JPH10256838A - Current feedback circuit - Google Patents

Current feedback circuit

Info

Publication number
JPH10256838A
JPH10256838A JP9058663A JP5866397A JPH10256838A JP H10256838 A JPH10256838 A JP H10256838A JP 9058663 A JP9058663 A JP 9058663A JP 5866397 A JP5866397 A JP 5866397A JP H10256838 A JPH10256838 A JP H10256838A
Authority
JP
Japan
Prior art keywords
output
voltage
current
feedback circuit
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9058663A
Other languages
Japanese (ja)
Inventor
Shinichi Hashimoto
慎一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP9058663A priority Critical patent/JPH10256838A/en
Priority to KR1019980007688A priority patent/KR19980080023A/en
Publication of JPH10256838A publication Critical patent/JPH10256838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/33Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device
    • G05B19/37Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for continuous-path control
    • G05B19/371Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/375Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for continuous-path control the positional error is used to control continuously the servomotor according to its magnitude with current or torque feedback only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2525Magneto-optical [MO] discs
    • G11B2220/2529Mini-discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs

Abstract

PROBLEM TO BE SOLVED: To secure the stability of an open loop and then to attain a prescribed frequency band by amplifying the input signal according to the output of a conversion means which converts the output current of a current feedback circuit into voltage and performing the feedback to the amplifier means via a phase compensation element. SOLUTION: An error amplifier part 2 performs the compensation of phase via a resistance 23 and a capacitor 24 and amplifies again the input signal amplified at an amplifier part 1 in response to the output of an output current/ voltage conversion part 4. The part 4 converts the output current flowing to a coil 5 that is connected to the corresponding current feedback circuit as a load into voltage and amplifies this voltage. The circuit constants of the parts 2 and 4 are properly set according to the numerical value of the coil 5 connected as a load. Thus, the phase characteristic of the output current is controlled to the input and a prescribed frequency band is attained. Then the phase margin is increased for the frequency characteristic of a relevant open loop to secure the stability of this loop.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CD、CD−RO
M、DVD、MDなどのDISC機器やモータを有する
機器などの、コイルに電流を供給する回路などとして用
いられる電流帰還回路に関するものである。
TECHNICAL FIELD The present invention relates to a CD, a CD-RO
The present invention relates to a current feedback circuit used as a circuit for supplying a current to a coil, such as a DISC device such as M, DVD, or MD, or a device having a motor.

【0002】[0002]

【従来の技術】従来のBTL方式のコイル駆動回路のブ
ロック図を図5に示す。同図において、101は第1演
算増幅器、102は第2演算増幅器、103、104、
105、106は抵抗、5はコイル、6は外部負荷、7
はサーボ回路である。コイル駆動回路は第1演算増幅器
101、第2演算増幅器102、抵抗103、104、
105、106からなっており、第1演算増幅器101
の非反転入力端子(+)には基準電圧が印加され、一
方、反転入力端子(−)には当該電流帰還回路への入力
信号が抵抗103を介して与えられるとともに、抵抗1
04を介して第1演算増幅器101の出力が帰還されて
いる。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional BTL type coil drive circuit. In the figure, 101 is a first operational amplifier, 102 is a second operational amplifier, 103, 104,
105 and 106 are resistors, 5 is a coil, 6 is an external load, 7
Is a servo circuit. The coil driving circuit includes a first operational amplifier 101, a second operational amplifier 102, resistors 103 and 104,
105, 106, the first operational amplifier 101
A reference voltage is applied to the non-inverting input terminal (+) of the current feedback circuit, while an input signal to the current feedback circuit is applied to the inverting input terminal (−) via the resistor 103 and the resistor 1
The output of the first operational amplifier 101 is fed back via the signal line 04.

