JPH10259296A - Polyester excellent in heat stability - Google Patents

Polyester excellent in heat stability

Info

Publication number
JPH10259296A
JPH10259296A JP6782497A JP6782497A JPH10259296A JP H10259296 A JPH10259296 A JP H10259296A JP 6782497 A JP6782497 A JP 6782497A JP 6782497 A JP6782497 A JP 6782497A JP H10259296 A JPH10259296 A JP H10259296A
Authority
JP
Japan
Prior art keywords
polyester
compound
phosphorus
based compound
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6782497A
Other languages
Japanese (ja)
Inventor
Yoshinuki Maeda
佳貫 前田
Shuhei Ishino
修平 石野
Takao Shimizu
隆夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP6782497A priority Critical patent/JPH10259296A/en
Publication of JPH10259296A publication Critical patent/JPH10259296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To nearly completely deactivate a polymerization catalyst and obtain the subject polyester capable of developing excellent heat deterioration preventing property and heat decomposition preventing property and having low melting point or low softening point by adding a specific amount of phosphorus-based compound to a specific polyester. SOLUTION: This polyester contains a phosphorous compound (A) such as a phosphorous acid-based compound (specifically tripheyl phosphite) and is obtained by carrying out polycondensation using an organotitanium-based compound (B) and has a recurring unit of formula I (R<1> is mainly a hydrocarbon group formed from an aromatic dicarboxylic acid; R<2> is mainly a hydrocarbon group formed from >=4C straight-chain diol) and contains <=150ppm component B expressed in terms of titanium metal and contains the component A so as to satisfy the relationship of formula II([P] is phosphorus atom in the component A; [Ti] is titanium atom in the component B).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は熱安定性に優れたポ
リエステルに関するものであり、200℃以下の融点ま
たは軟化点を有するポリエステルの熱安定性を改良した
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester having excellent heat stability, and more particularly to a polyester having a melting point or softening point of 200.degree.

【0002】[0002]

【従来の技術】200℃以下の融点または軟化点を有す
るポリエステルは、重合触媒として有機チタン系化合物
を使用しないと実質的な重合ができなかったり、重合速
度が遅く工業的な観点からも有機チタン系化合物を触媒
として使用せざるを得ないのが実情である。
2. Description of the Related Art Polyesters having a melting point or softening point of 200 ° C. or less cannot be substantially polymerized unless an organic titanium compound is used as a polymerization catalyst, or the polymerization rate is slow and the organic titanium compound is not used from an industrial viewpoint. The fact is that the system compound must be used as a catalyst.

【0003】[0003]

【発明が解決しようとする課題】一般に、重合触媒とし
て有機チタン系化合物を使用してポリエステルを重合す
る際、その重合時の活性エネルギ−の関係や重縮合反応
により脱離する成分の除去のために、重合温度には工業
的に下限があり、そのため重縮合反応完了後ポリマ−を
重合缶から取り出す時に熱劣化が生じ、ポリマ−が熱分
解や熱劣化を起こしてしまうといった問題がある。この
際、重合触媒が失活していればこの熱劣化や熱分解の程
度は低いが、該重合触媒が失活していなければ、重合缶
からの取り出しの際に熱劣化や熱分解が生じるととも
に、ポリマ−のチップ化後の溶融成型時にも熱劣化や加
水分解が発生しやすく、本来期待される性能が発揮でき
ない等の問題があった。とくに、融点または軟化点が2
00℃以下のポリエステル、変性量の大きいポリエステ
ル等は上述の傾向が著しい。したがって、本発明の目的
は、ポリエステル、とくに200℃以下という低い融点
または軟化点を有するポリエステルの上述の熱劣化、熱
分解の問題を解決することにある。
Generally, when polymerizing a polyester using an organotitanium compound as a polymerization catalyst, it is necessary to remove the components which are desorbed by a polycondensation reaction or the relation of active energy during the polymerization. In addition, the polymerization temperature has an industrial lower limit, which causes a problem that when the polymer is removed from the polymerization vessel after the completion of the polycondensation reaction, thermal degradation occurs, and the polymer undergoes thermal decomposition or thermal degradation. At this time, if the polymerization catalyst has been deactivated, the degree of thermal degradation or thermal decomposition is low, but if the polymerization catalyst has not been deactivated, thermal degradation or thermal decomposition occurs upon removal from the polymerization can. At the same time, there is a problem that thermal degradation and hydrolysis are liable to occur even in the melt molding after forming the polymer into chips, and the originally expected performance cannot be exhibited. In particular, the melting point or softening point is 2
The above tendency is remarkable for polyesters having a temperature of not higher than 00 ° C. and polyesters having a large modification amount. Accordingly, an object of the present invention is to solve the above-mentioned problems of thermal degradation and thermal decomposition of polyesters, particularly polyesters having a low melting point or softening point of 200 ° C. or less.

