JPH10253411A - Low-conductivity electromagnetic flow meter - Google Patents

Low-conductivity electromagnetic flow meter

Info

Publication number
JPH10253411A
JPH10253411A JP5159397A JP5159397A JPH10253411A JP H10253411 A JPH10253411 A JP H10253411A JP 5159397 A JP5159397 A JP 5159397A JP 5159397 A JP5159397 A JP 5159397A JP H10253411 A JPH10253411 A JP H10253411A
Authority
JP
Japan
Prior art keywords
conductivity
fluid
low
measurement fluid
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5159397A
Other languages
Japanese (ja)
Inventor
Ichizo Ito
一造 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP5159397A priority Critical patent/JPH10253411A/en
Publication of JPH10253411A publication Critical patent/JPH10253411A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the flow of a low-conductivity fluid to be measured by applying electric charge to the measurement fluid with a charge generating device, then measuring the flow velocity of the fluid under measurement with an electromagnetic flow meter main body. SOLUTION: The electromagnetic flow meter main body 11 measures the flow of a fluid to be measured. A charge generating device 12 is provided on a pipe on the upstream side from the electromagnetic flow meter main body 11. The charge generating device 12 is made of a metal lattice-shaped body split with the pipe into multiple passages parallel with the axial direction of the pipe. After the fluid under measurement is applied with negative charges by the charge generating device 12, the flow velocity of the fluid under measurement is measured by the electromagnetic flow meter main body 11. When the fluid under measurement is an insulating fluid, no ionic dissociation normally occurs, only polarized charges exist, and charges are applied to the low- conductivity measurement fluid. When the charge generating device 12 with a simple structure is added, the flow velocity of the low-conductivity fluid, unmeasurable in the past, can be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低導電率の測定流
体の流量を測定し得る低導電率電磁流量計に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-conductivity electromagnetic flowmeter capable of measuring a flow rate of a low-conductivity measurement fluid.

【0002】[0002]

【従来の技術】図9は従来より一般に使用されている従
来例の構成説明図で、例えば、書名;工業計測ハンドブ
ック(トランジスタ式計器編)、発行日;昭和42年6
月10日、編著者;株式会社 横河電機製作所、発行
所;東京電機大学出版局 に示されている。
2. Description of the Related Art FIG. 9 is an explanatory view of the configuration of a conventional example generally used in the past, for example, the title: Industrial Measurement Handbook (transistor type meter), date of issue: June 1967
On March 10, the editor is shown; Yokogawa Electric Corporation, publishing office; Tokyo Denki University Press.

【0003】図において、1は測定流体が流れる測定管
路である。2,3は測定管路1に設けられた電極であ
る。4は測定管路1を挟んで設けられた鉄心である。5
は鉄心4に巻回された励磁コイルである。6は電極2,
3出力を変換する変換器である。
In FIG. 1, reference numeral 1 denotes a measurement pipe through which a measurement fluid flows. Reference numerals 2 and 3 denote electrodes provided in the measurement pipeline 1. Reference numeral 4 denotes an iron core provided across the measurement pipe 1. 5
Is an exciting coil wound around the iron core 4. 6 is an electrode 2,
This is a converter that converts three outputs.

【0004】以上の構成において、流速Vで流れる測定
流体に対して、磁界Bを与えると、測定流体中には、次
式で示される電位Uが発生する。 Δ2U=((σ+jω(ε−ε0))/(σ+jωε))
div(V×B) σ:導電率、ε:誘電率、ε0:真空中の誘電率
In the above configuration, when a magnetic field B is applied to a measurement fluid flowing at a flow velocity V, a potential U represented by the following equation is generated in the measurement fluid. Δ 2 U = ((σ + jω (ε−ε 0 )) / (σ + jωε))
div (V × B) σ: electric conductivity, ε: dielectric constant, ε 0 : dielectric constant in vacuum

