2種以上含有しても良い。
The infrared-excited luminescent material of the present invention is not particularly limited, but is preferably a complex chloride represented by the following general formula. R1 X R2 (1-X) Ba Z Cl 3 + 2Z (R1 is a rare earth element, 0.01 <x ≦ 1, R2 is a rare earth element other than R1, 1 <z <4) In the above formula, R1 rare earth The element is a light emitting source, and typically includes Er, Tm, and Ho, and also includes Nd, Pr, Dy, and the like. In these, E
r, Tm, Ho, and Nd are preferred. When these rare earth elements are irradiated with infrared light, the energy level of the ions transitions stepwise from the ground level to the excited level, and the transition energy emits visible light. Note that R1
Is not limited to one kind, and two or more kinds may be contained.

【0015】上記一般式において、発光源であるR1の
量比は0.01<x≦1が好ましい。x<0.01では
発光源の含有量が少なすぎ発光強度は不十分である。ま
たこの発光源R1は単独でも発光するので、発光補助物
質R2は必ずしも含有しなくても良い。R2で示される
R1以外の希土類元素は発光補助物質であり、代表的に
はY、Gd、Yb、Lu、La、Ce、Euなどが用い
られ、これらの中では、Yb、Gdが好ましい。これら
の希土類元素を単独で含有するものは赤外光を照射して
も発光せず、従って上記R1と共に用いられる。R2の
発光補助物質は主に発光強度を高めるために用いられ
る。
In the above general formula, the ratio of R1 as a light emitting source is preferably 0.01 <x ≦ 1. When x <0.01, the content of the light emitting source is too small and the light emitting intensity is insufficient. In addition, since the light emitting source R1 emits light alone, the light emitting auxiliary substance R2 may not necessarily be contained. The rare earth element other than R1 represented by R2 is a light emission auxiliary substance, and typically, Y, Gd, Yb, Lu, La, Ce, Eu and the like are used, and among these, Yb and Gd are preferable. Those containing these rare earth elements alone do not emit light even when irradiated with infrared light, and are therefore used together with R1. The luminescence auxiliary substance of R2 is mainly used for increasing the luminescence intensity.

【0016】上記一般式以外の赤外励起発光体として
は、塩化物ガラス系発光体等が使用できる。
As the infrared-excited luminescent material other than the above general formula, a chloride glass-based luminescent material or the like can be used.

【0017】本発明のフッ素化する際の赤外励起発光体
の形態は特に限定されず、単結晶体や多結晶体などのバ
ルク体であっても、粉末状であっても良い。但し、反応
性や発光体の応用の多様性を鑑みると、粉末状のものが
好ましい。バルク体を粉砕して粉末状にする場合には、
空気中の水分による潮解を防ぐために、乾燥したArや
2 などの不活性ガス中で粉砕をする必要がある。
The form of the infrared-excited luminescent material for fluorination of the present invention is not particularly limited, and may be a bulk material such as a single crystal or a polycrystal or a powder. However, in view of the reactivity and the variety of applications of the luminous body, a powdery one is preferable. When pulverizing a bulk body into powder,
To prevent deliquescence due to moisture in the air, it is necessary to ground in an inert gas such as dry Ar and N 2.

【0018】本発明で採用される表面処理方法は、処理
後の被処理物の取扱を考えた場合、湿式法では被処理物
を乾燥した後に凝集の解砕過程が必要となり、その際に
材料の表面に形成されたフッ化物層が破壊される恐れが
ある。一方乾式法では、以上のような表面処理後の過程
が必要でないため、乾式法が好ましい。この乾式表面処
理方法は、母体材料の表面処理を均一に行えれば良く、
バッチ方式でもフッ素化ガス・フロー方式であっても良
い。バッチ方式では、反応系内を予め真空排気してお
き、所定の分圧のフッ素化ガスを系内に導入する。また
ガスフロー方式では、予めN2 などの不活性ガスを系内
に流してパージしておき、フッ素化ガスをフローさせ
る。その際フッ素化ガスを乾燥したArやN2 などの不
活性ガスで希釈して用いても良い。
In the surface treatment method adopted in the present invention, in consideration of handling of an object to be treated after the treatment, the wet method requires a process of deagglomeration after drying the object to be treated. There is a possibility that the fluoride layer formed on the surface of the substrate may be destroyed. On the other hand, in the dry method, the process after the surface treatment as described above is not necessary, and thus the dry method is preferable. This dry surface treatment method only needs to perform the surface treatment of the base material uniformly,
A batch system or a fluorinated gas flow system may be used. In the batch method, the inside of the reaction system is evacuated in advance, and a fluorinated gas at a predetermined partial pressure is introduced into the system. In the gas flow method, an inert gas such as N 2 is flowed into the system in advance for purging, and the fluorinated gas is caused to flow. At that time, the fluorinated gas may be diluted with a dry inert gas such as Ar or N 2 before use.