【0003】また、第2演算増幅器102の非反転入力
端子(+)には基準電圧が印加され、一方、反転入力端
子(−)には第1演算増幅器101の出力が抵抗105
を介して与えられるとともに、抵抗106を介して第2
演算増幅器102の出力が帰還されている。そして、第
1演算増幅器101の出力と第2演算増幅器102の出
力との差電圧を出力として取り出すようになっている。
A reference voltage is applied to the non-inverting input terminal (+) of the second operational amplifier 102, while the output of the first operational amplifier 101 is connected to the inverting input terminal (−) of the resistor 105.
Through the resistor 106 and the second through the resistor 106.
The output of the operational amplifier 102 is fed back. Then, a difference voltage between the output of the first operational amplifier 101 and the output of the second operational amplifier 102 is extracted as an output.

【0004】以上のような構成のコイル駆動回路は、例
えば、外部負荷6の動作状態を制御するサーボ回路7か
ら与えられる制御信号に応じて電圧出力を行い、その出
力に負荷として接続されたコイル5に電流を流して外部
負荷6を駆動するというように使用される。
The coil drive circuit having the above-described configuration outputs a voltage in response to a control signal given from a servo circuit 7 for controlling the operation state of an external load 6, for example, and a coil connected to the output as a load. 5 is used to drive an external load 6 by passing a current through it.

【0005】[0005]

【発明が解決しようとする課題】ここで、上記構成のコ
イル駆動回路において、第1演算増幅器101、第2演
算増幅器102の周波数帯域が入力信号のそれに比べて
十分高いとすると、電流帰還回路の入力電圧と出力電圧
との間に位相ずれは発生しない。しかしながら、コイル
5のインダクタンス成分により、高周波数帯域では出力
電圧と出力電流(コイル5に流れる電流)との間に位相
ずれが生じる。この位相ずれが生じると、サーボループ
の位相余裕を悪化させる恐れがあるので、取り扱う信号
の周波数帯域が制限されることになる。
Here, in the coil driving circuit having the above configuration, assuming that the frequency bands of the first operational amplifier 101 and the second operational amplifier 102 are sufficiently higher than those of the input signal, No phase shift occurs between the input voltage and the output voltage. However, due to the inductance component of the coil 5, a phase shift occurs between the output voltage and the output current (current flowing through the coil 5) in a high frequency band. When this phase shift occurs, there is a possibility that the phase margin of the servo loop is deteriorated, so that the frequency band of the signal to be handled is limited.

【0006】どのぐらいに周波数帯域が制限されるかを
見てみると、上記構成の電流帰還回路において、出力電
圧をVOUT、出力電流をIO、コイル5のインダクタンス
成分、抵抗成分をそれぞれL、RLとし、角周波数をω
とすると、 IO = VOUT/(jωL+RL) ∴IO/VOUT = 1/(jωL+RL) = (1/L){1/(jω+(RL/L)} となるので、カットオフ周波数fCは、fC = RL/2
πLであって、この時の位相遅れは45゜である。サー
ボループの位相余裕に影響を与えないためには、必要な
周波数帯域内で位相ずれがゼロであるのが理想であるの
で、周波数帯域がこのカットオフ周波数fCよりも高く
なることはない。
Looking at how much the frequency band is limited, in the current feedback circuit having the above configuration, the output voltage is V OUT , the output current is I O , the inductance component and the resistance component of the coil 5 are L, respectively. , R L and the angular frequency is ω
Then, I O = V OUT / (jωL + RL ) {I O / V OUT = 1 / (jωL + RL ) = (1 / L) {1 / (jω + ( RL / L)} The frequency f C is f C = R L / 2
πL, and the phase delay at this time is 45 °. In order not to affect the phase margin of the servo loop, it is ideal that the phase shift is zero within a necessary frequency band. Therefore, the frequency band does not become higher than the cutoff frequency f C.