【0005】ここで、σ>>ωεとすると、 Δ2U=div(V×B) 磁界Bと流速Vが直交し、管路1上の2点間に電極2,
3が配置されているとすると、電極2,3間の電位差E
は E∝V・B・D D:電極2,3間の距離
Here, if σ >> ωε, Δ 2 U = div (V × B) The magnetic field B and the flow velocity V are orthogonal to each other, and the electrode 2
3, the potential difference E between the electrodes 2 and 3 is assumed.
Is E∝V · B · DD: distance between electrodes 2 and 3

【0006】よって、Eを計測することにより、Vが測
定できる。なお、電極2,3間の測定流体を流れる電流
は、測定流体中に解離して存在するプラス、マイナスの
イオンの移動によるものである。以上が、電磁流量計の
基本原理である。
Therefore, V can be measured by measuring E. The current flowing through the measurement fluid between the electrodes 2 and 3 is due to the movement of positive and negative ions that are dissociated in the measurement fluid. The above is the basic principle of the electromagnetic flow meter.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
説明は測定流体の導電率σはσ>>ωεであることが前
提となっている。このため、測定流体中にはオームの法
則に従う伝導電流が流れる。精度よく、Eを測定するた
めには、変換器6の入力インピーダンスは、電圧源Eの
内部インピーダンス(∝1/σd)より充分大きくして
おくことが必要となる。ここで、d:電極2,3の直径
However, the above description assumes that the conductivity σ of the measurement fluid is σ >> ωε. Therefore, a conduction current according to Ohm's law flows in the measurement fluid. In order to measure E with high accuracy, the input impedance of the converter 6 needs to be sufficiently larger than the internal impedance (∝1 / σd) of the voltage source E. Here, d: diameter of electrodes 2 and 3

【0008】現実には、変換器6の入力インピーダンス
を無限大にすることは不可能であるので、接液電極式電
磁流量計では、10ー5〜10ー6S・cm-1が、また、容
量式電磁流量計においても10ー8S・cm-1程度が、測
定出来る導電率の最低値となっている。すなわち、電磁
流量計の測定対象となる測定流体は、イオン性の流体で
あり、イオン性を殆ど示さないアルコール類や、石油類
の測定は出来ない。
In reality, it is impossible to make the input impedance of the converter 6 infinite, so that in the wetted electrode type electromagnetic flow meter, 10 −5 to 10 −6 S · cm −1 , and In the case of a capacitance type electromagnetic flow meter, the lowest value of the measurable conductivity is about 10-8 S · cm -1 . That is, the measurement fluid to be measured by the electromagnetic flowmeter is an ionic fluid, and cannot measure alcohols or petroleums showing almost no ionicity.

【0009】本発明は、この問題点を、解決するもので
ある。本発明の目的は低導電率の測定流体の流量を測定
し得る低導電率電磁流量計を提供するにある。
The present invention solves this problem. An object of the present invention is to provide a low-conductivity electromagnetic flowmeter that can measure the flow rate of a low-conductivity measurement fluid.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に、本発明は、 (1)低導電率の測定流体の流量を測定する低導電率電
磁流量計において、測定流体の流量を測定する電磁流量
計本体と、該電磁流量計本体の上流側の管路に設けられ
前記測定流体に電荷を付与する電荷発生装置とを具備し
たことを特徴とする低導電率電磁流量計。 (2)前記管路を該管路の軸方向に平行な複数の流路に
細分化する集合体よりなる電荷発生装置を具備したこと
を特徴とする請求項1記載の低導電率電磁流量計。 (3)前記管路を該管路の軸方向に平行な複数の流路に
細分化する格子形状体よりなる電荷発生装置を具備した
ことを特徴とする請求項1記載の低導電率電磁流量計。 (4)前記管路を該管路の軸方向に平行な複数の小口径
の円管の集合体よりなる電荷発生装置を具備したことを
特徴とする請求項1記載の低導電率電磁流量計。を構成
したものである。
In order to achieve this object, the present invention provides: (1) a low-conductivity electromagnetic flowmeter for measuring the flow rate of a low-conductivity measurement fluid; A low-conductivity electromagnetic flowmeter, comprising: an electromagnetic flowmeter main body; and a charge generation device provided in a conduit on an upstream side of the electromagnetic flowmeter main body to apply electric charge to the measurement fluid. (2) The low-conductivity electromagnetic flowmeter according to claim 1, further comprising a charge generation device including an aggregate that divides the conduit into a plurality of flow passages parallel to the axial direction of the conduit. . (3) The low-conductivity electromagnetic flow rate according to claim 1, further comprising a charge generation device including a lattice-shaped body that divides the conduit into a plurality of flow passages parallel to the axial direction of the conduit. Total. (4) The low-conductivity electromagnetic flowmeter according to (1), further comprising a charge generation device comprising a collection of a plurality of small-diameter circular pipes which are parallel to the conduit in the axial direction of the conduit. . It is what constituted.

