JPH10256004A - Thin-film thermistor - Google Patents

Thin-film thermistor

Info

Publication number
JPH10256004A
JPH10256004A JP7441897A JP7441897A JPH10256004A JP H10256004 A JPH10256004 A JP H10256004A JP 7441897 A JP7441897 A JP 7441897A JP 7441897 A JP7441897 A JP 7441897A JP H10256004 A JPH10256004 A JP H10256004A
Authority
JP
Japan
Prior art keywords
film
temperature
sensitive resistor
thermistor
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7441897A
Other languages
Japanese (ja)
Inventor
Takao Sugishita
隆雄 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Electronics Co Ltd
Original Assignee
Shibaura Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Electronics Co Ltd filed Critical Shibaura Electronics Co Ltd
Priority to JP7441897A priority Critical patent/JPH10256004A/en
Publication of JPH10256004A publication Critical patent/JPH10256004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the adhesive force of an electrode film to a thermosensitive resistor film from being dropped in a heat treatment by a method wherein a PdOx film which is regarded as being oxidized sufficiently is deposited on the lower layer of a composite-layer-structure electrode coming into contact with the thermosensitive resistor film and an Au film is laminated on it. SOLUTION: An SiO2 film 5 and a thermosensitive resistor film 2 are formed on an insulating substrate 1'-PdOx films 6a and a 6b in which Pd atoms are regarded as being oxidized partly are and Pd films 7a and 7b laminated on them. In addition, Au films 8a and 8b which are thicker than the Pd times 7a, 7b are laminated. At this time, as the thermosensitive resistor film 2, a composite oxide which contains two or more kinds of elements selected from among the elements of Mn, Ni, Co, Fe and Cu is used. In addition, as the insulating substrate 1', an alumina substrate which contains 90% or higher of Al2 O3 or a crystallized glass whose coefficient of thermal expansion is in a range of 60 to 100×10<-7> / deg.C is used. Thereby, it is possible to prevent an electrode from being stripped owing to a drop in an adhesive force by a heat treatment in a production process and by the history of a temperature change in the use of an actual apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、赤外線検出に基づく薄
膜サーミスタボロメータ、あるいは、従来のバルク材料
を用いたサーミスタに比べ、測定対象物の温度測定を速
く実行できる薄膜サーミスタに関する。本発明の薄膜サ
ーミスタは、複写機ローラーの温度測定、電子レンジの
非加熱物の温度測定、液晶パネル駆動の温度保障等の用
途向けの温度センサとして利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film thermistor based on infrared detection or a thin film thermistor capable of measuring the temperature of an object to be measured faster than a conventional thermistor using a bulk material. INDUSTRIAL APPLICABILITY The thin film thermistor of the present invention can be used as a temperature sensor for applications such as measuring the temperature of a copying machine roller, measuring the temperature of an unheated object in a microwave oven, and ensuring the temperature for driving a liquid crystal panel.

【0002】[0002]

【従来の技術】遷移金属の複合酸化膜を用いた薄膜サー
ミスタに関して、次の2種類の電極構造が従来考案ある
いは実施されている。
2. Description of the Related Art The following two types of electrode structures have conventionally been devised or implemented for a thin film thermistor using a composite oxide film of a transition metal.

【0003】 図5は従来の薄膜サーミスタの模式的
断面構造図を示し、第1の種類の電極構造に対応してい
る。第1の種類の電極構造は図5に示すように、絶縁性
基板1上にCrあるいはTi等の卑金属薄膜3a,3b
を形成し、該卑金属薄膜3a,3bを下地として、Au
あるいはPtの一対の貴金属薄膜電極パターン4a,4
bを形成し、一対の貴金属薄膜電極パターン4a,4b
上に感温抵抗体膜2を形成しパターン化した構造を有す
る。
FIG. 5 is a schematic sectional view of a conventional thin film thermistor, corresponding to a first type of electrode structure. As shown in FIG. 5, a first type of electrode structure has a base metal thin film 3a, 3b such as Cr or Ti on an insulating substrate 1.
Is formed, and the base metal thin films 3a and 3b are used as bases to form Au.
Alternatively, a pair of noble metal thin film electrode patterns 4a, 4 of Pt
b and a pair of noble metal thin film electrode patterns 4a, 4b
It has a structure in which a temperature-sensitive resistor film 2 is formed thereon and patterned.

【0004】 図6は従来の薄膜サーミスタの模式的
断面構造図を示し、第2の種類の電極構造に対応してい
る。第2の種類の電極構造は図6に示すように、絶縁性
基板1上に感温抵抗体膜2を形成し、この感温抵抗体膜
2上に、一対のAuあるいはPtの貴金属薄膜電極パタ
ーン4a,4bを形成した構造を有する。
FIG. 6 is a schematic sectional view of a conventional thin film thermistor, corresponding to a second type of electrode structure. In a second type of electrode structure, as shown in FIG. 6, a temperature-sensitive resistor film 2 is formed on an insulating substrate 1, and a pair of Au or Pt noble metal thin-film electrodes is formed on the temperature-sensitive resistor film 2. It has a structure in which patterns 4a and 4b are formed.

【0005】図5,図6に示した構造の薄膜サーミスタ
は、必要に応じて保護膜で被覆される。また従来薄膜サ
ーミスタ用の基板としては、アルミナ基板が利用されて
いる。これらの構造の薄膜サーミスタは、従来のバルク
材料を用いたサーミスタ素子に比べて、熱応答が速いこ
とまた特性のばらつきを小さくできるという特徴があ
る。
The thin film thermistor having the structure shown in FIGS. 5 and 6 is covered with a protective film as required. Conventionally, an alumina substrate has been used as a substrate for a thin film thermistor. The thin-film thermistor having such a structure is characterized in that it has a faster thermal response and can reduce variation in characteristics as compared with a thermistor element using a conventional bulk material.

【0006】遷移金属の複合酸化膜からなる感温抵抗体
膜2は、通常、酸化物焼結体のターゲットを用いてスパ
ッタリングにより蒸着される。蒸着後の感温抵抗体膜2
は、結晶性が十分でなく、同組成のバルク焼結体での特
性と大きく異なる。そのため、蒸着された感温抵抗体膜
2は、700〜1000℃の適当な温度で熱処理され、
結晶性を向上させ、バルク焼結体の近い特性にするとと
もに、その特性の経時変化を十分小さくする。
The temperature-sensitive resistor film 2 made of a composite oxide film of a transition metal is usually deposited by sputtering using a target of an oxide sintered body. Temperature-sensitive resistor film 2 after vapor deposition
Has insufficient crystallinity and is significantly different from the characteristics of a bulk sintered body having the same composition. Therefore, the deposited temperature-sensitive resistor film 2 is heat-treated at an appropriate temperature of 700 to 1000 ° C.
The crystallinity is improved so that the characteristics are close to those of the bulk sintered body, and the time-dependent changes in the characteristics are sufficiently reduced.