【0007】そして、カットオフ周波数fCが負荷であ
るコイル5の数値(インダクタンス成分及び抵抗成分)
のみによって決定してしまうので、負荷として接続され
たコイルによっては周波数帯域を十分広くとることがで
きず、規格を満足することができない、言い換えると、
負荷として接続可能なコイルが限定されてしまう。
Then, the numerical value of the coil 5 whose load is the cutoff frequency f C (inductance component and resistance component)
Since the frequency band is determined only by the coil, depending on the coil connected as the load, the frequency band cannot be sufficiently widened, and the standard cannot be satisfied. In other words,
The coils that can be connected as loads are limited.

【0008】そこで、本発明は、接続する負荷の数値に
関係なく、開ループでの安定性(発振防止)を確保した
上で、所定の周波数帯域を実現することができる電流帰
還回路を提供することを目的とする。
Accordingly, the present invention provides a current feedback circuit capable of realizing a predetermined frequency band while ensuring stability in an open loop (prevention of oscillation) regardless of the numerical value of a connected load. The purpose is to:

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の電流帰還回路では、入力信号に応じて電圧
出力を行う電流帰還回路において、当該電流帰還回路の
負荷に流れる出力電流を電圧に変換して出力する電流/
電圧変換手段と、該電流/電圧変換手段の出力に応じて
入力信号を増幅する増幅手段とを有し、該増幅手段では
位相補償要素を介して帰還が施されている。
In order to achieve the above object, in a current feedback circuit according to the present invention, an output current flowing through a load of the current feedback circuit is provided in a current feedback circuit for outputting a voltage according to an input signal. Output current converted to voltage /
It has voltage converting means and amplifying means for amplifying an input signal in accordance with the output of the current / voltage converting means. In the amplifying means, feedback is provided via a phase compensation element.

【0010】以上の構成により、前記位相要素及び電流
/電圧変換手段の回路定数を適切に設定することによっ
て、入力に対する出力電流の位相特性を調整して、所定
の周波数帯域を満たすことができ、また、開ループの周
波数特性においても位相余裕をかせいで、安定性(発振
防止)を確保することができる。
With the above arrangement, the phase characteristics of the output current with respect to the input can be adjusted by appropriately setting the circuit constants of the phase element and the current / voltage conversion means, so that a predetermined frequency band can be satisfied. In addition, stability (prevention of oscillation) can be ensured in the open-loop frequency characteristics by using a phase margin.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施形態を図面を
参照しながら説明する。図1は本発明の一実施形態であ
る電流帰還回路のブロック図であって、1はプリアンプ
部、2はエラーアンプ部、3は従来技術において示した
コイル駆動回路と同一構成であるアンプ部、4は出力電
流/電圧変換部、5は当該電流帰還回路に負荷として接
続されたコイルである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a current feedback circuit according to an embodiment of the present invention, wherein 1 is a preamplifier unit, 2 is an error amplifier unit, 3 is an amplifier unit having the same configuration as the coil drive circuit shown in the related art, 4 is an output current / voltage converter, and 5 is a coil connected as a load to the current feedback circuit.

【0012】まず、プリアンプ部1は演算増幅器11、
抵抗12、13からなっており、演算増幅器11の非反
転入力端子(+)には基準電圧が印加されており、一
方、反転入力端子(−)には当該電流帰還回路への入力
信号が抵抗12を介して与えられているとともに、演算
増幅器11の出力が抵抗13を介して帰還されている。
このような構成により、プリアンプ部1は入力信号を増
幅してインターフェースをとる働きをする。
First, the preamplifier 1 includes an operational amplifier 11,
The reference voltage is applied to the non-inverting input terminal (+) of the operational amplifier 11, and the input signal to the current feedback circuit is connected to the inverting input terminal (-) of the operational amplifier 11. 12, and the output of the operational amplifier 11 is fed back via a resistor 13.
With such a configuration, the preamplifier 1 functions to amplify an input signal and take an interface.