【0011】[0011]

【作用】以上の構成において、電荷発生装置において、
測定流体に電荷を付与した後、電磁流量計本体におい
て、測定流体の流速を測定する。以下、実施例に基づき
詳細に説明する。
In the above configuration, in the charge generation device,
After applying a charge to the measurement fluid, the flow rate of the measurement fluid is measured in the main body of the electromagnetic flow meter. Hereinafter, a detailed description will be given based on embodiments.

【0012】[0012]

【発明の実施の形態】図1は本発明の一実施例の要部構
成説明図、図2は図1の電荷発生装置の詳細説明図、図
3は図2の側面図である。図において、図9と同一記号
の構成は同一機能を表わす。以下、図9と相違部分のみ
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of a main part of an embodiment of the present invention, FIG. 2 is a detailed explanatory view of a charge generating device of FIG. 1, and FIG. 3 is a side view of FIG. In the figure, the configuration of the same symbol as in FIG. 9 represents the same function. Hereinafter, only differences from FIG. 9 will be described.

【0013】11は、測定流体の流量を測定する電磁流
量計本体である。12は、電磁流量計本体11の上流側
の管路に設けられた電荷発生装置である。この場合は、
電荷発生装置12は、管路を、管路の軸方向に平行な複
数の流路に細分化し金属よりなる格子形状体よりなる。
Reference numeral 11 denotes an electromagnetic flowmeter main body for measuring the flow rate of the measurement fluid. Reference numeral 12 denotes a charge generation device provided in a pipe on the upstream side of the electromagnetic flowmeter main body 11. in this case,
The charge generation device 12 is formed of a lattice-shaped body made of a metal obtained by subdividing a pipe into a plurality of flow paths parallel to the axial direction of the pipe.

【0014】以上の構成において、後述する如く、電荷
発生装置12において、測定流体を負にチャージした
後、電磁流量計本体11において、測定流体の流速を測
定する。
In the above configuration, as will be described later, after the measurement fluid is negatively charged in the charge generation device 12, the flow rate of the measurement fluid is measured in the main body 11 of the electromagnetic flow meter.

【0015】ここで、測定流体が絶縁流体(誘電体流
体)の場合は、通常は、イオンの解離はなく、分極電荷
しか存在しない。このため、電界が印加されても連続し
て電流は流れる事はない。
Here, when the measurement fluid is an insulating fluid (dielectric fluid), there is usually no dissociation of ions and only a polarization charge. Therefore, no current flows continuously even when an electric field is applied.

【0016】ところで、図4に示す如く、測定流体が固
体壁Aに接する付近には、電気2重層Bが形成される。
この時、固体壁Aはプラス電荷、また、固体壁A付近の
測定流体中にはマイナス電荷が過剰に存在する。
By the way, as shown in FIG. 4, an electric double layer B is formed in the vicinity where the measurement fluid contacts the solid wall A.
At this time, the solid wall A has a positive charge, and the measurement fluid near the solid wall A has an excessive negative charge.

【0017】測定流体の内部には拡散層Cが形成され、
固体壁Aから離れるに従ってマイナス電荷の濃度は減少
する。ここで、測定流体に流れが有り、固体壁Aが接地
されているとすると、プラス電荷は大地に流れ、固体壁
A付近のマイナス電荷は測定流体中に運びさられる。
A diffusion layer C is formed inside the measurement fluid,
The density of the negative charge decreases as the distance from the solid wall A increases. Here, assuming that the measurement fluid has a flow and the solid wall A is grounded, a positive charge flows to the ground, and a negative charge near the solid wall A is carried into the measurement fluid.

【0018】この結果、測定流体中には、マイナス電荷
が多くなる。これを、流動帯電現象と言う。測定流体の
導電率が高い場合、此等の過剰電荷は測定流体中を伝導
し、最終的には、固体壁Aに流入して消滅する。
As a result, negative charges increase in the measurement fluid. This is called a flow electrification phenomenon. If the conductivity of the measuring fluid is high, these excess charges will conduct in the measuring fluid and eventually flow into the solid wall A and disappear.

【0019】即ち、導電率が高い場合には、電荷の発生
から消滅までの時間(緩和時間)が短いので、測定流体
が負にチャージされることが顕著な現象として現れな
い。しかしながら、絶縁流体の場合は、緩和時間が長
く、測定流体は長時間にわたって負にチャージされた状
態となる。緩和時間τはτ=ε/σで示される。
That is, when the conductivity is high, since the time from generation to disappearance of charge (relaxation time) is short, the negative charging of the measurement fluid does not appear as a significant phenomenon. However, in the case of an insulating fluid, the relaxation time is long, and the measurement fluid is in a negatively charged state for a long time. The relaxation time τ is represented by τ = ε / σ.

【0020】図5(A)(B)は電磁流量計本体11に
おいて、磁界Bを印加した時の、電磁流量計本体11の
電極13,14間での電流の様子を示したものである。
イオン性流体の場合、解離したマイナスイオンとプラス
イオンとが、各々の電極13,14に移動し、電流が流
れるが、本発明では、電荷を運ぶキャリヤは過剰電荷で
あり、図5(B)においては、電極14から電極13の
方向に移動する。
FIGS. 5A and 5B show the state of the current between the electrodes 13 and 14 of the electromagnetic flowmeter main body 11 when the magnetic field B is applied to the electromagnetic flowmeter main body 11.
In the case of an ionic fluid, dissociated negative ions and positive ions move to the respective electrodes 13 and 14, and current flows. In the present invention, however, the carriers that carry charges are excessively charged, and FIG. Moves from the electrode 14 to the electrode 13.

【0021】測定流体の導電率は、キャリヤとなる電荷
の濃度と移動速度の積で示される事から、過剰電荷の数
が多ければ、導電率は高くなる。なお、電荷がそのまま
測定流体中を移動することは不自然であり、結局、分子
イオンとして移動するか、一部は解離イオンとなりイオ
ンとして移動するものと考えられる。
Since the conductivity of the measurement fluid is represented by the product of the concentration of the charge serving as a carrier and the moving speed, the conductivity increases as the number of excess charges increases. Note that it is unnatural that the charge moves in the measurement fluid as it is, and it is considered that the charge eventually moves as a molecular ion or a part thereof dissociates and moves as an ion.

【0022】すなわち、誘導電圧源Eの内部インピーダ
ンスZi(∝1/σd)は小さい。ここで、d:電極1
3,14の直径
That is, the internal impedance Z i (∝1 / σd) of the induced voltage source E is small. Here, d: electrode 1
3,14 diameter

【0023】ところで、図1に示す如く、電荷発生装置
12は流路全体に対して、格子状になっており、測定流
体は格子に区切られた狭い流路に沿って流れる。電気2
重層Bは固体壁Aに接する部分にて発生するので、固体
壁Aの接液面積が大きい方が電荷の発生効率が良い。ま
た、流路断面全体にわたって格子状体12を設けるの
は、流れ去る過剰電荷が流路全体に均一に存在すること
が好ましいからである。
By the way, as shown in FIG. 1, the charge generation device 12 has a grid shape over the entire flow path, and the measurement fluid flows along a narrow flow path divided by the grid. Electricity 2
Since the layer B is generated at a portion in contact with the solid wall A, the larger the liquid contact area of the solid wall A, the better the charge generation efficiency. Further, the reason why the lattice-like body 12 is provided over the entire cross section of the flow path is that it is preferable that the excess charge flowing away is uniformly present in the entire flow path.