【0004】[0004]

【課題を解決するための手段】上述の目的は、有機チタ
ン系化合物を触媒として重縮合され、リン系化合物を含
有し、かつ下記式(1)で示される繰り返し単位を有す
るポリエステルであって、該ポリエステル中の有機チタ
ン系化合物とリン系化合物の含有量が下記式(2)を満
足し、有機チタン系化合物をチタン金属換算で150p
pm以下含有することを特徴とする熱安定性に優れたポ
リエステルを提供することによって達成される。
The object of the present invention is to provide a polyester which is polycondensed using an organotitanium compound as a catalyst, contains a phosphorus compound and has a repeating unit represented by the following formula (1): The content of the organic titanium compound and the phosphorus compound in the polyester satisfies the following formula (2), and the content of the organic titanium compound is 150 p in terms of titanium metal.
This is achieved by providing a polyester having excellent heat stability, characterized in that it contains pm or less.

【化3】 0.6≦〔P〕/〔Ti〕≦3.0 ・・・・・(2) (〔P〕はリン系化合物中の燐原子、〔Ti〕は有機チ
タン系化合物中のチタン原子を示す。)
Embedded image 0.6 ≦ [P] / [Ti] ≦ 3.0 (2) ([P] indicates a phosphorus atom in a phosphorus compound, and [Ti] indicates a titanium atom in an organic titanium compound. .)

【0005】本発明に係わる有機チタン系化合物とは最
終的に加水分解を受けて酸化チタンに化学変化する部分
も存在するが、いわゆる艶消剤として使用される、ルチ
ル型またはアナタ−ゼ型の酸化チタンとは区別される化
合物であり、これらは、たとえば数μm以下の超薄切片
を透過型電子顕微鏡により観察することで区別すること
が可能である。
The organotitanium compound according to the present invention has a portion which is finally hydrolyzed and chemically changed to titanium oxide, but is used as a so-called matting agent, such as rutile type or anatase type. Titanium oxide is a compound that can be distinguished by observing, for example, ultrathin sections of several μm or less with a transmission electron microscope.

【0006】このような有機チタン系化合物としてはテ
トラブチルチタネ−ト、テトライソプロピルチタネ−ト
等のアルキルチタネ−ト、蓚酸チタンカリウム等の有機
酸塩などを挙げることができる。また、該有機チタン系
化合物の使用量は重縮合後のポリエステルに対して、チ
タン金属換算で150ppm以下、とくに100ppm
以下であることが好ましい。かかる範囲を越えると有機
チタン系化合物の触媒作用が極めて高くなり、その結
果、重縮合反応速度が速くなるが、その代わり、熱劣
化、熱分解等の生じる速度が同様に極めて速くなり、併
用するリン系化合物を添加しても有機チタン系化合物を
失活させることができにくくなり、有機チタン系化合物
の存在による熱分解、熱劣化、加水分解を抑制すること
ができにくくなる。また、重縮合反応速度の観点から、
有機チタン系化合物の使用量の下限はチタン金属換算で
30ppmであることが好ましい。
Examples of such an organic titanium compound include alkyl titanates such as tetrabutyl titanate and tetraisopropyl titanate, and organic acid salts such as potassium potassium oxalate. The amount of the organic titanium compound used is 150 ppm or less, particularly 100 ppm, in terms of titanium metal, based on the polyester after polycondensation.
The following is preferred. Beyond such a range, the catalytic action of the organotitanium compound becomes extremely high, and as a result, the polycondensation reaction rate is increased. Even if a phosphorus-based compound is added, it becomes difficult to deactivate the organic titanium-based compound, and it becomes difficult to suppress thermal decomposition, thermal degradation, and hydrolysis due to the presence of the organic titanium-based compound. Also, from the viewpoint of the polycondensation reaction rate,
The lower limit of the amount of the organic titanium compound used is preferably 30 ppm in terms of titanium metal.

【0007】本発明に係わるリン系化合物とは亜燐酸系
化合物であることが好ましく、具体的にはトリフェニル
フォスファイト、トリスノニルフェニルフォスファイ
ト、トリス(2,4−ジ−t−ブチルフェニル)フォス
ファイト等、下記表1に示す化合物を挙げることができ
る。これらは1種のみならず2種以上を併用してもよ
い。
[0007] The phosphorus compound according to the present invention is preferably a phosphorous acid compound, specifically, triphenylphosphite, trisnonylphenylphosphite, tris (2,4-di-t-butylphenyl). Compounds shown in Table 1 below, such as phosphite, can be exemplified. These may be used alone or in combination of two or more.