【0013】次に、エラーアンプ部2は直流利得の非常
に大きな演算増幅器21、抵抗22、23、コンデンサ
24からなっており、演算増幅器21の非反転入力端子
(+)にはプリアンプ部1の出力が与えられており、一
方、反転入力端子(−)には出力電流/電圧変換部4の
出力が抵抗22を介して接続されているとともに、演算
増幅器21の出力が直列接続された抵抗23、コンデン
サ24を介して帰還されている。このような構成によ
り、エラーアンプ部2は抵抗23及びコンデンサ24に
より発振防止の位相補償(位相進み補償)を行いなが
ら、プリアンプ部1で増幅された入力信号を出力電流/
電圧回路4の出力に応じて増幅することになる。
The error amplifier 2 comprises an operational amplifier 21 having a very large DC gain, resistors 22 and 23, and a capacitor 24. The non-inverting input terminal (+) of the operational amplifier 21 has the preamplifier 1 An output is given. On the other hand, the output of the output current / voltage converter 4 is connected to the inverting input terminal (−) via the resistor 22, and the output of the operational amplifier 21 is connected in series to the resistor 23. , Through the capacitor 24. With such a configuration, the error amplifier unit 2 performs the phase compensation (phase lead compensation) for preventing oscillation by the resistor 23 and the capacitor 24 and outputs the input signal amplified by the preamplifier unit 1 to the output current /
Amplification is performed according to the output of the voltage circuit 4.

【0014】次に、出力電流/電圧変換部4は抵抗4
1、43、44、45、46、演算増幅器42からなっ
ており、抵抗41はアンプ部3の出力に負荷であるコイ
ル5と直列に接続されており、演算増幅器42の非反転
入力端子(+)は抵抗41の一端と基準電位との間に直
列接続された抵抗43、44との接続点が接続されてお
り、一方、反転入力端子(−)には抵抗41の他端が抵
抗45を介して接続されているとともに、演算増幅器4
2の出力が抵抗46を介して帰還されている。このよう
な構成により、出力電流/電圧変換部4はコイル5に流
れる出力電流を電圧に変換し、その電圧を増幅すること
になる。
Next, the output current / voltage converter 4 includes a resistor 4
1, 43, 44, 45, 46, and an operational amplifier 42. The resistor 41 is connected in series with the coil 5 as a load to the output of the amplifier unit 3, and the non-inverting input terminal (+ ) Is connected to a connection point between resistors 43 and 44 connected in series between one end of the resistor 41 and the reference potential, while the other end of the resistor 41 is connected to the inverting input terminal (−) by a resistor 45. And the operational amplifier 4
2 is fed back via the resistor 46. With such a configuration, the output current / voltage converter 4 converts the output current flowing through the coil 5 into a voltage, and amplifies the voltage.

【0015】尚、アンプ部3については、従来技術にお
いて示した電流帰還回路と同一構成であるのでその説明
を省略する。
Since the amplifier section 3 has the same configuration as the current feedback circuit shown in the prior art, a description thereof will be omitted.

【0016】ここで、図1に示した電流帰還回路では、
エラーアンプ部2の閉ループ利得をA、帰還量をBとす
ると、閉ループ利得GCは、 GC = VOUT/VIN = A/(1+AB) となる。一方、コイル5のインダクタンス成分、抵抗成
分をそれぞれL、RLとし、出力電流/電圧変換回路4
の抵抗41の抵抗値をRdとすると、 VOUT = IO(Ls+RL+Rd) であるから(但し、s=jω)、プリアンプ部1、アン
プ部3、及び、出力電流/電圧回路4の増幅度を1とす
ると、図1に示した電流帰還回路の直流利得Gmは、 G
m = IO/VIN ={1/(Ls+RL+Rd)}・{A
/(1+AB)}となる。
Here, in the current feedback circuit shown in FIG.
Assuming that the closed-loop gain of the error amplifier unit 2 is A and the feedback amount is B, the closed-loop gain G C is as follows: G C = V OUT / V IN = A / (1 + AB) On the other hand, L the inductance component of the coil 5, a resistive component, respectively, and R L, the output current / voltage conversion circuit 4
Assuming that the resistance value of the resistor 41 is R d , V OUT = I O (Ls + RL + R d ) (where s = jω), so that the preamplifier unit 1, the amplifier unit 3, and the output current / voltage circuit 4 Is 1, the DC gain G m of the current feedback circuit shown in FIG.
m = IO / VIN = {1 / (Ls + RL + Rd )}. multidot.A
/ (1 + AB)}.

【0017】抵抗22、23の抵抗値をR1、R2とし、
コンデンサ24の容量をCとして、エラーアンプ部2の
閉ループ利得をA、帰還量Bをそれぞれ求めて、上式に
代入すると、 Gm = K(s+Z)/{s2+(ω0/Q)s+ω0 2} 但し、K = R2/(LR1)、Z = 1/CR2 ω0 = {Rd/(CLR1)}1/2 Q = L{Rd/(CLR1)}1/2/(RL+Rd+R2
d/R1) となり、これは、2次のポール(ポール周波数fP=ω0
/(2π))をもつフィルタと1次のゼロ点(ゼロ点周
波数fZ=Z/(2π))とをもつフィルタとを合成し
たものである。
The resistance values of the resistors 22 and 23 are R 1 and R 2 ,
When the capacitance of the capacitor 24 is C and the closed-loop gain of the error amplifier unit 2 is A and the feedback amount B is obtained and substituted into the above equation, G m = K (s + Z) / {s 2 + (ω 0 / Q) s + ω 0 2 } where K = R 2 / (LR 1 ), Z = 1 / CR 2 ω 0 = {R d / (CLR 1 )} 1/2 Q = L {R d / (CLR 1 )} 1 / 2 / (R L + R d + R 2 R
d / R 1 ), which is a second-order pole (pole frequency f P = ω 0).
/ (2π)) and a filter having a first-order zero point (zero point frequency f Z = Z / (2π)).

【0018】そして、これらのポール周波数fP及びゼ
ロ点周波数fZは、負荷であるコイル5のみならず、
1、R2、C、Rdの各定数にも依存しているので、コ
イル5の数値(インダクタンス成分)に応じて、R1
2、C、Rdの各定数を適切に設定すれば、直流利得G
mのボード線図は図2に示すようになり、入力に対する
出力電流の位相特性を調整して、所定の周波数帯域を満
たすことができる。
The pole frequency f P and the zero point frequency f Z are determined not only by the coil 5 which is a load,
R 1, R 2, C, because it also depends on the constants of R d, depending on the value of the coil 5 (inductance component), R 1,
If the constants of R 2 , C and R d are set appropriately, the DC gain G
The Bode diagram of m is as shown in FIG. 2, and the phase characteristic of the output current with respect to the input can be adjusted to satisfy a predetermined frequency band.

【0019】次に、図1に示した電流帰還回路の開ルー
プの周波数特性について見てみる。図1に示した電流帰
還回路を等価的に表した図3の回路において、出力から
の帰還ループを同図に示すポイントでカットしたときの
周波数特性が開ループの周波数特性である。尚、閉ルー
プを考察するときには無視できたエラーアンプ部2内の
演算増幅器21の開ループ利得とファーストポールが影
響してくるため、これらをAOと、抵抗値R0、容量C0
をもつRCのローパスフィルタで等価的に示している。
Next, the open loop frequency characteristics of the current feedback circuit shown in FIG. 1 will be examined. In the circuit of FIG. 3 equivalently representing the current feedback circuit shown in FIG. 1, the frequency characteristic when the feedback loop from the output is cut at the point shown in FIG. 3 is the open loop frequency characteristic. Since coming affecting open-loop gain and first pole of the operational amplifier 21 in the error amplifier section 2 negligible when considering the closed loop, and these A O, the resistance value R 0, the capacitance C 0
Are equivalently shown by an RC low-pass filter having.