【0019】反応時間や温度、フッ素化ガス圧力(分
圧)等のフッ素化処理条件は特に限定されず、表面処理
方法や赤外励起発光体の形態、特に比表面積に依存し、
所望のフッ化物層膜厚を得られるように決定する。しか
し、一般的にはフッ素化ガス圧力(分圧)は好ましくは
1〜760Torr、より好ましくは1〜100Tor
rで表面処理を施すのが、反応進行度すなわち膜厚の制
御が容易であり好ましい。
The fluorination treatment conditions such as reaction time, temperature, fluorinated gas pressure (partial pressure) and the like are not particularly limited, and depend on the surface treatment method and the form of the infrared-excited luminescent material, particularly the specific surface area.
It is determined so as to obtain a desired thickness of the fluoride layer. However, in general, the fluorinated gas pressure (partial pressure) is preferably 1 to 760 Torr, more preferably 1 to 100 Torr.
It is preferable to perform the surface treatment with r because the degree of reaction progress, that is, the film thickness can be easily controlled.

【0020】フッ素化ガスで処理された、赤外励起発光
体表面のフッ化物層の膜厚は、処理後に断面研磨を行
い、断面のフッ素元素の分布により評価した。
The film thickness of the fluoride layer on the surface of the infrared-excited luminescent material treated with the fluorinated gas was evaluated by the cross-section polishing after the treatment and the distribution of the elemental fluorine in the cross section.

【0021】また発光強度は、処理直後の発光体に50
mWの半導体レーザ(波長650〜980nm)を照射
し、目視にて発光が十分確認可能なものを○、処理前か
ら発光強度の低下が判るものを△、発光の確認が極めて
困難または確認不可能なものを×として定性的に評価し
た。
The luminous intensity of the luminous body immediately after the treatment was 50%.
Irradiation with a mW semiconductor laser (wavelength: 650 to 980 nm), 発 光 indicates that light emission can be sufficiently confirmed by visual observation, 発 光 indicates that light emission intensity decreases before processing, and extremely difficult or impossible to confirm light emission. Were qualitatively evaluated as x.

【0022】赤外励起発光体の耐湿性は以下のようにし
て評価した。すなわち水分を約200ppm含有したエ
タノール50ml中にフッ素化処理後の発光体0.5g
を含浸し、上記で用いたのと同様の半導体レーザを用い
て発光させ、発光が目視で確認できなくなるまでの時間
で評価した。尚、この方法は厳密には耐水性の評価方法
であるが、30℃/70%の高温高湿条件下で得られた
結果との対応が得られたため、上記方法を耐湿性評価方
法として採用した。
The moisture resistance of the infrared-excited luminescent material was evaluated as follows. That is, 0.5 g of a luminous body after fluorination treatment in 50 ml of ethanol containing about 200 ppm of water.
And emitted light using the same semiconductor laser as used above, and evaluated by the time until light emission could not be visually confirmed. Although this method is strictly a method for evaluating water resistance, the above method was adopted as a method for evaluating moisture resistance because the results corresponded to the results obtained under high temperature and high humidity conditions of 30 ° C./70%. did.

【0023】[0023]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明の範囲はその要旨を越えない限り、実施
例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited to the examples unless it exceeds the gist thereof.