【0024】なお、電極の種類については、接液タイプ
でも、容量式タイプでも、原理的には、どちらにでも適
用できる。接液タイプの電極材としては、有効直径が数
千倍となる白金黒付き電極が好ましい。但し、図6に示
す如く、電極13,14への電荷の流入は、誘導電圧E
に基づいて移動して来る電荷だけでなく、測定流体の流
れによって直接、電極13,14に衝突し流入すること
が考えられる。
Regarding the type of the electrode, it can be applied to either the liquid contact type or the capacity type, in principle. As a wetted type electrode material, an electrode with platinum black having an effective diameter several thousand times is preferable. However, as shown in FIG. 6, the inflow of charges into the electrodes 13 and 14 is caused by the induced voltage E
It is conceivable that not only the electric charge that moves based on the flow rate but also the collision with the flow of the measurement fluid directly collides with and flows into the electrodes 13 and 14.

【0025】また、電極13,14の表面においても、
電気2重層Bの形成と、測定流体の流れによる電荷の剥
離が生じる。以上のことから、図7に示す如く、電極1
3,14の表面は、流路より凹部15になるようにし、
測定流体の流れが淀む方が好ましいと考えられる。
Also on the surfaces of the electrodes 13 and 14,
Formation of the electric double layer B and separation of electric charges due to the flow of the measurement fluid occur. From the above, as shown in FIG.
The surfaces of 3 and 14 are made to be concave portions 15 from the flow path,
It is considered that the flow of the measurement fluid is preferably stagnant.

【0026】次に、図9従来例の電磁流量計において
は、測定流体の導電率が低くなると、測定流体の流速の
増加につれて、フローノイズと称されるノイズ電圧が発
生する。これは、上述の電極面におけるプラス電荷の流
入にあると推定されている。
Next, in the conventional electromagnetic flow meter shown in FIG. 9, when the conductivity of the measurement fluid decreases, a noise voltage called flow noise is generated as the flow rate of the measurement fluid increases. This is presumed to be due to the inflow of positive charges at the electrode surface described above.

【0027】この場合の測定流体の内部インピーダンス
iは大きいので、変換器の入力段におけるノイズ電圧
(VN=IN・Zi)は、ノイズ電流INが小でも大きくな
る。本発明では、内部インピーダンスZiが小となるこ
とから、ノイズ電流INが生じてもノイズ電圧VNは、従
来例よりも、小さくする事ができる。
In this case, since the internal impedance Z i of the measurement fluid is large, the noise voltage (V N = IN · Z i ) at the input stage of the converter becomes large even if the noise current IN is small. In the present invention, since the internal impedance Z i is small, noise current I N is the noise voltage V N even if, rather than the conventional example, can be reduced.

【0028】次に、零点の決定については、測定流体の
流速が零の時には、発生電荷はないので、導電率は低く
なる。一方、導電率と変換回路6の入力インピーダンス
との関係から、演算可能な導電率が決まる。測定可能の
最小流速は、この導電率により決まるので、これ以下の
流速は不感帯となる。そこで、図8に示す如く、変換器
6側にゼロカット機能を付加する。
Next, regarding the determination of the zero point, when the flow rate of the measurement fluid is zero, there is no generated charge, and thus the conductivity becomes low. On the other hand, the operable conductivity is determined from the relationship between the conductivity and the input impedance of the conversion circuit 6. Since the minimum flow rate that can be measured is determined by the electric conductivity, a flow rate lower than this is a dead zone. Therefore, a zero cut function is added to the converter 6 as shown in FIG.

【0029】この結果、低導電率の測定流体に電荷を付
与する、簡単な構造の電荷発生装置12を付加すること
により、従来測定出来なかった低伝導率の測定流体の流
速を測定することができる低導電率電磁流量計が得られ
る。
As a result, the flow rate of the low-conductivity measurement fluid, which could not be measured conventionally, can be measured by adding the charge generation device 12 having a simple structure for applying a charge to the low-conductivity measurement fluid. A possible low conductivity electromagnetic flowmeter is obtained.