【0020】図3において、VINからバッファBF1
出力までの1段目と、バッファBF1の出力からVOUT
での2段目とに分割して考える。まず、1段目の伝達関
数T1は、 T1 = (Rd/L){1/(s+P1)} 但し、P1 = (RL+Rd)/L となり、1つのポールをもつ。
[0020] In FIG. 3, considered by dividing the V IN and the first stage to the output of the buffer BF 1, in two stages eyes from the output of the buffer BF 1 to V OUT. First, the transfer function T 1 in the first stage is T 1 = (R d / L) {1 / (s + P 1 )} where P 1 = ( RL + R d ) / L and has one pole.

【0021】次に、2段目の伝達関数T2は、 T2 = −K2(s+Z2)/{(s+PA)(s+
B)} 但し、K2 = AO02/(R1+R2)、Z2 = 1/
(CR2) P0 = 1/(R00)(P0は演算増幅器21のファー
ストポール角周波数)PA、PBは伝達関数1/(s2
βs+γ)のポール角周波数 尚、β = (P01+AO01+P02+Z22)/
(R1+R2) γ = P022/(R1+R2) となり、1つのゼロ点と2つの極をもつ。
Next, the second stage of the transfer function T 2 are, T 2 = -K 2 (s + Z 2) / {(s + P A) (s +
P B )} where K 2 = A O P 0 R 2 / (R 1 + R 2 ), Z 2 = 1 /
(CR 2 ) P 0 = 1 / (R 0 C 0 ) (P 0 is the first pole angular frequency of the operational amplifier 21) P A and P B are transfer functions 1 / (s 2 +
pole angular frequency .beta.s + gamma) Incidentally, β = (P 0 R 1 + A O P 0 R 1 + P 0 R 2 + Z 2 R 2) /
(R 1 + R 2 ) γ = P 0 Z 2 R 2 / (R 1 + R 2 ), and has one zero point and two poles.

【0022】以上より、開ループの伝達関数TOLは、 TOL=−(K2d/L)(s+Z2)/{(s+PA
(s+PB)(s+P1)} となり、これはゼロ点が1つ(ゼロ点周波数:Z2/2
π)、ポールが3つ(ポール周波数:PA/2π、PB
2π、P1/2π)のローパスフィルタ特性である。
From the above, the open-loop transfer function T OL is given by T OL = − (K 2 R d / L) (s + Z 2 ) / {(s + P A )
(S + P B) (s + P 1)} , and the this zero point one (zero-point frequency: Z 2/2
π) and three poles (pole frequency: P A / 2π, P B /
2π, P 1 / 2π).

【0023】したがって、ゼロ点周波数(Z2/2π)
及びポール周波数(PA/2π、PB/2π、P1/2
π)は、負荷であるコイル5のみならず、R1、R2
C、Rdの各定数にも依存しているので、コイル5の数
値(インダクタンス成分)に応じて、R1、R2、C、R
dの各定数を適切に設定すれば、開ループの周波数特性
は図4に示すようになり、位相余裕をかせいで、安定性
(発振防止)を確保することができる(位相進み補
償)。
Therefore, the zero point frequency (Z 2 / 2π)
And the pole frequency (P A / 2π, P B / 2π, P 1/2
π) indicates not only the coil 5 as a load but also R 1 , R 2 ,
C, because it also depends on the constants of R d, depending on the value of the coil 5 (inductance component), R 1, R 2, C, R
If the constants of d are set appropriately, the frequency characteristics of the open loop are as shown in FIG. 4, and the stability (prevention of oscillation) can be secured by increasing the phase margin (phase lead compensation).