【0024】実施例1〜18 、比較例1〜8(バッチ
方式)について説明する。反応系内に表1に示す赤外励
起発光体1.0gを投入し系内を真空に保った後、表1
に示すフッ素化処理条件でフッ素化赤外励起発光体を得
た。得られた発光体の表面のフッ化物層の膜厚、処理直
後の発光強度、及び発光体の耐湿性を上記のように評価
した結果を処理条件と併せて示す。
Examples 1 to 18 and Comparative Examples 1 to 8 (batch system) will be described. 1.0 g of the infrared-excited luminescent material shown in Table 1 was introduced into the reaction system, and the system was kept at a vacuum.
A fluorinated infrared-excited luminescent material was obtained under the fluorination treatment conditions shown in (1). The results of the evaluation of the thickness of the fluoride layer on the surface of the obtained luminous body, the luminous intensity immediately after the treatment, and the moisture resistance of the luminous body as described above are shown together with the processing conditions.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例19〜33 、比較例9〜13(フ
ッ素化ガス・フロー方式)について説明する。反応系内
に表2に示す赤外励起発光体1.0gを投入し系内をN
2 ガスで30分かけて完全にパージした後、表2に示す
フッ素化処理条件でフッ素化赤外励起発光体を得た。
尚、実施例24では、粉砕媒体であるZrO2ビーズを
用いて粉砕を行いながらフッ素化処理を行った。得られ
た発光体表面のフッ化物層の膜厚、処理直後の発光強
度、及び発光体の耐湿性を上記のように評価した結果を
処理条件と併せて示す。
Examples 19 to 33 and Comparative Examples 9 to 13 (fluorinated gas flow system) will be described. 1.0 g of the infrared-excited luminescent material shown in Table 2 was introduced into the reaction system, and N was introduced into the system.
After purging completely with two gases for 30 minutes, a fluorinated infrared-excited luminescent material was obtained under the fluorination treatment conditions shown in Table 2.
In Example 24, the fluorination treatment was performed while grinding using ZrO2 beads as a grinding medium. The results of the evaluation of the thickness of the obtained fluoride layer on the surface of the phosphor, the emission intensity immediately after the treatment, and the moisture resistance of the phosphor as described above are shown together with the treatment conditions.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】表1及び表2から判るように、本発明に
よれば、F2 やHF等のようなフッ素化ガスで耐湿性の
極めて低い複合塩化物である赤外励起発光体を表面処理
することにより、処理前では15分程度であった耐湿性
が1週間以上と大きく改善されることが判る。
As can be seen from Table 1 and Table 2, according to the present invention, according to the present invention, F 2 and HF surface infrared excitation light emitter, such a very low complex chlorides moisture resistance fluorination gas as such It can be seen that the treatment improves the moisture resistance, which was about 15 minutes before the treatment, to one week or more.