【0030】なお、前述の実施例においては、電荷発生
装置12は格子形状体よりなると説明したが、これに限
ることはなく、例えば、小口径の円管を束ねて構成して
も良い。要するに、管路を該管路の軸方向に平行な複数
の流路に細分化する集合体であればよい。
In the above-described embodiment, the charge generation device 12 is described as being formed of a lattice-shaped body. However, the present invention is not limited to this. For example, a small-diameter circular tube may be bundled. In short, any assembly that divides the pipeline into a plurality of flow paths parallel to the axial direction of the pipeline may be used.

【0031】また、前述の実施例においては、電荷発生
装置12は電気2重層を利用した装置について説明した
が、これに限ることはなく、例えば、電子照射による帯
電、或いは、イオン交換樹脂によるイオン注入でも良
い。要するに、低導電率の測定流体に電荷を付与する装
置であればよい。
In the above-described embodiment, the charge generation device 12 has been described as a device using an electric double layer. However, the present invention is not limited to this. For example, charging by electron irradiation or ion-exchange resin Injection is also acceptable. In short, any device may be used as long as it can apply a charge to the low-conductivity measurement fluid.

【0032】[0032]

【発明の効果】以上詳細に説明したように、本発明は、
請求項1の発明によれば、低導電率の測定流体に電荷を
付与する、簡単な構造の電荷発生装置を付加することに
より、従来測定出来なかった低伝導率の測定流体の流速
を測定することが出来る低導電率電磁流量計が得られ
る。
As described in detail above, the present invention provides
According to the first aspect of the present invention, the flow rate of the low-conductivity measurement fluid, which cannot be measured conventionally, is measured by adding a charge generating device having a simple structure that applies a charge to the low-conductivity measurement fluid. A low-conductivity electromagnetic flowmeter that can be obtained.

【0033】本発明の請求項2の発明によれば、測定流
体と接する固定壁の面積を増大出来るので、電荷発生効
率が良い。このため、低流量域まで安定な流量計測が出
来る低導電率電磁流量計が得られる。
According to the second aspect of the present invention, since the area of the fixed wall in contact with the measurement fluid can be increased, the charge generation efficiency is high. For this reason, a low-conductivity electromagnetic flowmeter capable of performing a stable flow rate measurement even in a low flow rate range is obtained.

【0034】本発明の請求項3の発明によれば、流速分
布を乱すことなく、固定壁の面積を増大でき、低流量域
まで安定な流量計測が出来る低導電率電磁流量計が得ら
れる。
According to the third aspect of the present invention, it is possible to obtain a low-conductivity electromagnetic flowmeter capable of increasing the area of the fixed wall without disturbing the flow velocity distribution and performing stable flow measurement up to a low flow rate region.

【0035】本発明の請求項4の発明によれば、流速分
布を乱すことなく、固定壁の面積を増大でき、単純に細
円管束ねれば良いので、製造コストが低減でき、安価な
低導電率電磁流量計が得られる。
According to the invention of claim 4 of the present invention, the area of the fixed wall can be increased without disturbing the flow velocity distribution, and a simple bundle of thin tubes can be used. A conductivity electromagnetic flowmeter is obtained.

【0036】従って、本発明によれば、低導電率の測定
流体の流量を測定し得る低導電率電磁流量計を実現する
ことが出来る。
Therefore, according to the present invention, a low-conductivity electromagnetic flowmeter capable of measuring the flow rate of a low-conductivity measurement fluid can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1の電荷発生装置の詳細説明図である。FIG. 2 is a detailed explanatory diagram of the charge generation device of FIG.

【図3】図2の側面図である。FIG. 3 is a side view of FIG. 2;

【図4】図1の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 1;

【図5】図1の動作説明図である。FIG. 5 is an operation explanatory diagram of FIG. 1;

【図6】図1の動作説明図である。FIG. 6 is an operation explanatory diagram of FIG. 1;

【図7】本発明の他の実施例の要部構成説明図である。FIG. 7 is an explanatory view of a main part configuration of another embodiment of the present invention.