【0007】図5に示した第1の種類の構造の場合、感
温抵抗体膜2と一緒に、卑金属薄膜3a,3b,貴金属
薄膜電極パターン4a,4bが700℃以上の温度で熱
処理される。この熱処理により、下地の卑金属薄膜3
a,3bが酸化する。この酸化による体積膨張のため貴
金属薄膜電極パターン4a,4bの絶縁性の基板1に対
する付着力が低下する。そのため、実機において温度変
化の履歴を受けた場合、電極剥離が生じるという問題点
がある。
In the case of the first type structure shown in FIG. 5, the base metal thin films 3a and 3b and the noble metal thin film electrode patterns 4a and 4b are heat-treated together with the temperature-sensitive resistor film 2 at a temperature of 700 ° C. or more. . By this heat treatment, the base metal thin film 3
a and 3b are oxidized. Due to the volume expansion due to the oxidation, the adhesion of the noble metal thin film electrode patterns 4a and 4b to the insulating substrate 1 is reduced. For this reason, there is a problem in that when the history of the temperature change is received in the actual machine, the electrode peels off.

【0008】図6に示した第2の種類の構造の場合、貴
金属薄膜電極パターン4a,4bとしてPtを用いて、
パターニングする場合、加熱した王水のような極めて酸
化性の強いエッチング液が必要であり、フォトレジスト
が侵される。そのためメタルを蒸着してマスクとして使
わなければならない。このパターニング方法を用いた場
合、パターン精度、即ち、抵抗精度が低いという問題点
がある。またエッチングの際、遷移金属の酸化物からな
る感温抵抗体膜2の溶解が起こる。貴金属薄膜電極パタ
ーン4a,4bとしてAuを用いた場合、十分な付着力
を得るには、スパッタリングにより蒸着しなければなら
ない。感温抵抗体膜2上に、電極膜あるいは無機の保護
膜をスパッタ蒸着した場合、基板に入射する原子のエネ
ルギーが大きいために、下地の感温抵抗体膜2は、歪み
を受けその特性が変化する。この特性変化を完全に回復
させるためには、600℃以上の温度で熱処理を行う必
要がある。一方、Auの再結晶化温度は比較的低く、6
00℃で熱処理した場合、再結晶化が起きる。その際
に、Auからなる貴金属薄膜電極パターン4a,4bの
下地である感温抵抗体膜2に対する付着力が十分ではな
いので、熱応力により膜が凝集し、不連続になる。貴金
属薄膜電極パターン4a,4bとして、Pd膜を用いる
場合、熱処理により、Pd膜が酸化し、それによる体積
膨張のため、付着力が低下するという問題がある。
In the case of the second type structure shown in FIG. 6, Pt is used as the noble metal thin film electrode patterns 4a and 4b,
In the case of patterning, an extremely oxidizing etchant such as heated aqua regia is required, and the photoresist is attacked. Therefore, metal must be deposited and used as a mask. When this patterning method is used, there is a problem that pattern accuracy, that is, resistance accuracy is low. At the time of etching, the temperature-sensitive resistor film 2 made of a transition metal oxide is dissolved. When Au is used as the noble metal thin film electrode patterns 4a and 4b, it must be deposited by sputtering to obtain a sufficient adhesive force. When an electrode film or an inorganic protective film is sputter-deposited on the temperature-sensitive resistor film 2, the energy of atoms incident on the substrate is large, so that the underlying temperature-sensitive resistor film 2 is distorted and its characteristics are deteriorated. Change. In order to completely recover this characteristic change, it is necessary to perform heat treatment at a temperature of 600 ° C. or higher. On the other hand, Au has a relatively low recrystallization temperature,
When heat treatment is performed at 00 ° C., recrystallization occurs. At this time, the adhesion of the noble metal thin film electrode patterns 4a, 4b made of Au to the temperature-sensitive resistor film 2, which is the base, is not sufficient, and the films are aggregated due to thermal stress and become discontinuous. When a Pd film is used as the noble metal thin film electrode patterns 4a and 4b, there is a problem that the Pd film is oxidized by the heat treatment and the volume expansion due to the heat treatment lowers the adhesion.

【0009】図6に示した第2の種類の構造において、
卑金属薄膜を下地としてAu電極を形成するのは、熱処
理により卑金属薄膜が酸化し、感温抵抗体膜界面に高抵
抗層ができ、サーミスタ素子の抵抗が不可逆的に変化す
るという問題がある。
In the second type of structure shown in FIG.
Forming an Au electrode with a base metal thin film as a base has the problem that the heat treatment oxidizes the base metal thin film, forms a high-resistance layer at the interface of the temperature-sensitive resistor film, and irreversibly changes the resistance of the thermistor element.

【0010】遷移金属酸化物膜を感温抵抗体膜に用いる
薄膜サーミスタの製造には、最低2回の高温での熱処理
が必要である。一つは製膜した遷移金属酸化物膜を70
0〜1000℃の適当な温度で行う熱処理である。この
熱処理により、遷移金属酸化物膜の結晶性を向上させ、
その任意温度での基板内抵抗を均一化させるとともに抵
抗を安定化させることができる。もう一つの熱処理は、
600℃以上の温度で行う。電極あるいは保護膜形成に
より、感温抵抗体膜には不必要な歪みが与えられるた
め、感温抵抗体膜の特性は不均一になる。600℃以上
の温度で熱処理することにより、感温抵抗体膜の特性を
回復させ、再び均一化させることができる。
In order to manufacture a thin-film thermistor using a transition metal oxide film as a temperature-sensitive resistor film, at least two heat treatments at a high temperature are required. One is to use a transition metal oxide film
This is a heat treatment performed at an appropriate temperature of 0 to 1000C. This heat treatment improves the crystallinity of the transition metal oxide film,
The resistance in the substrate at the arbitrary temperature can be made uniform and the resistance can be stabilized. Another heat treatment is
Performed at a temperature of 600 ° C. or higher. Unnecessary distortion is given to the temperature-sensitive resistor film due to the formation of the electrode or the protective film, so that the characteristics of the temperature-sensitive resistor film become non-uniform. By performing the heat treatment at a temperature of 600 ° C. or more, the characteristics of the temperature-sensitive resistor film can be recovered and made uniform again.