【0029】これに対応し、表1及び表2に示した比較
例では、あるものは表面のフッ素化が不十分で耐湿性改
善の効果が不十分であり、またあるものはフッ素化しす
ぎて発光強度が極端に低下し、視認性が悪く実用性に乏
しかった。
Correspondingly, in Comparative Examples shown in Tables 1 and 2, some of them were insufficiently fluorinated on the surface and had insufficient effect of improving moisture resistance, while others were too fluorinated. The emission intensity was extremely reduced, the visibility was poor, and the utility was poor.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 表面にフッ化物層を有することを特徴
とする赤外励起発光体。
1. An infrared-excited luminous body having a fluoride layer on its surface.
【請求項2】 フッ素化剤と母体の赤外励起発光体と
の反応によって得られたことを特徴とする請求項1記載
の赤外励起発光体。
(2) 2. The infrared-excited luminescent material according to claim 1, which is obtained by reacting a fluorinating agent with a parent infrared-excited luminescent material.
【請求項3】 ガス状フッ素化剤がフッ素ガスである
ことを特徴とする請求項2に記載の赤外励起発光体。
3. The infrared-excited luminescent material according to claim 2, wherein the gaseous fluorinating agent is a fluorine gas.
【請求項4】 ガス状フッ素化剤がフッ化水素ガスで
あることを特徴とする請求項2に記載の赤外励起発光
体。
4. The infrared-excited luminescent material according to claim 2, wherein the gaseous fluorinating agent is hydrogen fluoride gas.
【請求項5】 表面のフッ化物層が1μmから100
μmであることを特徴とする請求項1ないし4のいずれ
かに記載の赤外励起発光体。
5. The fluoride layer on the surface has a thickness of 1 μm to 100 μm.
The infrared-excited luminescent material according to any one of claims 1 to 4, wherein the thickness is μm.
【請求項6】 赤外励起発光体が一般式、 R1X R2(1-X) BaZ Cl3+2Z (R1は希土類元素、0.01<x≦1、R2はR1以
外の希土類元素、1<z<4)で表されることを特徴と
する請求項1ないし5のいずれかに記載の赤外励起発光
体。
6. The infrared excitation light emitters formula, R1 X R2 (1-X ) Ba Z Cl 3 + 2Z (R1 is a rare earth element, 0.01 <x ≦ 1, R2 is a rare earth element other than R1, The infrared-excited luminescent material according to any one of claims 1 to 5, wherein 1 <z <4).
【請求項7】 請求項6に記載の一般式において、R
1がEr、Tm、Ho、Nd、PrまたはDyから選択
される1種または2種以上の希土類元素であることを特
徴とする請求項6に記載の赤外励起発光体。
7. The method according to claim 6, wherein R is
7. The infrared-excited luminescent material according to claim 6, wherein 1 is one or more rare earth elements selected from Er, Tm, Ho, Nd, Pr, and Dy. 8.
【請求項8】 請求項6に記載の一般式において、R
2がYb、Gd、Y、Lu、Ce、LaまたはEuから
選択される1種または2種以上の希土類元素であること
を特徴とする請求項6または7に記載の赤外励起発光
体。
8. The compound according to claim 6, wherein R is
8. The infrared-excited luminescent material according to claim 6, wherein 2 is one or more rare earth elements selected from Yb, Gd, Y, Lu, Ce, La, and Eu.
【請求項9】 赤外励起発光体をガス状フッ素化剤で
表面処理することを特徴とする請求項1ないし8のいず
れかに記載の赤外励起発光体の製造方法。
9. The method for producing an infrared-excited luminescent material according to claim 1, wherein the surface of the infrared-excited luminescent material is treated with a gaseous fluorinating agent.
【請求項10】 圧力1〜760Torrのガス状フッ
素化剤で表面処理することを特徴とする請求項9に記載
の赤外励起発光体の製造方法。
10. The method for producing an infrared-excited luminescent material according to claim 9, wherein the surface is treated with a gaseous fluorinating agent at a pressure of 1 to 760 Torr.
【請求項11】 ガス状フッ素化剤がフッ素ガスである
ことを特徴とする請求項9または10に記載の赤外励起
発光体の製造方法。
11. The method according to claim 9, wherein the gaseous fluorinating agent is fluorine gas.
【請求項12】 ガス状フッ素化剤がフッ化水素ガスで
あることを特徴とする請求項9または10に記載の赤外
励起発光体の製造方法。
12. The method according to claim 9, wherein the gaseous fluorinating agent is hydrogen fluoride gas.
JP06754697A 1997-03-21 1997-03-21 Infrared-excited luminescent material with improved moisture resistance and method for producing the same Expired - Fee Related JP3428352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06754697A JP3428352B2 (en) 1997-03-21 1997-03-21 Infrared-excited luminescent material with improved moisture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06754697A JP3428352B2 (en) 1997-03-21 1997-03-21 Infrared-excited luminescent material with improved moisture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10259374A true JPH10259374A (en) 1998-09-29
JP3428352B2 JP3428352B2 (en) 2003-07-22