【0024】以上のように、本実施形態の電流帰還回路
では、負荷として接続するコイル5の数値(インダクタ
ンス成分、抵抗成分)に応じて、エラーアンプ部2及び
電流/電圧変換部4の回路定数を適切に設定することに
よって、入力に対する出力電流の位相特性を調整して、
所定の周波数帯域を満たすことができるとともに、その
開ループの周波数特性においても位相余裕をかせいで、
安定性(発振防止)を確保することができる。
As described above, in the current feedback circuit of the present embodiment, the circuit constants of the error amplifier 2 and the current / voltage converter 4 depend on the values (inductance and resistance) of the coil 5 connected as a load. By appropriately setting the phase characteristics of the output current with respect to the input,
In addition to satisfying the predetermined frequency band, the phase margin is also used in the open loop frequency characteristics,
Stability (prevention of oscillation) can be ensured.

【0025】尚、以上の説明では、BTL方式の実施形
態のみについて説明したが、負荷の片側のみに出力をつ
ないだ単相(OTL)方式のコイル駆動でも同様に構成
することができる。
In the above description, only the embodiment of the BTL system has been described. However, a single-phase (OTL) coil drive in which the output is connected to only one side of the load can be similarly configured.

【0026】[0026]

【発明の効果】以上説明したように、本発明の電流帰還
回路によれば、接続する負荷に応じて回路定数を適切に
設定することによって、開ループの周波数特性における
位相余裕をかせいで、安定性(発振防止)を確保した上
で、入力に対する出力電流の位相の周波数特性を調整し
て、所定の周波数帯域を実現することができるので、接
続可能な負荷が限定されることはない。
As described above, according to the current feedback circuit of the present invention, by setting the circuit constant appropriately in accordance with the connected load, the phase margin in the open-loop frequency characteristic can be increased, and the stability can be improved. Since the frequency characteristics of the phase of the output current with respect to the input can be adjusted while ensuring the performance (oscillation prevention), a predetermined frequency band can be realized, so that the load that can be connected is not limited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態である電流帰還回路のブ
ロック図である。
FIG. 1 is a block diagram of a current feedback circuit according to an embodiment of the present invention.

【図2】 図1の電流帰還回路における、入力に対する
出力電流の周波数特性を示す図(ボード線図)である。
FIG. 2 is a diagram (Board diagram) showing a frequency characteristic of an output current with respect to an input in the current feedback circuit of FIG. 1;

【図3】 図1の電流帰還回路において開ループの周波
数特性を求めるときに用いる等価回路図である。
FIG. 3 is an equivalent circuit diagram used for obtaining an open-loop frequency characteristic in the current feedback circuit of FIG. 1;

【図4】 図1の電流帰還回路における開ループの周波
数特性を示す図(ボード線図)である。
FIG. 4 is a diagram (Board diagram) showing an open loop frequency characteristic in the current feedback circuit of FIG. 1;

【図5】 従来のBTL方式のコイル駆動回路のブロッ
ク図である。
FIG. 5 is a block diagram of a conventional BTL-type coil drive circuit.

【符号の説明】[Explanation of symbols]

1 プリアンプ部 2 エラーアンプ部 3 アンプ部 4 出力電流/電圧変換部 5 コイル 6 外部負荷 7 サーボ回路 11 演算増幅器 12、13 抵抗 21 演算増幅器 22、23 24 コンデンサ 41 抵抗 42 演算増幅器 43、44、45、46 抵抗 101 第1演算増幅器 102 第2演算増幅器 103、104、105、106 抵抗 DESCRIPTION OF SYMBOLS 1 Preamplifier part 2 Error amplifier part 3 Amplifier part 4 Output current / voltage conversion part 5 Coil 6 External load 7 Servo circuit 11 Operational amplifier 12, 13 Resistance 21 Operational amplifier 22, 23 24 Capacitor 41 Resistance 42 Operational amplifier 43, 44, 45 , 46 resistance 101 first operational amplifier 102 second operational amplifier 103, 104, 105, 106 resistance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力信号に応じて電圧出力を行う電流帰
還回路において、当該電流帰還回路の負荷に流れる出力
電流を電圧に変換して出力する電流/電圧変換手段と、
該電流/電圧変換手段の出力に応じて入力信号を増幅す
る増幅手段とを有し、該増幅手段では位相補償要素を介
して帰還が施されていることを特徴とする電流帰還回
路。
A current / voltage conversion means for converting an output current flowing through a load of the current feedback circuit into a voltage, and outputting the voltage;
A current amplifying means for amplifying an input signal in accordance with an output of the current / voltage converting means, wherein the amplifying means performs feedback via a phase compensation element.
JP9058663A 1997-03-13 1997-03-13 Current feedback circuit Pending JPH10256838A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9058663A JPH10256838A (en) 1997-03-13 1997-03-13 Current feedback circuit
KR1019980007688A KR19980080023A (en) 1997-03-13 1998-03-09 Current feedback circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9058663A JPH10256838A (en) 1997-03-13 1997-03-13 Current feedback circuit

Publications (1)

Publication Number Publication Date
JPH10256838A true JPH10256838A (en) 1998-09-25

Family

ID=13090835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9058663A Pending JPH10256838A (en) 1997-03-13 1997-03-13 Current feedback circuit

Country Status (2)

Country Link
JP (1) JPH10256838A (en)
KR (1) KR19980080023A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1753127A1 (en) * 2005-08-05 2007-02-14 Micrel, Inc. Zero cancellation in multiloop regulator control scheme
KR100879436B1 (en) 2005-08-05 2009-01-20 마이크렐 인코포레이티드 Zero cancellation in multiloop regulator control scheme
CN104216451A (en) * 2013-05-30 2014-12-17 深圳市振华微电子有限公司 V/I convertor with temperature compensation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1753127A1 (en) * 2005-08-05 2007-02-14 Micrel, Inc. Zero cancellation in multiloop regulator control scheme
US7323854B2 (en) 2005-08-05 2008-01-29 Micrel, Incorporated Zero cancellation in multiloop regulator control scheme
KR100879436B1 (en) 2005-08-05 2009-01-20 마이크렐 인코포레이티드 Zero cancellation in multiloop regulator control scheme
CN104216451A (en) * 2013-05-30 2014-12-17 深圳市振华微电子有限公司 V/I convertor with temperature compensation

Also Published As

Publication number Publication date
KR19980080023A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP1872187A1 (en) Constant-voltage power supply circuit with fold-back-type overcurrent protection circuit
JP2002535863A (en) Amplifier circuit
JP3807841B2 (en) Apparatus and method for compensating variable load inductance for motor drive circuit
US20070035341A1 (en) Amplifier circuit having a compensating amplifier unit for improving loop gain and linearity
JP2006502652A (en) Digital audio amplifier with phase advance / lag compensator for increasing self-oscillation frequency
JPH10256838A (en) Current feedback circuit
US6731165B1 (en) Electronic amplifier
US20040135627A1 (en) Current feedback circuit and feedback amplifier using the same
EP1455445B1 (en) Digital amplification device
KR950003996B1 (en) Amplifier
JPH01279613A (en) Amplifier
CN115016586A (en) Low dropout regulator and control system thereof
US20140125407A1 (en) Bandwidth limiting for amplifiers
JP3492886B2 (en) Circuit device for offset compensation
US6181203B1 (en) Non-linear transconductance amplifier
JPH11186859A (en) Voltage-current conversion circuit
JPS61238111A (en) Amplifier
JPH0530780A (en) Motor controlling circuit and motor controller
JP2741845B2 (en) Constant voltage control circuit
JPH01208776A (en) Magnetic disk device
JPH0355907A (en) Operational amplifier
JPH0139005Y2 (en)
JPH04266207A (en) Dc offset compensating circuit
JP2001159922A (en) Voltage regulator circuit
JP3617704B2 (en) Logarithmic amplifier