【0011】また、薄膜サーミスタは実機使用中温度変
化の履歴を受ける。
Further, the thin-film thermistor receives a history of temperature changes during actual use.

【0012】従来の薄膜サーミスタは、これらの製造プ
ロセスにおける熱処理及び実機使用中の温度変化履歴に
対して、十分な信頼性がなかった。その理由は、薄膜サ
ーミスタ電極が高温熱処理により変質し、その付着力が
低下するためである。
The conventional thin film thermistor does not have sufficient reliability against the heat treatment in these manufacturing processes and the temperature change history during actual use. The reason is that the thin-film thermistor electrode is deteriorated by high-temperature heat treatment, and its adhesive force is reduced.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、従来
技術の薄膜サーミスタ電極の問題点を鑑み、製造プロセ
ス中の熱処理により著しく付着力が低下することなく、
実機使用中の温度変化履歴に対して十分な信頼性のある
薄膜サーミスタを提供することにある。
SUMMARY OF THE INVENTION In view of the problems of the prior art thin film thermistor electrodes, it is an object of the present invention to provide a heat treatment during the manufacturing process without significantly reducing the adhesion.
It is an object of the present invention to provide a thin-film thermistor with sufficient reliability against the temperature change history during actual use.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するた
め、本発明の薄膜サーミスタにおいては、感温抵抗体膜
上に電極を形成する構造において、電極としては、高温
熱処理によりサーミスタ膜と反応することのない貴金属
の複層構造電極を用いる。感温抵抗体膜と接触する複層
構造電極の下層には、感温抵抗体膜との付着力が良い、
十分酸化したとみなせるPdOX 膜を堆積し、最上層に
は熱処理により、酸化しないAu膜を積層する構造を用
いる。この複層構造電極を用いることにより、電極及び
保護膜形成によって生じる基板上の感温抵抗体膜特性の
不均一を回復させるための600℃以上の温度での熱処
理によって、電極膜の感温抵抗体膜に対する付着力が著
しく低下することがない。また、実機使用時の温度変化
の履歴によっても、電極膜が剥離することがない。本発
明の薄膜サーミスタ電極は、高温熱処理によって接触す
る感温抵抗体膜と反応することがないので、薄膜サーミ
スタの抵抗値制御が容易である。
In order to solve the above-mentioned problems, in a thin film thermistor of the present invention, in a structure in which an electrode is formed on a temperature-sensitive resistor film, the electrode reacts with the thermistor film by high-temperature heat treatment. A multi-layered electrode of a noble metal that does not have any problem is used. The lower layer of the multi-layer electrode in contact with the temperature-sensitive resistor film has good adhesion to the temperature-sensitive resistor film,
A structure is used in which a PdO x film that can be regarded as sufficiently oxidized is deposited, and an Au film that is not oxidized by heat treatment is stacked as the uppermost layer. By using this multi-layer structure electrode, a heat treatment at a temperature of 600 ° C. or more for recovering the non-uniformity of the temperature-sensitive resistor film characteristics on the substrate caused by the formation of the electrode and the protective film causes the temperature-resistance of the electrode film Adhesion to the body membrane is not significantly reduced. Also, the electrode film does not peel off due to the history of temperature changes during actual use. Since the thin-film thermistor electrode of the present invention does not react with the temperature-sensitive resistor film contacted by the high-temperature heat treatment, the resistance value of the thin-film thermistor can be easily controlled.

【0015】本発明の薄膜サーミスタは以下の構成を有
する。即ち、絶縁性基板(1′)上に感温抵抗体膜
(2)を形成し、前記感温抵抗体膜(2)上に一部のP
d原子が酸化したとみなせるPdOX 膜(6a,6
b)、Pd膜(7a,7b)、Pd膜(7a,7b)よ
り厚いAu膜(8a,8b)を順次積層した膜構成、或
いは、前記PdOX 膜(6a,6b)とAu膜(8a,
8b)を順次積層した複層膜構成からなる一対の電極を
形成した薄膜サーミスタとしての構成を有する。
The thin film thermistor of the present invention has the following configuration. That is, a temperature-sensitive resistor film (2) is formed on an insulating substrate (1 '), and a portion of P is formed on the temperature-sensitive resistor film (2).
PdO x film (6a, 6
b), Pd film (7a, 7b), Pd film (7a, 7b) a thicker Au layer (8a, 8b) are sequentially laminated film structure of, or the PdO X film (6a, 6b) and an Au film (8a ,
8b) is formed as a thin film thermistor having a pair of electrodes formed of a multilayer film configuration in which layers are sequentially laminated.

【0016】或いはまた、前記感温抵抗体膜(2)はM
n,Ni,Co,Fe,Cuの元素の中から選ばれる少
なくとも2種類以上の元素を含む複合酸化物であること
を特徴とする薄膜サーミスタとしての構成を有する。
Alternatively, the temperature-sensitive resistor film (2) is made of M
It has a configuration as a thin film thermistor characterized by being a composite oxide containing at least two or more elements selected from n, Ni, Co, Fe, and Cu elements.

【0017】或いはまた、前記絶縁性基板(1′)は9
0%以上のAl2 3 を含むアルミナ基板或いは、熱膨
張率が60〜100×10-7/℃の範囲の結晶化ガラス
であることを特徴とする薄膜サーミスタとしての構成を
有する。
Alternatively, the insulating substrate (1 ') has a thickness of 9
It has a structure as a thin film thermistor characterized by being an alumina substrate containing 0% or more of Al 2 O 3 or a crystallized glass having a coefficient of thermal expansion in the range of 60 to 100 × 10 −7 / ° C.

【0018】或いはまた、前記絶縁性基板(1′)と前
記感温抵抗体膜(2)の間に前記絶縁性基板(1′)の
構成部分の前記感温抵抗体膜(2)への拡散を防止或い
は抑制するSiO2 膜(5)、或いはAl2 3 膜上に
SiO2 膜を積層した構成、が形成されていることを特
徴とする薄膜サーミスタとしての構成を有する。
Alternatively, between the insulating substrate (1 ') and the temperature-sensitive resistor film (2), the components of the insulating substrate (1') may be transferred to the temperature-sensitive resistor film (2). A structure as a thin film thermistor characterized in that an SiO 2 film (5) for preventing or suppressing diffusion or a structure in which an SiO 2 film is laminated on an Al 2 O 3 film is formed.

【0019】或いはまた、前記絶縁性基板(1′)及び
前記拡散防止膜(5)上に前記感温抵抗体膜(2)を形
成し、前記感温抵抗体膜(2)上に前記一対の電極を形
成したことを特徴とする薄膜サーミスタとしての構成を
有する。
Alternatively, the temperature-sensitive resistor film (2) is formed on the insulating substrate (1 ') and the diffusion preventing film (5), and the pair of the temperature-sensitive resistor films is formed on the temperature-sensitive resistor film (2). And a configuration as a thin-film thermistor characterized by forming the above-mentioned electrode.

【0020】或いはまた、前記絶縁性基板(1′)及び
前記拡散防止膜(5)上に前記感温抵抗体膜(2)を形
成し、前記感温抵抗体膜(2)上に絶縁膜(9)を形
成、パターニング後、既に形成した絶縁膜(9)のパタ
ーン端部に接して、前記一対の電極(6a,6b,7
a,7b,8a,8b)を形成あるいは0.1μm以下
の厚さの前記感温抵抗体膜(2)を密着層として形成し
た後、前記一対の電極(6a,6b,7a,7b,8
a,8b)を形成したことを特徴とする薄膜サーミスタ
としての構成を有する。
Alternatively, the temperature-sensitive resistor film (2) is formed on the insulating substrate (1 ') and the diffusion preventing film (5), and an insulating film is formed on the temperature-sensitive resistor film (2). After forming and patterning (9), the pair of electrodes (6a, 6b, 7) is brought into contact with the pattern end of the insulating film (9) already formed.
a, 7b, 8a, 8b) or after forming the temperature-sensitive resistor film (2) having a thickness of 0.1 μm or less as an adhesion layer, the pair of electrodes (6a, 6b, 7a, 7b, 8) is formed.
a, 8b) is formed as a thin-film thermistor.

【0021】或いはまた、前記感温抵抗体膜(2)上の
前記絶縁膜(9)が、SiO2 ,Si3 4 ,TiO2
のいずれかよりなることを特徴とする薄膜サーミスタと
しての構成を有する。
Alternatively, the insulating film (9) on the temperature-sensitive resistor film (2) may be made of SiO 2 , Si 3 N 4 , TiO 2
And a configuration as a thin film thermistor characterized by comprising:

【0022】[0022]

【作用】本発明の薄膜サーミスタは、感温抵抗体膜上に
スパッタリングにより形成されるため、感温抵抗体膜は
歪みを受け、その特性は基板内で不均一になる。したが
って、薄膜サーミスタ基板は特性を均一化かつ安定化さ
せるため、電極パターン形成後あるいはSiO2 等の無
機保護膜形成後に600℃以上の温度で熱処理して、感
温抵抗体膜に残留している歪みを回復し、均一化しなけ
ればならない。
The thin-film thermistor of the present invention is formed by sputtering on the temperature-sensitive resistor film, so that the temperature-sensitive resistor film is distorted and its characteristics become non-uniform in the substrate. Therefore, the thin-film thermistor substrate is subjected to a heat treatment at a temperature of 600 ° C. or more after the formation of the electrode pattern or after the formation of the inorganic protective film such as SiO 2 to make the characteristics uniform and stable, and remains in the temperature-sensitive resistor film. The distortion must be recovered and equalized.

【0023】本発明の薄膜サーミスタの場合、PdOX
膜を下地として、Pd膜及びAu膜を積層した構造ある
いはAu膜を積層した構造になっている。PdとAuの
状態図は、全率固溶体系であり、比較的合金化しやす
い。そのため、通常スパッタリングにより連続製膜した
だけで、Au膜中にPdの拡散が認められる。PdとA
uの結合は、極めて強いので、熱処理により、Au膜が
再結晶しても、Au単独膜で観察されるような不連続な
膜に変化することはない。
In the case of the thin film thermistor of the present invention, PdO X
It has a structure in which a Pd film and an Au film are laminated with a film as a base, or a structure in which an Au film is laminated. The phase diagram of Pd and Au is a complete solid solution system, and is relatively easily alloyed. Therefore, diffusion of Pd is observed in the Au film only by continuous film formation usually by sputtering. Pd and A
Since the bonding of u is extremely strong, even if the Au film is recrystallized by the heat treatment, it does not change into a discontinuous film as observed in the Au single film.

【0024】本発明の薄膜サーミスタの電極中のPd
は、Auで被覆されているため、製造プロセス中の熱処
理によるPdの酸化は全くないか、抑制されている。そ
のため、熱処理により電極膜が体積膨張して、付着力が
著しく低下することはない。その結果、本発明の薄膜サ
ーミスタの電極は、実機使用時の温度変化履歴に対して
も十分に耐えられる付着力をもっている。
Pd in the electrode of the thin film thermistor of the present invention
Is coated with Au, so that Pd is not oxidized at all by heat treatment during the manufacturing process or is suppressed. Therefore, the electrode film does not expand in volume due to the heat treatment, and the adhesive force does not significantly decrease. As a result, the electrode of the thin film thermistor of the present invention has an adhesive force enough to withstand the temperature change history during actual use.

【0025】本発明の薄膜サーミスタの電極において
は、Pd及びAuは感温抵抗体膜とは反応しない。ま
た、熱処理中Pdの酸化が抑えられているため、電極膜
の比抵抗の上昇は小さい。電極膜の熱処理後、表面抵抗
は十分低い。
In the electrode of the thin film thermistor of the present invention, Pd and Au do not react with the temperature-sensitive resistor film. Further, since the oxidation of Pd is suppressed during the heat treatment, the increase in the specific resistance of the electrode film is small. After the heat treatment of the electrode film, the surface resistance is sufficiently low.

【0026】[0026]

【実施例】本発明の実施例1について以下に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 of the present invention will be described below.

【0027】図1は本発明の第1の実施例としての薄膜
サーミスタの模式的平面構造図である。図2は図1のA
A′線に沿う模式的断面構造図である。実施例1では、
アルミナ基板1′上にSiO2 膜5を0.1〜0.8μ
mの厚さスパッタリングにより製膜する。このSiO2
膜5は、アルミナ基板1′中のアルミナ(Al2 3
と感温抵抗体膜2となる複合遷移金属膜の高温での反応
を防止あるいは抑制する拡散防止層として機能し、感温
抵抗体膜2の特性を同組成のバルク焼結体の特性に近い
ものにするのに必要である。このSiO2 膜5がない場
合、アルミナ(Al2 3 )と製造プロセスの熱処理を
経た感温抵抗体膜2との反応が認められ、感温抵抗体膜
2の任意温度での抵抗及びB定数は、拡散防止層として
のSiO2 膜5を挿入した場合に比べて高い。
FIG. 1 is a schematic plan view of a thin film thermistor according to a first embodiment of the present invention. FIG. 2 shows A in FIG.
FIG. 3 is a schematic cross-sectional structure diagram along the line A ′. In the first embodiment,
An SiO 2 film 5 is formed on the alumina substrate 1 ′ by 0.1 to 0.8 μm.
The film is formed by sputtering with a thickness of m. This SiO 2
The film 5 is made of alumina (Al 2 O 3 ) in the alumina substrate 1 ′.
And functions as a diffusion preventing layer to prevent or suppress the reaction at high temperature of the composite transition metal film that becomes the temperature-sensitive resistor film 2, and the characteristics of the temperature-sensitive resistor film 2 are close to those of a bulk sintered body having the same composition. Necessary to make things. When the SiO 2 film 5 is not provided, a reaction between the alumina (Al 2 O 3 ) and the temperature-sensitive resistor film 2 which has been subjected to the heat treatment in the manufacturing process is recognized, and the resistance of the temperature-sensitive resistor film 2 at an arbitrary temperature and B The constant is higher than the case where the SiO 2 film 5 as the diffusion preventing layer is inserted.

【0028】絶縁性基板1′として結晶化ガラスを用い
る場合も、拡散防止層は必要である。結晶化ガラス基板
に対しては、前述したSiO2 膜5或いはAl2 3
とSiO2 膜を積層した構成が使用される。
Even when crystallized glass is used as the insulating substrate 1 ', a diffusion preventing layer is necessary. For the crystallized glass substrate, the above-described configuration in which the SiO 2 film 5 or the Al 2 O 3 film and the SiO 2 film are laminated is used.

【0029】拡散防止層5の上に、感温抵抗体膜2とな
るMn−Ni−Coの複合酸化物膜を、高周波スパッタ
リングにより形成する。スパッタリングの条件は、次の
とおりである。スパッタリングは、平行平板型マグネト
ロンスパッタリング装置を用いる。基板温度は、100
〜450℃、スパッタリング中のガス圧力は、0.27
〜1.0Paである。このMn−Ni−Coの複合酸化
物膜の厚さは、0.5〜3.0μmの厚さの範囲であ
る。製膜されたMn−Ni−Coの複合酸化物膜は、X
線回折で調べると結晶性が十分でなく、その任意温度で
の比抵抗は、同組成のバルク焼成体と異なる。また、基
板内での任意温度での抵抗値のばらつきが大きく、特性
が不均一である。
On the diffusion preventing layer 5, a Mn-Ni-Co composite oxide film to be the temperature-sensitive resistor film 2 is formed by high frequency sputtering. The sputtering conditions are as follows. For the sputtering, a parallel plate type magnetron sputtering device is used. The substrate temperature is 100
~ 450 ° C, gas pressure during sputtering is 0.27
1.01.0 Pa. The thickness of the Mn—Ni—Co composite oxide film is in the range of 0.5 to 3.0 μm. The formed Mn-Ni-Co composite oxide film is represented by X
The crystallinity is insufficient when examined by line diffraction, and the specific resistance at an arbitrary temperature is different from that of a bulk fired body having the same composition. Further, the resistance value at the arbitrary temperature in the substrate has a large variation and the characteristics are non-uniform.

【0030】製膜されたMn−Ni−Coの複合酸化物
膜は、700〜1000℃の適当な温度で熱処理する。
この熱処理により、Mn−Ni−Coの複合酸化物膜の
結晶性は向上し、その任意温度での比抵抗は、同組成の
バルク焼結体に近いものになる。また、基板内での抵抗
値のばらつきは十分小さくなるとともに、抵抗の経時変
化が小さくなる。このようにして形成された感温抵抗体
膜2は、実用上問題ない均一さと安定性を備えている。
The formed Mn-Ni-Co composite oxide film is heat-treated at an appropriate temperature of 700 to 1000 ° C.
By this heat treatment, the crystallinity of the Mn-Ni-Co composite oxide film is improved, and the specific resistance at an arbitrary temperature is close to that of a bulk sintered body having the same composition. In addition, the variation in the resistance value within the substrate becomes sufficiently small, and the change over time in the resistance becomes small. The temperature-sensitive resistor film 2 formed in this way has uniformity and stability that poses no practical problem.

【0031】感温抵抗体膜2上に反応性スパタッリング
により、一部のPd原子が酸化したとみなせるPdOX
膜6a,6bを20〜40nmの厚さの範囲で形成す
る。このスパッタリングにおいては、Arガスに加え
て、O2 ガスが、平行平板型マグネトロンスパッタリン
グ装置の真空室内に導入される。酸素流量比は、1〜5
%である。PdOX 膜6a,6bは引き続いて製膜され
るPd膜7a,7b及びAu膜8a,8bの感温抵抗体
膜2に対する密着層として機能する。Pd膜7a,7b
及びAu膜8a,8bはDCスパッタリングにより形成
する。Pd膜7a,7bは、20〜1000nmの範囲
の厚さで、またAu膜は、50nm以上の範囲の厚さで
形成される。Au膜の厚さは、Pd膜の2倍以上とし
た。
PdO x, which can be considered to have been partially oxidized, by reactive sputtering on the temperature-sensitive resistor film 2
The films 6a and 6b are formed in a thickness range of 20 to 40 nm. In this sputtering, in addition to Ar gas, O 2 gas is introduced into a vacuum chamber of a parallel plate type magnetron sputtering apparatus. Oxygen flow ratio is 1-5
%. PdO X film 6a, 6b functions as an adhesion layer for the Pd film 7a, 7b and an Au film 8a, the temperature sensitive resistor film 2 of 8b are film subsequently. Pd films 7a, 7b
The Au films 8a and 8b are formed by DC sputtering. The Pd films 7a and 7b have a thickness in the range of 20 to 1000 nm, and the Au film has a thickness in the range of 50 nm or more. The thickness of the Au film was at least twice the thickness of the Pd film.

【0032】PdOX 膜6a,6b及びPd膜7a,7
b及びAu膜8a,8bからなる電極膜は、フォトリソ
グラフィーのプロセスを用いて、所望の抵抗値が得られ
る一対の電極パターンに加工する。PdOX 膜6a,6
b及びPd膜7a,7b及びAu膜8a,8bは、すべ
て王水を用いてエッチングした。
The PdO X film 6a, 6b and Pd films 7a, 7
The electrode film composed of b and the Au films 8a and 8b is processed into a pair of electrode patterns that can obtain a desired resistance value by using a photolithography process. PdO X films 6a, 6
The b and Pd films 7a and 7b and the Au films 8a and 8b were all etched using aqua regia.

【0033】一対の電極パターンの形成後、保護膜9と
なるSiO2 膜を高周波スパッタリングにより形成し、
フォトリソグラフィープロセスを用いて加工し、パター
ニングした。保護膜9となるSiO2 膜のエッチングに
は、HF+NH4 F溶液あるいはケミカルドライエッチ
ングを用いた。保護膜9のパターニング後、基板を60
0℃以上の温度で熱処理する。一対の電極及び保護膜9
のスパッタリング製膜時、感温抵抗体膜2は下地となる
ため歪みを受け、その任意温度での抵抗値が大きくな
る。600℃以上の温度で熱処理することにより、歪み
を除去し、感温抵抗体膜2の特性を基板内で均一にする
ことができた。
After the formation of the pair of electrode patterns, an SiO 2 film serving as the protective film 9 is formed by high frequency sputtering.
It was processed and patterned using a photolithography process. An HF + NH 4 F solution or chemical dry etching was used for etching the SiO 2 film serving as the protective film 9. After patterning of the protective film 9, the substrate is
Heat treatment at a temperature of 0 ° C. or higher. A pair of electrodes and protective film 9
When sputtering is performed, the temperature-sensitive resistor film 2 is distorted because it becomes a base, and its resistance value at an arbitrary temperature increases. By performing the heat treatment at a temperature of 600 ° C. or more, the distortion was removed, and the characteristics of the temperature-sensitive resistor film 2 could be made uniform within the substrate.

【0034】本発明の実施例2について以下に説明す
る。
Embodiment 2 of the present invention will be described below.

【0035】図3は本発明の第2の実施例とての薄膜サ
ーミスタの模式的平面構造図である。図4は図3のB
B′線に沿う模式的断面構造図である。実施例2は、実
施例1と感温抵抗体膜2となるMn−Ni−Co酸化物
膜のスパッタリング製膜までのプロセスは同一である。
実施例2でも、製膜されたMn−Ni−Co酸化物膜
は、引き続き700〜1000℃の適当な温度で熱処理
する。実施例2では、この熱処理を省くことが可能であ
る。
FIG. 3 is a schematic plan view of a thin film thermistor according to a second embodiment of the present invention. FIG. 4 shows B in FIG.
FIG. 4 is a schematic cross-sectional structure diagram along a line B ′. The process of Example 2 is the same as that of Example 1 up to the sputtering film formation of the Mn—Ni—Co oxide film to be the temperature-sensitive resistor film 2.
Also in Example 2, the formed Mn-Ni-Co oxide film is subsequently heat-treated at an appropriate temperature of 700 to 1000C. In the second embodiment, this heat treatment can be omitted.

【0036】実施例2では、感温抵抗体膜2上にSiO
2 膜9を高周波スパッタリングにより形成し、このSi
2 膜9を所望の抵抗値が得られるようなパターンに加
工する。SiO2 膜9のエッチングは、実施例1の保護
膜9(SiO2 膜)のエッチングと同様、HF+NH4
F溶液あるいはケミカルドライエッチングを用いた。パ
ターンサイズが小さく、より厳密な抵抗精度が必要な場
合、プラズマエッチングあるいは反応性イオンエッチン
グを用い、異方性エッチングにしても以後のプロセスに
支障はない。
In Example 2, the temperature-sensitive resistor film 2
2 film 9 is formed by high frequency sputtering,
The O 2 film 9 is processed into a pattern so as to obtain a desired resistance value. The etching of the SiO 2 film 9 is the same as the etching of the protective film 9 (SiO 2 film) of the first embodiment, as in the case of HF + NH 4.
F solution or chemical dry etching was used. If the pattern size is small and stricter resistance accuracy is required, plasma etching or reactive ion etching and anisotropic etching will not hinder the subsequent process.

【0037】SiO2 膜9のパターンニング後、基板を
700〜1000℃以下の温度で熱処理する。この熱処
理により、SiO2 膜9の高周波スパッタリングにより
感温抵抗体膜2に与えられた歪みを除去する。SiO2
膜9の製膜前に、Mn−Ni−Co酸化物膜を熱処理し
ない場合でも、この熱処理だけで感温抵抗体膜2の任意
温度での抵抗は、均一化かつ安定化する。
After patterning the SiO 2 film 9, the substrate is heat-treated at a temperature of 700 to 1000 ° C. or less. By this heat treatment, the strain given to the temperature-sensitive resistor film 2 by the high frequency sputtering of the SiO 2 film 9 is removed. SiO 2
Even if the Mn-Ni-Co oxide film is not heat-treated before the film 9 is formed, the resistance of the temperature-sensitive resistor film 2 at an arbitrary temperature can be made uniform and stable only by this heat treatment.

【0038】実施例2の薄膜サーミスタの電極において
は、SiO2 膜9に対する付着力を向上させるために高
周波スパッタリングで製膜するMn−Ni−Co酸化物
膜10a,10bをPdOX 膜6a,6bの下に挿入し
ている。このMn−Ni−Co酸化物膜10a,10b
は、100nm以下の厚さに形成するため、通常十分薄
く、薄膜サーミスタの任意温度での抵抗値に影響を及ぼ
さない。密着層としてのMn−Ni−Co酸化物膜10
a,10b上にPdOX 膜6a,6b及びPd膜7a,
7b及びAu膜8a,8bを形成する。これらの膜の厚
さは、実施例1におげる各膜の厚さと同様である。電極
製膜後、フォトリソグラフィーのプロセスにより、電極
はパターニングされ、SiO2 膜9のパターニング端部
に接する一対の電極に加工した。実施例1と同様なPd
X 膜6a,6b及びPd膜7a,7b及びAu膜8
a,8bのエッチング後、密着層のMn−Ni−Co酸
化物膜をエッチングした。
In the electrode of the thin film thermistor of the second embodiment, the Mn-Ni-Co oxide films 10a and 10b formed by high frequency sputtering to improve the adhesion to the SiO 2 film 9 are changed to PdO x films 6a and 6b. Is inserted below. The Mn-Ni-Co oxide films 10a, 10b
Is generally sufficiently thin because it is formed to a thickness of 100 nm or less, and does not affect the resistance value of the thin film thermistor at an arbitrary temperature. Mn-Ni-Co oxide film 10 as adhesion layer
a, PdO X film 6a on the 10b, 6b and Pd film 7a,
7b and Au films 8a and 8b are formed. The thickness of these films is the same as the thickness of each film in the first embodiment. After the formation of the electrodes, the electrodes were patterned by a photolithography process, and processed into a pair of electrodes that were in contact with the patterned ends of the SiO 2 film 9. Pd similar to Example 1
O X film 6a, 6b and Pd films 7a, 7b and an Au film 8
After the etching of a and 8b, the Mn-Ni-Co oxide film of the adhesion layer was etched.

【0038】一対の電極のパターニング後、基板を60
0℃以上の温度で熱処理し、電極製膜により、感温抵抗
体膜2の特性を基板内で均一化した。
After patterning the pair of electrodes, the substrate is
Heat treatment was performed at a temperature of 0 ° C. or higher, and the characteristics of the temperature-sensitive resistor film 2 were made uniform within the substrate by forming an electrode.

【0039】実施例1,2とも信頼性を高めるため、必
要に応じて表面はガラス封止される。実施例2では、一
対の電極のエッチングの際、感温抵抗体膜2が既にSi
2膜9により被覆されているため、酸化性の強いエッ
チング液に曝されないので、感温抵抗体膜2の抵抗値制
御が容易である。
In both the first and second embodiments, the surface is glass-sealed as necessary to enhance reliability. In the second embodiment, when the pair of electrodes are etched, the temperature-sensitive resistor film 2 is
Since it is covered with the O 2 film 9, it is not exposed to an etching solution having a strong oxidizing property, so that the resistance value of the temperature-sensitive resistor film 2 can be easily controlled.

【0040】[0040]

【発明の効果】本発明の薄膜サーミスタでは、製造プロ
セスにおける熱処理及び実機使用時の温度変化の履歴に
より、電極が付着力低下により剥離することがないとい
う利点がある。また、熱処理を含む製造プロセスを経た
電極の比抵抗上昇は認められない。電極の表面抵抗は、
十分低く、実用上問題ない。本発明の薄膜サーミスタの
場合、電極形成後も十分高い温度での熱処理が可能なの
で、電極あるいは保護膜の製膜によって生じる感温抵抗
体膜の歪みを十分除去後、回復させることができる。そ
の結果、基板内における任意温度での抵抗のばらつき
は、感温抵抗体膜の膜厚のばらつきだけとなり十分に抑
制することができる。抵抗の経時変化は十分小さく、2
00℃で1000時間保管後の抵抗値の初期値からの変
化は、1%以内であった。
The thin-film thermistor of the present invention has an advantage that the electrode is not peeled off due to a decrease in the adhesive force due to the history of the temperature change during the heat treatment in the manufacturing process and the actual use of the device. Further, no increase in the specific resistance of the electrode after the manufacturing process including the heat treatment is observed. The surface resistance of the electrode is
It is low enough and there is no practical problem. In the case of the thin-film thermistor of the present invention, the heat treatment can be performed at a sufficiently high temperature even after the electrode is formed, so that the distortion of the temperature-sensitive resistor film caused by the formation of the electrode or the protective film can be recovered after sufficient removal. As a result, the variation in resistance at an arbitrary temperature in the substrate is only the variation in the thickness of the temperature-sensitive resistor film, and can be sufficiently suppressed. The change with time of the resistance is small enough,
The change from the initial value of the resistance value after storage at 00 ° C. for 1000 hours was within 1%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例としての薄膜サーミスタ
の模式的平面構造図
FIG. 1 is a schematic plan view of a thin-film thermistor according to a first embodiment of the present invention.

【図2】本発明の第1の実施例としての薄膜サーミスタ
の図1のAA′線に沿う模式的断面構造図
FIG. 2 is a schematic cross-sectional structural view of the thin-film thermistor as a first embodiment of the present invention, taken along line AA ′ of FIG. 1;

【図3】本発明の第2の実施例としての薄膜サーミスタ
の模式的平面構造図
FIG. 3 is a schematic plan view of a thin film thermistor according to a second embodiment of the present invention.

【図4】本発明の第2の実施例としての薄膜サーミスタ
の図3のBB′線に沿う模式的断面構造図
FIG. 4 is a schematic sectional view of a thin film thermistor according to a second embodiment of the present invention, taken along line BB ′ of FIG. 3;

【図5】従来の薄膜サーミスタの模式的断面構造図FIG. 5 is a schematic sectional structural view of a conventional thin film thermistor.

【図6】従来の薄膜サーミスタの模式的断面構造図FIG. 6 is a schematic sectional structural view of a conventional thin film thermistor.

【符号の説明】[Explanation of symbols]

1 絶縁性基板(アルミナ基板) 1′ 絶縁性基板(アルミナ基板あるいは結
晶化ガラス基板) 2 感温抵抗体膜 3a,3b 卑金属薄膜 4a,4b 貴金属薄膜 5 拡散防止層(SiO2 膜) 6a,6b PdOX 膜 7a,7b Pd膜 8a,8b Au膜 9 SiO2 膜 10a,10b Mn−Ni−Co酸化物膜(SiO2
膜に対する密着層)
Reference Signs List 1 Insulating substrate (alumina substrate) 1 'Insulating substrate (alumina substrate or crystallized glass substrate) 2 Temperature-sensitive resistor film 3a, 3b Base metal thin film 4a, 4b Noble metal thin film 5 Diffusion prevention layer (SiO 2 film) 6a, 6b PdO X film 7a, 7b Pd film 8a, 8b Au film 9 SiO 2 film 10a, 10b Mn-Ni-Co oxide film (SiO 2
Adhesion layer for film)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に感温抵抗体膜を形成し、
前記感温抵抗体膜上に一部のPd原子が酸化したとみな
せるPdOX 膜、Pd膜、Pd膜より厚いAu膜を順次
積層した膜構成、或いは、前記PdOX 膜とAu膜を順
次積層した複層膜構成からなる一対の電極を形成した薄
膜サーミスタ。
1. A temperature-sensitive resistor film is formed on an insulating substrate,
A film configuration in which a PdO x film in which a part of Pd atoms are considered to be oxidized, a Pd film, and an Au film thicker than the Pd film are sequentially laminated on the temperature-sensitive resistor film, or the PdO x film and the Au film are sequentially laminated. A thin film thermistor formed with a pair of electrodes having a multi-layered film configuration.
【請求項2】 前記感温抵抗体膜はMn,Ni,Co,
Fe,Cuの元素の中から選ばれる少なくとも2種類以
上の元素を含む複合酸化物であることを特徴とする請求
項1記載の薄膜サーミスタ。
2. The temperature-sensitive resistor film comprises Mn, Ni, Co,
2. The thin film thermistor according to claim 1, wherein the composite oxide contains at least two or more elements selected from the group consisting of Fe and Cu.
【請求項3】 前記絶縁性基板は90%以上のAl2
3 を含むアルミナ基板或いは、熱膨張率が60〜100
×10-7/℃の範囲の結晶化ガラスであることを特徴と
する請求項1もしくは2の内いずれか1項記載の薄膜サ
ーミスタ。
3. The insulating substrate according to claim 1, wherein said insulating substrate has 90% or more Al 2 O.
Alumina substrate containing 3 or having a coefficient of thermal expansion of 60 to 100
The thin film thermistor according to claim 1, wherein the thin film thermistor is crystallized glass in a range of × 10 −7 / ° C. 4.
【請求項4】 前記絶縁性基板と前記感温抵抗体膜の間
に前記絶縁性基板の構成部分の前記感温抵抗体膜への拡
散を防止或いは抑制するSiO2 膜、或いはAl2 3
膜上にSiO2 膜を積層した構成、が形成されているこ
とを特徴とする請求項1乃至3の内、いずれか1項記載
の薄膜サーミスタ。
4. An SiO 2 film or Al 2 O 3 between the insulating substrate and the temperature-sensitive resistor film, which prevents or suppresses diffusion of a component of the insulating substrate into the temperature-sensitive resistor film.
The thin film thermistor according to any one of claims 1 to 3, wherein a structure in which an SiO 2 film is laminated on the film is formed.
【請求項5】 請求項3乃至4記載の前記絶縁性基板及
び前記拡散防止膜上に請求項2記載の前記感温抵抗体膜
を形成し、前記感温抵抗体膜上に請求項1記載の前記一
対の電極を形成したことを特徴とする薄膜サーミスタ。
5. The temperature-sensitive resistor film according to claim 2, wherein the temperature-sensitive resistor film according to claim 2 is formed on the insulating substrate and the diffusion prevention film according to claim 3 or 4, and on the temperature-sensitive resistor film. The thin film thermistor, wherein the pair of electrodes is formed.
【請求項6】 請求項3乃至4記載の前記絶縁性基板及
び前記拡散防止膜上に請求項2記載の前記感温抵抗体膜
を形成し、前記感温抵抗体膜上に絶縁膜を形成、パター
ニング後、既に形成した絶縁膜のパターン端部に接し
て、請求項1記載の前記一対の電極パターンを形成ある
いは0.1μm以下の厚さの請求項2記載の前記感温抵
抗体膜を密着層として形成した後、請求項1記載の前記
一対の電極を形成したことを特徴とする薄膜サーミス
タ。
6. The temperature-sensitive resistor film according to claim 2, formed on the insulating substrate and the diffusion prevention film according to claim 3, and an insulating film formed on the temperature-sensitive resistor film. And forming the pair of electrode patterns according to claim 1 or contacting the temperature-sensitive resistor film according to claim 2 with a thickness of 0.1 μm or less, in contact with pattern ends of the already formed insulating film after patterning. The thin film thermistor according to claim 1, wherein the pair of electrodes is formed after forming the adhesion layer.
【請求項7】 前記感温抵抗体膜上の前記絶縁膜が、S
iO2 ,Si3 4,TiO2 のいずれかよりなること
を特徴とする請求項6記載の薄膜サーミスタ。
7. The method according to claim 7, wherein the insulating film on the temperature-sensitive resistor film is S
iO 2, Si 3 N 4, a thin film thermistor according to claim 6, characterized in that the more one of TiO 2.
JP7441897A 1997-03-11 1997-03-11 Thin-film thermistor Pending JPH10256004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7441897A JPH10256004A (en) 1997-03-11 1997-03-11 Thin-film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7441897A JPH10256004A (en) 1997-03-11 1997-03-11 Thin-film thermistor

Publications (1)

Publication Number Publication Date
JPH10256004A true JPH10256004A (en) 1998-09-25

Family

ID=13546637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7441897A Pending JPH10256004A (en) 1997-03-11 1997-03-11 Thin-film thermistor

Country Status (1)

Country Link
JP (1) JPH10256004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032910A (en) * 2004-06-18 2006-02-02 Mitsubishi Materials Corp Thermistor thin film and its forming method
JP2008244343A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin-film thermistor and manufacturing method of thin-film thermistor
JP2008244342A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin-film thermistor and method of manufacturing thin-film thermistor
KR101121399B1 (en) 2004-06-18 2012-03-21 미쓰비시 마테리알 가부시키가이샤 Thermistor thin-film and method of forming the same
CN102831999A (en) * 2011-12-17 2012-12-19 西北工业大学 Method for processing suspended thermosensitive film resistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032910A (en) * 2004-06-18 2006-02-02 Mitsubishi Materials Corp Thermistor thin film and its forming method
KR101121399B1 (en) 2004-06-18 2012-03-21 미쓰비시 마테리알 가부시키가이샤 Thermistor thin-film and method of forming the same
JP2008244343A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin-film thermistor and manufacturing method of thin-film thermistor
JP2008244342A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin-film thermistor and method of manufacturing thin-film thermistor
CN102831999A (en) * 2011-12-17 2012-12-19 西北工业大学 Method for processing suspended thermosensitive film resistor

Similar Documents

Publication Publication Date Title
TWI580937B (en) Temperature sensor and its manufacturing method
KR101886400B1 (en) Thin-film thermistor element and method of manufacturing the same
JP2001313376A (en) Manufacturing method of platinum lower electrode and ferroelectric capacitor, and ferroelectric capacitor
JP3333948B2 (en) Manufacturing method of gas type sensor
KR101121399B1 (en) Thermistor thin-film and method of forming the same
JP4811316B2 (en) Thin film thermistor element and method for manufacturing thin film thermistor element
JPH10256004A (en) Thin-film thermistor
JP2874512B2 (en) Thin film capacitor and method of manufacturing the same
JPS61191953A (en) Gas detector
US8076245B2 (en) MOS low power sensor with sacrificial membrane
JP2002185285A (en) Electrode structure and forming method of piezoelectric thin film resonator
JP5029885B2 (en) Thin film thermistor element and manufacturing method thereof
JP2000065773A (en) Production of membrane gas sensor
JP2005003472A (en) Method of manufacturing thin film gas sensor
JPH07245303A (en) Manufacture of metallic thin film resistor
KR19990064624A (en) A planner type micro gas sensor and a method for manufacturing the same
JPH08160450A (en) Laminated metal material for wiring and method for forming pattern using that material
JPH0221649B2 (en)
JP2000146884A (en) Thin film gas sensor
JP2000348902A (en) Manufacture of thermistor thin film
JP2006261655A (en) Method for manufacturing thin film thermistor and thin film thermistor
JP2020009947A (en) Thin-film ptc thermistor and manufacturing method thereof
JPH04324837A (en) Active device and manufacture thereof
JP2000114003A (en) Thin film resistance element and its manufacture
JPH08292101A (en) Pyroelectric infrared sensor element and manufacture thereof