【表1】 [Table 1]

【0008】また、リン系化合物は重合触媒である有機
チタン系化合物を失活させる目的で添加するものであ
り、その添加量は式(2)を満足することが必要であ
る。かかる範囲内のリン系化合物の添加によりポリエス
テルの熱劣化、熱分解、加水分解が抑制されるのであ
る。かかる範囲外の場合、有機チタン系化合物の失活が
不十分であったり、過剰添加のリン系化合物の存在によ
り可塑化現象や、ポリエステル成型物表面へのリン系化
合物のブリ−ドアウト等の問題が生じる。したがってリ
ン系化合物の添加量は、1.0≦〔P〕/〔Ti〕≦
2.5を満足することが好ましい。
The phosphorus-based compound is added for the purpose of deactivating the organic titanium-based compound as a polymerization catalyst, and the amount added must satisfy the formula (2). By the addition of the phosphorus compound in such a range, thermal degradation, thermal decomposition and hydrolysis of the polyester are suppressed. If the amount is outside this range, problems such as insufficient deactivation of the organotitanium compound, plasticization due to the excessive addition of the phosphorus compound, and bleeding out of the phosphorus compound on the surface of the polyester molded product. Occurs. Therefore, the addition amount of the phosphorus compound is 1.0 ≦ [P] / [Ti] ≦
It is preferable to satisfy 2.5.

【0009】また、リン系化合物の分子量は1000以
上であることがリン系化合物自身のの昇華、蒸発を抑制
する上で好ましい。該分子量が1000未満の場合に
は、リン系化合物の昇華、蒸発を招く上に、式(2)の
範囲内で多量のリン系化合物をポリエステルに添加して
も、重縮合触媒である有機チタン系化合物の失活の促進
効果は小さい。さらに、分子量が大きいリン系化合物
を、式(2)を満足する量添加した場合、リン系化合物
としての添加量は多くなり、その結果、該リン系化合物
が均一に混合分散してより効果的に重縮合触媒である有
機チタン系化合物を失活させることが可能となる。
The molecular weight of the phosphorus compound is preferably 1000 or more in order to suppress sublimation and evaporation of the phosphorus compound itself. If the molecular weight is less than 1,000, the sublimation and evaporation of the phosphorus-based compound may be caused, and even if a large amount of the phosphorus-based compound is added to the polyester within the range of the formula (2), the organic titanium which is a polycondensation catalyst may be used. The effect of promoting the deactivation of the system compound is small. Further, when a phosphorus compound having a large molecular weight is added in an amount satisfying the formula (2), the amount of the phosphorus compound to be added increases, and as a result, the phosphorus compound is uniformly mixed and dispersed, so that it is more effective. It is possible to deactivate the organic titanium-based compound which is a polycondensation catalyst.

【0010】かかるリン系化合物はポリエステルへの重
合反応完了直後に添加して重縮合触媒である有機チタン
系化合物を失活させることが好ましい。かかる際、ポリ
エステル中への気泡の噛み込みを防止するために、リン
系化合物の添加は減圧下で行うことが好ましい。またポ
リエステルの温度はできるだけ低くしておくほうがポリ
エステルの劣化を防止するだけでなく、リン系化合物に
起因する副反応やリン系化合物自身の熱分解を抑制する
上で好ましい。
The phosphorus compound is preferably added immediately after the completion of the polymerization reaction to the polyester to deactivate the organic titanium compound as a polycondensation catalyst. In this case, it is preferable to add the phosphorus compound under reduced pressure in order to prevent air bubbles from being caught in the polyester. It is preferable to keep the temperature of the polyester as low as possible in order to not only prevent degradation of the polyester but also suppress side reactions caused by the phosphorus compound and thermal decomposition of the phosphorus compound itself.

【0011】上述の添加時期が好ましいが、この他にチ
ップ化されたポリエステルを再度溶融して成型時に添加
して有機チタン系化合物を失活させることもできる。
Although the above-mentioned timing of addition is preferable, it is also possible to deactivate the organotitanium compound by additionally melting the chipped polyester and adding it during molding.

【0012】リン系化合物の添加は、混練を強化したス
クリュウ形状を有する単軸押出機を使用することが好ま
しいが、二軸押出機のようなそれ自身が混練機能を有す
るような押出機を使用してもよい。さらには溶融したポ
リエステルチップにリン系化合物を添加して混練し、再
度チップ化して利用することも可能である。
For the addition of the phosphorus compound, it is preferable to use a single screw extruder having a screw shape with enhanced kneading, but use an extruder such as a twin screw extruder which itself has a kneading function. May be. Further, it is also possible to add a phosphorus-based compound to the melted polyester chips, knead them, and make them into chips again for use.