Family

ID=13348078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06754697A Expired - Fee Related JP3428352B2 (en) 1997-03-21 1997-03-21 Infrared-excited luminescent material with improved moisture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3428352B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534199A (en) * 2013-08-22 2016-11-04 ゼネラル・エレクトリック・カンパニイ Method for preparing color-stable manganese-doped phosphors
JP2017036430A (en) * 2015-08-07 2017-02-16 日亜化学工業株式会社 METHOD FOR PRODUCING β-SIALON PHOSPHOR
JP2017155209A (en) * 2016-02-29 2017-09-07 日亜化学工業株式会社 Manufacturing method of nitride phosphor, nitride phosphor and light-emitting device
JP2018002837A (en) * 2016-06-30 2018-01-11 日亜化学工業株式会社 Method for producing nitride phosphor
JP2018030938A (en) * 2016-08-24 2018-03-01 日亜化学工業株式会社 Nitride phosphor and light-emitting device
US10217907B2 (en) 2016-02-29 2019-02-26 Nichia Corporation Method of producing nitride fluorescent material, nitride fluorescent material, and light emitting device using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534199A (en) * 2013-08-22 2016-11-04 ゼネラル・エレクトリック・カンパニイ Method for preparing color-stable manganese-doped phosphors
JP2017036430A (en) * 2015-08-07 2017-02-16 日亜化学工業株式会社 METHOD FOR PRODUCING β-SIALON PHOSPHOR
JP2017155209A (en) * 2016-02-29 2017-09-07 日亜化学工業株式会社 Manufacturing method of nitride phosphor, nitride phosphor and light-emitting device
JP2019007023A (en) * 2016-02-29 2019-01-17 日亜化学工業株式会社 Manufacturing method of nitride phosphor, nitride phosphor and light-emitting device
US10217907B2 (en) 2016-02-29 2019-02-26 Nichia Corporation Method of producing nitride fluorescent material, nitride fluorescent material, and light emitting device using the same
JP2021028399A (en) * 2016-02-29 2021-02-25 日亜化学工業株式会社 Method for producing nitride phosphor, and nitride phosphor
JP2018002837A (en) * 2016-06-30 2018-01-11 日亜化学工業株式会社 Method for producing nitride phosphor
US10563124B2 (en) 2016-06-30 2020-02-18 Nichia Corporation Method of producing nitride fluorescent material
JP2018030938A (en) * 2016-08-24 2018-03-01 日亜化学工業株式会社 Nitride phosphor and light-emitting device
CN107779194A (en) * 2016-08-24 2018-03-09 日亚化学工业株式会社 Nitride phosphor and light-emitting device
US10611960B2 (en) 2016-08-24 2020-04-07 Nichia Corporation Nitride fluorescent material and light emitting device

Also Published As

Publication number Publication date
JP3428352B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
TWI629340B (en) Color stable red-emitting phosphors
US5541012A (en) Infrared-to-visible up-conversion material
US7270773B2 (en) Quantum-splitting fluoride-based phosphors, method of producing, and radiation sources incorporating same
CN101124295B (en) Phosphor, light emitting device and white light emitting diode
TW201602311A (en) Process for preparing red-emitting phosphors
US4374037A (en) Method for preparing divalent-europium-activated calcium sulfide phosphors
US6347177B1 (en) Optical fiber for light amplifier
KR20070050833A (en) Copper-alkaline-earth-silicate mixed crystal phosphors
JPH10259374A (en) Production of infrared-excited illuminant improved in moisture resistance
US7468145B2 (en) Phosphor and treatment method for the same
JP3427677B2 (en) Infrared excited light emitter with improved moisture resistance
CN1274004C (en) Gas discharge lamp with sownconversion phosphor
CN1265420C (en) Gas discharge lamp with descending-conversion light emitter
JPH10203841A (en) Production of glass preform and glass fiber
EP0569257B1 (en) Infrared-to-visible up-conversion material, and infrared light identification elements comprising same
US6376982B1 (en) Electric discharge lamp and luminescent material and compound
CN111349435A (en) Method for producing fluoride phosphor
JP2006052406A (en) Quantum-splitting fluoride-based phosphor, method for producing the same and device containing the same
JP3415088B2 (en) Optical fiber for optical amplifier
US20230066879A1 (en) Dry process for synthesis of a phosphor by treatment under a fluorine atmosphere
JP3529162B2 (en) Infrared visible wavelength up-conversion material
JPS5827777A (en) Green luminous fluorescent substance
JP3450031B2 (en) Infrared-visible wavelength up-conversion material
JP3366365B2 (en) Infrared-visible wavelength up-conversion material
JP3266214B2 (en) Infrared-visible wavelength up-conversion material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees