JPH10253691A - Method for locating failure point - Google Patents

Method for locating failure point

Info

Publication number
JPH10253691A
JPH10253691A JP6027197A JP6027197A JPH10253691A JP H10253691 A JPH10253691 A JP H10253691A JP 6027197 A JP6027197 A JP 6027197A JP 6027197 A JP6027197 A JP 6027197A JP H10253691 A JPH10253691 A JP H10253691A
Authority
JP
Japan
Prior art keywords
point
fault
phase
current
phase vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6027197A
Other languages
Japanese (ja)
Inventor
Hitomi Otoguro
ひとみ 乙黒
Toshihisa Funahashi
俊久 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6027197A priority Critical patent/JPH10253691A/en
Publication of JPH10253691A publication Critical patent/JPH10253691A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To locate a failure point without discriminating failure kinds, failure phases and lines and without a need of a positive-phase impedance. SOLUTION: Data on a phase current and data on a voltage are fetched from respective terminal nodes at a parallel two-line transmission system having a plurality of branch points. An own-end-side node-point voltage six-phase vector V, an inflow-current six-phase vector Iin from an own-end-side node and an inflow-current six-phase vector Iin ' from a partner-end-side node are computed. By using their computed results and stored data on an impedance sixth-order forward matrix Z per unit length of a failure section, a distance (x) up to a failure point from an own-end-side node point is computed by x=Im[V.(Iin +Iin ')*]/Im[ZIin .(Iin +Iin ')*], where * represents a conjugate complex number. The (x) is added to a distance up to the own-end-side node point from an own end, and a locating value is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、平行2回線多端
子送電系統における故障点をインピーダンス演算で標定
する故障点標定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault point locating method for locating a fault point in a parallel two-line multi-terminal power transmission system by impedance calculation.

【0002】[0002]

【従来の技術】故障点標定装置は、PCM電流差動継電
装置とデータ伝送の普及により、標定に自端子以外の端
子データも使用できるようになり、標定精度は自端子デ
ータのみによる標定よりも向上した。
2. Description of the Related Art With the spread of PCM current differential relays and data transmission, terminal data other than the own terminal can be used for locating, and the locating accuracy is more accurate than locating using only the own terminal data. Also improved.

【0003】図4のような3端子系統の場合、自端子1
から故障点Fまでの距離Xは(1)式又は(2)式で求
めることができる。
In the case of a three-terminal system as shown in FIG.
The distance X from to the failure point F can be obtained by the equation (1) or the equation (2).

【0004】[0004]

【数4】 (Equation 4)

【0005】[0005]

【数5】 (Equation 5)

【0006】[0006]

【発明が解決しようとする課題】ところで、上記(1)
式又は(2)式により故障点・標点する場合、以下のよ
うな問題がある。
However, the above (1)
When a fault point or a reference point is obtained by the equation or the equation (2), there are the following problems.

【0007】(1)標定に先だって故障種類(地絡,短
絡)、故障相、故障回線の判別が必要である。
(1) Prior to location, it is necessary to determine the type of fault (ground fault, short circuit), fault phase, and faulty line.

【0008】(2)地絡故障標定では自己、相互インピ
ーダンスを使用するのに対し、短絡故障標定では正相イ
ンピーダンスを使用するため、インピーダンスの変換を
行ない、両方のインピーダンスを保持しておかなければ
ならない。
[0008] (2) In the fault fault localization, the self and mutual impedances are used, while in the short fault fault localization, the positive phase impedance is used. Therefore, the impedance must be converted and both impedances must be held. No.

【0009】(3)短絡故障標定では、線路の不平衡に
よる影響は考慮できない。
(3) In short-circuit fault locating, the effect of line imbalance cannot be considered.

【0010】(4)不平衡分岐している電源や負荷があ
る場合には、補正をしなければならない。
(4) If there is an unbalanced branching power source or load, correction must be made.

【0011】この発明は、従来のこのような問題点に鑑
みてなされたものであり、その目的とするところは、故
障種類,故障相,故障回線の判別や正相インピーダンス
を必要とすることなく標定できる、故障点標定方法を提
供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to determine the type of fault, the fault phase, the fault line, and to eliminate the need for positive-phase impedance. It is an object of the present invention to provide a method for locating a failure point.

【0012】[0012]

【課題を解決するための手段】この発明は、複数の分岐
点をもつ平行2回線送電系統の故障点を、各端子ノード
から伝送される相電流,相電圧データを故障点標定装置
に取り込み、インピーダンス演算で標定する故障点標定
法において、前記取り込んだデータを用いて、自端側ノ
ード点の電圧6相ベクトルVと、自端側ノードからの流
入電流6相ベクトルIin、及び相手端側ノードからの流
入電流6相ベクトルIin′を計算し、その計算結果と故
障区間の単位長当りのインピーダンス6次正方行列Zの
記憶データを用いて、自端側ノード点から故障点までの
距離xを次式
According to the present invention, a fault point of a parallel two-line power transmission system having a plurality of branch points is taken into a fault point locating device by taking phase current and phase voltage data transmitted from each terminal node. In the fault locating method of locating by the impedance calculation, the fetched data is used to determine the voltage six-phase vector V at the self-end node point, the current six-phase vector I in flowing from the self-end node, and the other end. Calculates the inflow current six-phase vector I in ′ from the node, and calculates the distance from the self-end node point to the fault point using the calculation result and the stored data of the impedance sixth-order square matrix Z per unit length of the fault section. x is

【0013】[0013]

【数6】 (Equation 6)

【0014】により演算し、その演算結果xを自端から
自端側ノード点までの距離に加えて標定値とすることを
特徴とするものである。
And calculating the calculated result x in addition to the distance from the self-end to the self-end side node point as an orientation value.

【0015】[0015]

【発明の実施の形態】この発明の故障点標定方法を図1
〜図3を用いて説明する。図1に端子数nの送電系統を
示す。自端端子番号1,区間数2n−3,故障区間番号
k,故障区間に対応する端子番号T,自端1と相手端子
nを結ぶ線を本線、それ以外を分岐線と呼ぶ。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
This will be described with reference to FIG. FIG. 1 shows a power transmission system having n terminals. The line connecting the own terminal 1 and the partner terminal n is called a main line, and the other is called a branch line.

【0016】図1における分岐線(偶数番号の区間)で
の故障は、故障区間に連がる端子を改めて相手端子とす
ることにより、本線での故障として扱うことができる。
A fault in the branch line (an even-numbered section) in FIG. 1 can be treated as a fault in the main line by renewing a terminal connected to the fault section as a partner terminal.

【0017】図2に示すように、故障Fの区間に着目す
る。ここで、自端側ノードからの流入電流ベクトル
in,相手端側ノードからの流入電流ベクトルIin′及
び故障電流Ifは6相ベクトルである。例えば流入電流
ベクトルIinは、回線1L,2Lの電流をI1L,I2L
回線1Lの相電流をIa〜Ic,回線2Lの相電流を
a′〜Ic′とすると、下記のように表わすことができ
る。
As shown in FIG. 2, attention is paid to the section of the fault F. Here, the inflow current vector I in from the own end node, the inflow current vector I in ′ from the other end node, and the fault current If are six-phase vectors. For example, the inflow current vector I in represents the currents of the lines 1L and 2L as I 1L , I 2L ,
Phase current I a ~I c line 1L, when a phase current of the line 2L and I a '~I c', can be expressed as follows.

【0018】[0018]

【数7】 (Equation 7)

【0019】同様に、自端側ノード点の電圧ベクトルV
及び故障点電圧ベクトルVfも6相ベクトルである。例
えば、電圧ベクトルVは回線1L,2Lの電圧をV1L
2L,回線1Lの相電圧をVa〜Vc,回線2Lの相電圧
をVa′〜Vc′とすると、下記のように表わすことがで
きる。
Similarly, the voltage vector V at the self-end side node point
The fault point voltage vector Vf is also a six-phase vector. For example, the voltage vector V represents the voltages of the lines 1L and 2L as V 1L ,
V 2L, the phase voltage V a ~V c line 1L, when the phase voltage of line 2L and V a '~V c', can be expressed as follows.

【0020】[0020]

【数8】 (Equation 8)

【0021】また、流入電流ベクトルIin,Iin′は表
1に示すように各端子の電流Iiを用いて計算すること
ができる。
Further, the inflow current vectors I in and I in ′ can be calculated using the current I i of each terminal as shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】Iin+Iin′は故障位置(本線/分岐線)
に関係なく全端子電流の和になることに留意する。
I in + I in 'is the fault location (main line / branch line)
Note that this is the sum of all terminal currents regardless of

【0024】Zは故障区間の単位長当りのインピーダン
ス行列(6次正方行列)であり、相間、回線間の不平衡
も次式のように考慮する。
Z is an impedance matrix (sixth order square matrix) per unit length of the fault section, and the imbalance between phases and between lines is also taken into consideration as in the following equation.

【0025】[0025]

【数9】 (Equation 9)

【0026】故障点下の電圧Vf,電流Ifは次式で表わ
せる。
[0026] The voltage V f under the failure point, the current I f can be expressed by the following equation.

【0027】[0027]

【数10】Vf=V−xZIinf=Iin+Iin′ VfとIfの共役複素数との内積をとると、次式が得られ
る。
[Number 10] Taking the inner product of the complex conjugate of V f = V-xZI in I f = I in + I in 'V f and I f, the following equation is obtained.

【0028】[0028]

【数11】 [Equation 11]

【0029】ここで故障点を図3のように一般化して考
える。
Here, the fault point is generalized and considered as shown in FIG.

【0030】故障点から見たインピーダンス(6次正方
行列)をZfとおくと、
[0030] impedance as seen from the point of failure (the sixth-order square matrix) and put the Z f,

【0031】[0031]

【数12】 (Equation 12)

【0032】[0032]

【数13】 (Equation 13)

【0033】ノードN,N′において、At nodes N and N ',

【0034】[0034]

【数14】 [Equation 14]

【0035】であることに注意すると、Note that

【0036】[0036]

【数15】 (Equation 15)

【0037】よって、Vf・If*は実数となる。そし
て、Vf・Vf*の虚数は、
Therefore, V f · I f * is a real number. Then, the imaginary of V f · V f * is,

【0038】[0038]

【数16】 (Equation 16)

【0039】したがって、故障点標定装置に、各端子ノ
ードから伝送される相電流,相電圧データを取り込み、
V,Z及びIin,Iin′を求め、(3)式を演算するこ
とにより自端側ノード点から故障点までの距離xを求
め、予め記憶されている自端から自端側ノード点までの
距離Lを加えることによって自端から故障点までの距離
Xを標定することができる。
Therefore, the phase current and phase voltage data transmitted from each terminal node are taken into the fault point locating device,
V, Z and I in , I in ′ are obtained, and the distance x from the self-end node point to the fault point is obtained by calculating equation (3), and the pre-stored self-end to self-end node point is obtained. By adding the distance L to the distance, the distance X from the self end to the failure point can be located.

【0040】[0040]

【数17】 [Equation 17]

【0041】故障点の模擬(図3)から明らかなよう
に、地絡故障,短絡故障の別によらず標定にこの式を適
用することができる。
As is clear from the simulation of the fault point (FIG. 3), this equation can be applied to the orientation regardless of the ground fault or the short-circuit fault.

【0042】また、故障点抵抗は導出過程において消去
されてしまうため、(3)式は故障点抵抗を考慮した式
であるといえる。
Further, since the fault point resistance is erased in the derivation process, it can be said that the equation (3) is an equation considering the fault point resistance.

【0043】相手端子や分岐端子に電源(または負荷)
がある場合の影響は、それらから1L,2Lへ流入する
3相電流値を得ているため、Iin,Iin′に含まれてい
る。
Power supply (or load) to the partner terminal or branch terminal
In the case where there is an influence, since the three-phase current values flowing into 1L and 2L are obtained from them, they are included in I in and I in '.

【0044】分岐端子が不平衡分岐端子の場合には、I
in,Iin′を表すのに、分岐のないがわの端子電流要素
を0として差し支えない。
If the branch terminal is an unbalanced branch terminal, I
In , I in ′, the terminal current element of the bridge without branch may be set to 0.

【0045】[0045]

【数18】 (Equation 18)

【0046】[0046]

【数19】 [Equation 19]

【0047】[0047]

【発明の効果】この発明は、上述のとおり構成されてい
るので、以下に記載するような効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0048】(1)故障種類(地絡,短絡)、故障相、
故障回線の判別を行うことなく、標定ができる。
(1) Failure type (ground fault, short circuit), failure phase,
Location can be performed without determining the faulty line.

【0049】(2)自己、相互インピーダンスのみを使
用し、正相インピーダンスを使用しないで標定ができる
ので、インピーダンス変換の手続き、および正相インピ
ーダンスの保存の必要がない。
(2) Since the orientation can be performed using only the self and mutual impedances and not using the positive phase impedance, there is no need to perform the impedance conversion procedure and save the positive phase impedance.

【0050】(3)線路の不平衡分を考慮した短絡故障
標定ができる。
(3) The short-circuit fault can be located in consideration of the unbalance of the line.

【0051】(4)不平衡分岐電源(負荷)の補償が不
要である。
(4) There is no need to compensate for an unbalanced branch power supply (load).

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態にかかる送電系統の区間距離,電流
等の説明図。
FIG. 1 is an explanatory diagram of a section distance, a current, and the like of a power transmission system according to an embodiment.

【図2】故障発生区間の電流,電圧等の説明図。FIG. 2 is an explanatory diagram of current, voltage, and the like in a failure occurrence section.

【図3】故障点を一般化した模擬回路図。FIG. 3 is a simulation circuit diagram generalizing a fault point.

【図4】従来例にかかる3端子系統説明図。FIG. 4 is an explanatory diagram of a three-terminal system according to a conventional example.

【符号の説明】 1L,2L…回線番号 1〜n…端子番号 T…故障区間に対応する端子番号 k…故障区間 li…区間iの区間長 L…端子1から故障区間の自端側ノード点までの距離 X…自端から故障点までの距離 x…自端側ノードから故障点までの距離 Ia〜Ic…相電流 Iin…自端側ノードからの流入電流ベクトル Iin′…相手端ノード側からの流入電流ベクトル V…自端の故障相電圧又は自端側ノード点の電圧ベクト
ル Va〜Vc…相電圧 Vf…故障点電圧ベクトル Z…単位長あたりの区間インピーダンス行列 Zf…故障点からみたインピーダンスの共通成分 ZG…故障点からみたインピーダンスの地絡成分 Zs…故障点からみたインピーダンスの短絡成分
[Description of Signs] 1L, 2L: circuit number 1 to n: terminal number T: terminal number corresponding to the fault section k: fault section l i : section length of section i L: self-terminal node of the fault section from terminal 1 flowing current vector I in from the distance I a ~I c ... phase current I in ... local end node from the distance X ... local end to the point to point of failure from the distance x ... local end node to fault point '... flowing current vector V ... voltage vector V a ~V c ... phase voltage V f ... fault point voltage vector Z ... section impedance matrix per length unit of the fault phase voltage or local end node point of the local end from the other end node side Z f : Common component of impedance viewed from the fault point Z G : Ground fault component of impedance viewed from the fault point Z s : Short-circuit component of impedance viewed from the fault point

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の分岐点をもつ平行2回線送電系統
の故障点を、各端子ノードから伝送される相電流,相電
圧データを故障点標定装置に取り込み、インピーダンス
演算で標定する故障点標定法において、 前記取り込んだデータを用いて、自端側ノード点の電圧
6相ベクトルVと、自端側ノードからの流入電流6相ベ
クトルIin、及び相手端側ノードからの流入電流6相ベ
クトルIin′を計算し、その計算結果と故障区間の単位
長当りのインピーダンス6次正方行列Zの記憶データを
用いて、自端側ノード点から故障点までの距離xを次式 【数1】 により演算し、その演算結果xを自端から自端側ノード
点までの距離に加えて標定値とすることを特徴とする故
障点標定方法。
1. A fault point locating method for fetching a fault point of a parallel two-line power transmission system having a plurality of branch points into a fault point locating device by taking phase current and phase voltage data transmitted from each terminal node and performing impedance calculation. Using the acquired data, a voltage six-phase vector V at the self-end node point, a six-phase vector I in flowing from the self-end node, and a six-phase vector flowing from the other end node I in ′ is calculated, and the distance x from the self-end node point to the fault point is expressed by the following equation using the calculation result and the storage data of the sixth order square matrix Z per unit length of the fault section. And calculating the calculated result x in addition to the distance from the self-end to the self-end side node point as an orientation value.
【請求項2】 請求項1において、 第1回線の分岐端子が不平衡分岐している場合、前記流
入電流6相ベクトル成分Iin,Iin′を計算するための
不平衡分岐端子iの電流6相ベクトル成分Iiを次式 【数2】 により演算することを特徴とする故障点標定方法。
2. The current of an unbalanced branch terminal i for calculating the six-phase vector components I in , I in ′ according to claim 1, wherein the branch terminal of the first line is unbalanced. The six-phase vector component I i is expressed by the following equation: A fault point locating method characterized by calculating by using
【請求項3】 請求項1において、 第2回線の分岐端子が不平衡分岐している場合、前記流
入電流6相ベクトル成分電流Iin,Iin′を計算するた
めの不平衡分岐端子iの電流6相ベクトル成分Iiを次
式 【数3】 により演算することを特徴とする故障点標定方法。
3. The unbalanced branch terminal i for calculating the inflow current six-phase vector component currents I in and I in ′ according to claim 1, wherein the branch terminal of the second line is unbalanced. The current six-phase vector component I i is expressed by the following equation: A fault point locating method characterized by calculating by using
JP6027197A 1997-03-14 1997-03-14 Method for locating failure point Pending JPH10253691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6027197A JPH10253691A (en) 1997-03-14 1997-03-14 Method for locating failure point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6027197A JPH10253691A (en) 1997-03-14 1997-03-14 Method for locating failure point

Publications (1)

Publication Number Publication Date
JPH10253691A true JPH10253691A (en) 1998-09-25

Family

ID=13137315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6027197A Pending JPH10253691A (en) 1997-03-14 1997-03-14 Method for locating failure point

Country Status (1)

Country Link
JP (1) JPH10253691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108981A (en) * 2019-04-30 2019-08-09 中国电力科学研究院有限公司 The method for diagnosing faults and system of route in a kind of active power distribution network
CN110888082A (en) * 2019-11-27 2020-03-17 深圳供电局有限公司 Relay protection secondary circuit node voltage fault positioning method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108981A (en) * 2019-04-30 2019-08-09 中国电力科学研究院有限公司 The method for diagnosing faults and system of route in a kind of active power distribution network
CN110888082A (en) * 2019-11-27 2020-03-17 深圳供电局有限公司 Relay protection secondary circuit node voltage fault positioning method and device
CN110888082B (en) * 2019-11-27 2022-07-01 深圳供电局有限公司 Relay protection secondary circuit node voltage fault positioning method and device

Similar Documents

Publication Publication Date Title
US10514412B2 (en) Systems and methods for identifying faulted segments in multiphase power networks
EP1408595A1 (en) Determining parameters of an equivalent circuit representing a transmission section of an electrical network
JPS5889028A (en) Method and device for detecting 1-wire ground fault accident of 3-phase power system
CN109946561A (en) A kind of current transformer polarity testing method, apparatus, equipment and storage medium
SE466366B (en) PROCEDURE AND DEVICE MAKES COMMON LOCATION IN THE MULTI-TERMINAL
JPH10253691A (en) Method for locating failure point
Talaq Fault calculations using three terminal Thevenin’s equivalent circuit
Yu et al. A fault location algorithm for transmission lines with tapped leg-PMU based approach
JP3312522B2 (en) Power flow calculator
JP2001099883A (en) Method for locating fault on transmission line
JPH1090341A (en) Method for locating fault point
JP3671627B2 (en) Fault location method
US20050114048A1 (en) Method for detecting line-to-line fault location in power network
Fouad et al. Investigation of loss of generation disturbances in the Florida power and light company network by the transient energy function method
US20200166557A1 (en) Systems and methods for ground fault detection in power systems using communication network
JPH0373825B2 (en)
Dugan Experiences with the center-tapped wye-delta transformer test case
JP3391078B2 (en) Fault locating method for two parallel transmission lines
JPH08122395A (en) Method for locating fault on multiterminal transmission line
JP3319517B2 (en) Fault location device
JP2806593B2 (en) Fault detection method for communication lines
JP2920981B2 (en) Fault location method for two-circuit transmission line
JP3277534B2 (en) Fault location method for 3-terminal parallel 2-circuit transmission line
JPH0718901B2 (en) Apparatus and method for determining values of circuit elements in three-terminal equivalent circuit
JP3773020B2 (en) Fault location method using multi-terminal electric quantity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004