【0013】上述したリン系化合物による有機チタン系
化合物の失活状態とは、重合反応完了後に得られたポリ
エステル、または該ポリエステルからなる成型品を十分
に乾燥、脱酸素した後再度溶融し、230℃にて1mm
Hg以下に30分間減圧して重合反応が進行する状況下
においた結果、溶液粘度が3%以上上昇しない状態を示
す。一般に、時間の経過とともに有機チタン系化合物は
失活していくので重合反応完了後に得られたポリエステ
ルの溶液粘度で該化合物の失活状態を評価することが好
ましい。
The above-mentioned inactivation state of the organotitanium compound by the phosphorus compound means that the polyester obtained after the completion of the polymerization reaction or a molded article made of the polyester is sufficiently dried and deoxygenated, and then melted again. 1 mm at ℃
A state in which the solution viscosity does not increase by 3% or more as a result of being placed under a condition where the polymerization reaction proceeds by reducing the pressure to 30 g or less for 30 minutes or less. In general, the organotitanium compound deactivates with the passage of time. Therefore, it is preferable to evaluate the deactivated state of the compound by the solution viscosity of the polyester obtained after the completion of the polymerization reaction.

【0014】本発明に係わるポリエステルとは式(1)
で示される繰り返し単位を有する。式(1)において、
1 は主として芳香族ジカルボン酸からの炭化水素基を
示し、芳香族ジカルボン酸としてはテレフタル酸、フタ
ル酸、イソフタル酸、2,6−ナフタレンジカルボン酸
等を挙げることができるが、結晶性や成型時の分子の配
向性の点でテレフタル酸が好ましい。また、該芳香族ジ
カルボン酸以外にアジピン酸、アゼライン酸、セバシン
酸等の直鎖脂肪族ジカルボン酸を酸成分の20モル%以
下の範囲で併用してもよい。
The polyester according to the present invention is represented by the formula (1)
And a repeating unit represented by In equation (1),
R 1 mainly represents a hydrocarbon group derived from an aromatic dicarboxylic acid. Examples of the aromatic dicarboxylic acid include terephthalic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid. Terephthalic acid is preferred from the viewpoint of molecular orientation at the time. In addition to the aromatic dicarboxylic acid, a linear aliphatic dicarboxylic acid such as adipic acid, azelaic acid and sebacic acid may be used in a range of 20 mol% or less of the acid component.

【0015】また式(1)において、R2 は主として直
鎖の炭素数が4以上のジオ−ルからの炭化水素基を示
し、具体的には1,4−ブタンジオ−ル、1、6−ヘキ
サンジオ−ル、1,8−オクタンジオ−ル、2−メチル
−1,8−オクタンジオ−ル等を挙げることができる
が、ポリエステルの結晶性を高め、成型時の配向度を高
める等の点で直鎖の炭素数が6〜10のジオ−ルが好ま
しい。これらのジオ−ルは2種類以上のジオ−ルが併用
されていてもよく、また分岐鎖を有していてもよい。ま
た、ジオ−ル成分の40モル%以下の範囲で、炭素数が
上述の範囲外のジオ−ルを併用しても差支えない。
In the formula (1), R 2 mainly represents a straight-chain hydrocarbon group having a carbon number of 4 or more from diol, and specifically, 1,4-butanediol, 1,6- Hexanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, and the like can be mentioned. However, in view of increasing the crystallinity of the polyester and increasing the degree of orientation at the time of molding, it is straightforward. Diols having 6 to 10 carbon atoms in the chain are preferred. These diols may be used in combination of two or more diols, or may have a branched chain. Further, a diol having a carbon number outside the above range may be used in combination within a range of 40 mol% or less of the diol component.

【0016】本発明に係わる好適なポリエステルとし
て、R2 が直鎖の炭素数6〜10のジオ−ルからの炭化
水素基であり、R1 が芳香族ジカルボン酸からの炭化水
素基であるポリエステルを挙げることができる。ポリエ
ステルのジオ−ル成分の炭素数が多くなると結果として
エステル結合量が減少して疎水性が高くなることにより
ポリエステルに吸収される水分量が減少し、その結果、
重縮合触媒である有機チタン系化合物が成型時の加水分
解を受けにくくなる傾向にある。本発明によれば、この
ような炭素数の多いジオ−ル成分を有するポリエステル
の重縮合触媒である有機チタン系化合物の失活を促進さ
せるためにリン系化合物を特定量添加することにより、
該当ポリエステルの成型時、ひいては重合缶からの押し
出し時の熱安定が大きく改善されるのである。
As a preferred polyester according to the present invention, a polyester wherein R 2 is a hydrocarbon group derived from a straight-chain C6-C10 diol and R 1 is a hydrocarbon group derived from an aromatic dicarboxylic acid Can be mentioned. As the carbon number of the diol component of the polyester increases, the amount of water absorbed by the polyester decreases due to the decrease in the amount of ester bonds and the increase in hydrophobicity, as a result,
The organic titanium-based compound as a polycondensation catalyst tends to be less susceptible to hydrolysis during molding. According to the present invention, by adding a specific amount of a phosphorus-based compound in order to promote the deactivation of an organic titanium-based compound that is a polycondensation catalyst of a polyester having a diol component having a large number of carbon atoms,
This greatly improves the thermal stability during molding of the corresponding polyester and eventually during extrusion from the polymerization can.

【0017】上述のように、有機チタン系化合物の失活
状態は重合反応が進行する状況下において、溶液粘度の
上昇が3%未満に押さえられていることにより評価さ
れ、熱安定性に優れていることは、ポリマ−を重合缶か
ら取り出す際の開始から完了までの溶液粘度低下が8.
0%未満であるか、または成型品に成型する際の成型前
後の溶液粘度低下が10.0%未満であることにより評
価される。
As described above, the deactivated state of the organotitanium compound is evaluated by the fact that the rise in solution viscosity is suppressed to less than 3% under the condition where the polymerization reaction proceeds, and the thermal stability is excellent. This means that the solution viscosity decreases from the start to the completion when the polymer is removed from the polymerization can.
It is evaluated by being less than 0% or a decrease in solution viscosity before and after molding during molding into a molded article of less than 10.0%.

【0018】[0018]

【実施例】以下、実施例により本発明を詳述するが、本
発明はこれら実施例により何等限定されるものではな
い。なお、実施例中の溶液粘度は以下の測定方法により
測定算出したものである。溶液粘度 溶媒としてフェノ−ル/テトラクロルエタンの等重量混
合溶媒を用い、30℃にてウベロ−デ粘度計を使用して
測定算出した。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. The solution viscosity in the examples was measured and calculated by the following measurement method. Using a mixed solvent of phenol / tetrachloroethane with an equal weight as the solvent for the solution viscosity, the viscosity was measured and calculated at 30 ° C. using a Ubbelohde viscometer.

【0019】実施例1 テレフタル酸と1,6−ヘキサンジオ−ル(後者/前者
モル比=1.5、出来上がりポリマ−1000kg)
に、テトラ−n−ブチルチタネ−ト1000ppm(チ
タン金属換算)を添加し、1kg/cm2 の加圧下、2
20℃で生成する水を除去しつつ、エステル化反応を行
い、エステル化率98%のモノマ−を得た。これを25
0℃まで昇温した後、絶対圧力1mmHgまで徐々に減
圧し、重合反応を行った。十分に重合反応が進んだ段階
で窒素を用いて減圧を停止し、重合反応を終了した。得
られたポリマ−をサンプリングして溶液粘度を測定した
ところ、〔η〕=1.00であった。サンプリング後直
ちに、表1のN0.1に示すリン系化合物を〔P〕/〔T
i〕=1.3となるような量添加し、100mmHgま
で減圧した後、30分間撹拌し、有機チタン系化合物の
失活を行った。さらに窒素で2kg/cm2 まで加圧
し、ポリマ−をストランド状に水中に押し出し、切断し
てチップ化した。ポリマ−取り出し開始から完了までち
ょうど1時間であった。経時的にサンプリングして溶液
粘度を測定した結果、取り出し開始から完了までの溶液
粘度低下は2.9%であった。さらに得られたチップ
を、カ−ルフィッシャ−法により測定した水分率が20
ppm以下となるように十分に乾燥し、ついで単軸押出
機により製膜したところ、溶液粘度の低下は製膜前後で
3%に止まり、均一性に優れたフィルムが得られた。な
お、有機チタン系化合物の失活状態を示す溶液粘度の上
昇は1.8%であった。
EXAMPLE 1 Terephthalic acid and 1,6-hexanediol (molar ratio of the latter / the former = 1.5, finished polymer 1000 kg)
The tetra -n- Buchiruchitane - added preparative 1000 ppm (Titanium terms of metal), a pressure of 1 kg / cm 2, 2
An esterification reaction was carried out while removing water produced at 20 ° C. to obtain a monomer having an esterification rate of 98%. This is 25
After the temperature was raised to 0 ° C., the pressure was gradually reduced to an absolute pressure of 1 mmHg to carry out a polymerization reaction. At the stage where the polymerization reaction had sufficiently proceeded, the pressure reduction was stopped using nitrogen to terminate the polymerization reaction. When the obtained polymer was sampled and the solution viscosity was measured, [η] = 1.00. Immediately after the sampling, the phosphorus compound shown in Table 1 at N0.1 was changed to [P] / [T
i] = 1.3, the pressure was reduced to 100 mmHg, and the mixture was stirred for 30 minutes to deactivate the organic titanium compound. The pressure was further increased to 2 kg / cm 2 with nitrogen, and the polymer was extruded into water in the form of a strand and cut into chips. It took just one hour from the start of polymer removal to completion. As a result of sampling over time and measuring the solution viscosity, the solution viscosity decrease from the start to the completion of removal was 2.9%. Further, the obtained chip had a water content of 20 as measured by the Karl Fisher method.
When the film was sufficiently dried so as to have a concentration of not more than ppm and then formed into a film by a single screw extruder, the decrease in solution viscosity was only 3% before and after the film was formed, and a film having excellent uniformity was obtained. The rise in solution viscosity indicating the inactivated state of the organic titanium compound was 1.8%.

【0020】実施例2〜8 実施例1において、表2に記載の樹脂について同様に評
価したところ、ポリマ−をストランド状に水中に押し出
し、切断してチップ化する際の溶液粘度の低下は3%未
満であり、さらに得られた各ポリマ−のチップを水分率
が20ppm以下となるように十分に乾燥して製膜した
が、製造膜前後の溶液粘度の低下はいずれも3%未満で
あった。評価結果を表3に示す。
Examples 2 to 8 In the same manner as in Example 1, the resins listed in Table 2 were evaluated in the same manner. When the polymer was extruded into water in the form of a strand and cut into chips, the decrease in solution viscosity was 3%. %, And the resulting polymer chips were sufficiently dried to form a water content of 20 ppm or less and formed into a film. However, the decrease in solution viscosity before and after the production film was less than 3%. Was. Table 3 shows the evaluation results.

【0021】比較例1 実施例1と同様にして重合反応を完了した後、溶液粘度
を測定すると〔η〕=1.02のポリマ−が得られてい
た。このポリマ−に対してリン系化合物を添加すること
なく実施例1と同様にしてチップ化を1時間かけて実施
し、経時的な溶液粘度を測定したところ、取り出し開始
から完了までの溶液粘度低下は13.0%であった。さ
らに得られたチップを用いて製膜を行ったが、フィッシ
ュアイの多いフィルムしか得られなかった。評価結果を
表3に示す。
Comparative Example 1 After the polymerization reaction was completed in the same manner as in Example 1, when the solution viscosity was measured, a polymer having [η] = 1.02 was obtained. A chip was formed over 1 hour in the same manner as in Example 1 without adding a phosphorus compound to the polymer, and the solution viscosity over time was measured. Was 13.0%. Further, a film was formed using the obtained chips, but only a film having many fish eyes was obtained. Table 3 shows the evaluation results.

【0022】比較例2〜3 実施例1と同様にして重合反応を完了した後、溶液粘度
を測定すると〔η〕=1.02(比較例2)、〔η〕=
1.00(比較例3)のポリマ−が得られていた。これ
らのポリマ−に対して〔P〕/〔Ti〕=0.5(比較
例2)、〔P〕/〔Ti〕=3.2(比較例3)となる
ようにリン系化合物を添加して、実施例1と同様にして
チップ化を1時間かけて実施し、経時的な溶液粘度を測
定したところ、取り出し開始から完了までの溶液粘度低
下はそれぞれ9.1%(比較例2)、3.3%(比較例
3)であった。比較例3で得られたポリマ−チップの表
面はリン系化合物のブリ−ドアウトのために若干ぬめる
状態であった。評価結果を表3に示す。比較例2で得ら
れた樹脂を用い、実施例1と同様にしてチップ化、乾燥
を施し製膜したところ、溶液粘度が11.2%低下して
いた。さらに比較例3で得られたチップを用いて製膜を
行ったところ、製膜前後の溶液粘度の低下は小さかった
が、フィルム表面が不均一でリン酸エステルまたは亜リ
ン酸エステルによるゲル化物の生成のためか、フィッシ
ュアイが多数認められ、不満足なものであった。
Comparative Examples 2-3 After the polymerization reaction was completed in the same manner as in Example 1, the solution viscosity was measured. [Η] = 1.02 (Comparative Example 2), [η] =
A polymer of 1.00 (Comparative Example 3) was obtained. Phosphorus compounds were added to these polymers so that [P] / [Ti] = 0.5 (Comparative Example 2) and [P] / [Ti] = 3.2 (Comparative Example 3). Then, chipping was performed over 1 hour in the same manner as in Example 1 and the solution viscosity was measured over time. As a result, the decrease in solution viscosity from the start to the completion of removal was 9.1% (Comparative Example 2). 3.3% (Comparative Example 3). The surface of the polymer chip obtained in Comparative Example 3 was slightly wet due to the bleed out of the phosphorus compound. Table 3 shows the evaluation results. Using the resin obtained in Comparative Example 2, a chip was formed and dried in the same manner as in Example 1 to form a film. As a result, the solution viscosity was reduced by 11.2%. Further, when a film was formed using the chip obtained in Comparative Example 3, the decrease in solution viscosity before and after the film formation was small, but the film surface was non-uniform and a gelled product of phosphate or phosphite was formed. Probably because of formation, many fish eyes were found, and it was unsatisfactory.

【0023】比較例4 有機チタン系化合物として蓚酸チタンカリウムを180
ppm(チタン金属換算)使用した以外は実施例1と同
様にして、重合反応を行い、チップ化した。ポリマ−取
り出し時の溶液粘度の低下は9.0%と大きなものであ
った。有機チタン金属化合物の量が多すぎたので、リン
系化合物を添加しても有機チタン系化合物を失活させる
ことができなかった。
COMPARATIVE EXAMPLE 4 Titanium potassium oxalate was added as an organic titanium compound in an amount of 180
A polymerization reaction was carried out and chips were obtained in the same manner as in Example 1 except that ppm (in terms of titanium metal) was used. The drop in solution viscosity upon removal of the polymer was as large as 9.0%. Since the amount of the organic titanium metal compound was too large, the organic titanium compound could not be deactivated even if the phosphorus compound was added.

【0024】実施例9 実施例1において、リン系化合物を添加しないでポリエ
ステルを重合してチップ化した。溶液粘度は0.991
であった。このチップを十分に乾燥した後、二軸押出機
(L/D=30)を用いて表1のNO.1に示すリン系化合
物を〔Ti〕/〔P〕=2.2となるように、シリンダ
−途中(第5シリンダ−)より圧入して混練し、水中に
ストランド状に押し出して切断し、再度チップ化した。
この際、有機チタン系化合物の失活状態を測定したとこ
ろ、溶液粘度の上昇は0.972から0.988と1.
6%であり、該化合物は十分に失活していることが認め
られた。得られたチップを用いて製膜したところ、フィ
ッシュアイの少ない良好な形態のフィルムが得られ、製
膜による溶液粘度の低下も4.2%と低いものであっ
た。
Example 9 In Example 1, chips were produced by polymerizing polyester without adding a phosphorus compound. Solution viscosity 0.991
Met. After the chips were sufficiently dried, the phosphorus-based compound shown in No. 1 in Table 1 was adjusted to [Ti] / [P] = 2.2 using a twin-screw extruder (L / D = 30). The mixture was press-fitted from the middle of the cylinder (the fifth cylinder), kneaded, extruded into water in the form of a strand, cut, and again formed into chips.
At this time, when the deactivated state of the organic titanium compound was measured, the increase in solution viscosity was 0.972 to 0.988, which was 1.
6%, indicating that the compound was sufficiently inactivated. When a film was formed using the obtained chip, a film having a good form with few fish eyes was obtained, and the decrease in solution viscosity due to the film formation was as low as 4.2%.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】融点または軟化点が低いポリエステルで
あり、熱安定性が不良なポリエステルにリン系化合物を
特定量添加することにより、重合触媒である有機チタン
系化合物をほぼ完全に失活させることができ、該ポリエ
ステルの熱安定性を大きく改良することが可能となる。
According to the present invention, a specific amount of a phosphorus-based compound is added to a polyester having a low melting point or softening point and poor thermal stability to deactivate an organic titanium-based compound as a polymerization catalyst almost completely. And the thermal stability of the polyester can be greatly improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機チタン系化合物を触媒として重縮合さ
れ、リン系化合物を含有し、かつ下記式(1)で示され
る繰り返し単位を有するポリエステルであって、該ポリ
エステル中の有機チタン系化合物とリン系化合物の含有
量が下記式(2)を満足し、有機チタン系化合物をチタ
ン金属換算で150ppm以下含有することを特徴とす
る熱安定性に優れたポリエステル。 【化1】 0.6≦〔P〕/〔Ti〕≦3.0 ・・・・・(2) (〔P〕は燐系化合物中の燐原子、〔Ti〕は有機チタ
ン系化合物中のチタン原子を示す。)
1. A polyester which is polycondensed using an organotitanium compound as a catalyst, contains a phosphorus compound, and has a repeating unit represented by the following formula (1): A polyester having excellent thermal stability, wherein the content of the phosphorus-based compound satisfies the following formula (2) and the organic titanium-based compound contains 150 ppm or less in terms of titanium metal. Embedded image 0.6 ≦ [P] / [Ti] ≦ 3.0 (2) ([P] indicates a phosphorus atom in a phosphorus-based compound, and [Ti] indicates a titanium atom in an organic titanium-based compound. .)
【請求項2】請求項1において、下記式(3)で示され
るポリエステルであることを特徴とする熱安定性に優れ
たポリエステル。 【化2】
2. The polyester according to claim 1, which is a polyester represented by the following formula (3): Embedded image
JP6782497A 1997-03-21 1997-03-21 Polyester excellent in heat stability Pending JPH10259296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6782497A JPH10259296A (en) 1997-03-21 1997-03-21 Polyester excellent in heat stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6782497A JPH10259296A (en) 1997-03-21 1997-03-21 Polyester excellent in heat stability

Publications (1)

Publication Number Publication Date
JPH10259296A true JPH10259296A (en) 1998-09-29

Family

ID=13356092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6782497A Pending JPH10259296A (en) 1997-03-21 1997-03-21 Polyester excellent in heat stability

Country Status (1)

Country Link
JP (1) JPH10259296A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024804A1 (en) * 1998-10-23 2000-05-04 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester production, polyester, and process for producing polyester
EP1491572A1 (en) * 2003-06-26 2004-12-29 Toray Industries, Inc. Polyester production method, polyester composition, and polyester fiber
JP2005247965A (en) * 2004-03-03 2005-09-15 Mitsubishi Chemicals Corp Aliphatic polyester and manufacturing method therefor
US7132383B2 (en) 2000-09-12 2006-11-07 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester, polyester produced with the same, and process for producing polyester
US7144614B2 (en) 2001-02-23 2006-12-05 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced by using the same, and process for producing polyester
WO2007035250A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Polyester composition containing aluminum and lithium catalysts and titanium nitride particles and having improved reheat
US7199212B2 (en) 2000-01-05 2007-04-03 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyesters, polyesters produced with the same and process for producing polyesters
US7208565B1 (en) 1999-08-24 2007-04-24 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyesters, polyester produced with the same, and process for production of polyester
WO2008044690A1 (en) * 2006-10-12 2008-04-17 Toray Industries, Inc. Process for production of polyester
JP2008138102A (en) * 2006-12-04 2008-06-19 Toray Ind Inc Polylactic acid-based resin composition
WO2009025850A3 (en) * 2007-08-20 2009-06-04 Cornell Res Foundation Inc Copolymerization of epoxides and cyclic anhydrides
KR101293098B1 (en) * 2004-08-30 2013-08-12 미쓰비시 가가꾸 폴리에스테르 필름 가부시키가이샤 Polyester Films for Release

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501373B1 (en) 1998-10-23 2009-03-10 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester production, polyester, and process for producing polyester
WO2000024804A1 (en) * 1998-10-23 2000-05-04 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester production, polyester, and process for producing polyester
US7208565B1 (en) 1999-08-24 2007-04-24 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyesters, polyester produced with the same, and process for production of polyester
US8293862B2 (en) 1999-08-24 2012-10-23 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced by using the same, and a process for producing polyester
US7199212B2 (en) 2000-01-05 2007-04-03 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyesters, polyesters produced with the same and process for producing polyesters
US7132383B2 (en) 2000-09-12 2006-11-07 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester, polyester produced with the same, and process for producing polyester
US7144614B2 (en) 2001-02-23 2006-12-05 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced by using the same, and process for producing polyester
EP1491572A1 (en) * 2003-06-26 2004-12-29 Toray Industries, Inc. Polyester production method, polyester composition, and polyester fiber
US7144974B2 (en) 2003-06-26 2006-12-05 Toray Industries, Inc. Polyester production method, polyester composition, and polyester fiber
JP2005247965A (en) * 2004-03-03 2005-09-15 Mitsubishi Chemicals Corp Aliphatic polyester and manufacturing method therefor
KR101293098B1 (en) * 2004-08-30 2013-08-12 미쓰비시 가가꾸 폴리에스테르 필름 가부시키가이샤 Polyester Films for Release
WO2007035250A2 (en) 2005-09-16 2007-03-29 Eastman Chemical Company Polyester composition containing aluminum and lithium catalysts and titanium nitride particles and having improved reheat
WO2008044690A1 (en) * 2006-10-12 2008-04-17 Toray Industries, Inc. Process for production of polyester
JP2008138102A (en) * 2006-12-04 2008-06-19 Toray Ind Inc Polylactic acid-based resin composition
WO2009025850A3 (en) * 2007-08-20 2009-06-04 Cornell Res Foundation Inc Copolymerization of epoxides and cyclic anhydrides

Similar Documents

Publication Publication Date Title
EP0909775B1 (en) Catalyst for producing polyester, process for producing the same, and process for producing polyester by using the same
JP3335683B2 (en) Polyester film and method for producing the same
EP2371875B1 (en) Method for preparing a polyester resin in which isosorbide is copolymerized
JPH10259296A (en) Polyester excellent in heat stability
EP0186456B2 (en) Manufacturing of high molecular weight polyester
AU738285B2 (en) A copolyester for molding a bottle
JPH11228682A (en) Production of polyester excellent in forming processability
JP4768126B2 (en) Method for producing copolyetherester
JP2672878B2 (en) Method for producing high degree of polymerization polybutylene terephthalate
JP7243151B2 (en) Method for producing polyester film
JP3647689B2 (en) Method for producing aliphatic polyester
JP3210250B2 (en) Polybutylene terephthalate and method for producing the same
JPH11228681A (en) Production of polyester
JP3482436B2 (en) Polyester chip processing method and polyester fiber manufacturing method
JPH1149852A (en) Production of polyester with excellent molding workability and polyester polymerization catalyst therefor
JP4527927B2 (en) Method for producing polyester composition for film
JP3374544B2 (en) Method for producing polyester copolymer
JP2005060640A (en) Method for producing polyester
JPS6136009B2 (en)
JP2003160648A (en) Polytrimethylene terephthalate composition
WO2007088074A1 (en) Process for the preparation of polyethylene terephthalate
JPH04183718A (en) Production of polyester
JPH09316182A (en) Production of polybutylene terephthalate
JP3017296B2 (en) Polyester production method
JP2006316179A (en) Method for producing polyetherester block copolymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524