【図8】図1の動作説明図である。FIG. 8 is an operation explanatory diagram of FIG. 1;

【図9】従来より一般に使用されている従来例の構成説
明図である。
FIG. 9 is an explanatory diagram of a configuration of a conventional example generally used in the related art.

【符号の説明】[Explanation of symbols]

1 測定管路 4 鉄心 5 励磁コイル 6 変換器 11 電磁流量計本体 12 電荷発生装置 13 電極 14 電極 A 固体壁 B 電気2重層 C 拡散層 DESCRIPTION OF SYMBOLS 1 Measurement pipeline 4 Iron core 5 Excitation coil 6 Converter 11 Electromagnetic flowmeter main body 12 Charge generator 13 Electrode 14 Electrode A Solid wall B Electric double layer C Diffusion layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】低導電率の測定流体の流量を測定する低導
電率電磁流量計において、 測定流体の流量を測定する電磁流量計本体と、 該電磁流量計本体の上流側の管路に設けられ前記測定流
体に電荷を付与する電荷発生装置とを具備したことを特
徴とする低導電率電磁流量計。
1. A low-conductivity electromagnetic flowmeter for measuring a flow rate of a low-conductivity measurement fluid, comprising: an electromagnetic flowmeter main body for measuring a flow rate of a measurement fluid; And a charge generator for applying a charge to the measurement fluid.
【請求項2】前記管路を該管路の軸方向に平行な複数の
流路に細分化する集合体よりなる電荷発生装置を具備し
たことを特徴とする請求項1記載の低導電率電磁流量
計。
2. A low-conductivity electromagnetic device according to claim 1, further comprising a charge generating device comprising an aggregate that divides the conduit into a plurality of flow passages parallel to the axial direction of the conduit. Flowmeter.
【請求項3】前記管路を該管路の軸方向に平行な複数の
流路に細分化する格子形状体よりなる電荷発生装置を具
備したことを特徴とする請求項1記載の低導電率電磁流
量計。
3. The low-conductivity device according to claim 1, further comprising a charge generating device comprising a lattice-shaped body that divides the conduit into a plurality of flow passages parallel to the axial direction of the conduit. Electromagnetic flow meter.
【請求項4】前記管路を該管路の軸方向に平行な複数の
小口径の円管の集合体よりなる電荷発生装置を具備した
ことを特徴とする請求項1記載の低導電率電磁流量計。
4. The low-conductivity electromagnetic device according to claim 1, further comprising a charge generating device comprising a collection of a plurality of small-diameter circular pipes parallel to an axial direction of the conduit. Flowmeter.
JP5159397A 1997-03-06 1997-03-06 Low-conductivity electromagnetic flow meter Pending JPH10253411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5159397A JPH10253411A (en) 1997-03-06 1997-03-06 Low-conductivity electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5159397A JPH10253411A (en) 1997-03-06 1997-03-06 Low-conductivity electromagnetic flow meter

Publications (1)

Publication Number Publication Date
JPH10253411A true JPH10253411A (en) 1998-09-25

Family

ID=12891219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5159397A Pending JPH10253411A (en) 1997-03-06 1997-03-06 Low-conductivity electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JPH10253411A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266772A (en) * 1999-03-19 2000-09-29 Yoshijiro Watanabe Flow measuring device of powder and grain
DE10322550A1 (en) * 2003-05-20 2004-12-30 Abb Patent Gmbh Flow through measurement device e.g. for measurement tubes
JP2010127939A (en) * 2008-11-26 2010-06-10 Krohne Ag Magnetic-inductive flowmeter
JP2013521910A (en) * 2010-03-15 2013-06-13 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Cassette with sensor for measuring difference between first fluid flow and second fluid flow

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266772A (en) * 1999-03-19 2000-09-29 Yoshijiro Watanabe Flow measuring device of powder and grain
DE10322550A1 (en) * 2003-05-20 2004-12-30 Abb Patent Gmbh Flow through measurement device e.g. for measurement tubes
JP2010127939A (en) * 2008-11-26 2010-06-10 Krohne Ag Magnetic-inductive flowmeter
JP2013521910A (en) * 2010-03-15 2013-06-13 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Cassette with sensor for measuring difference between first fluid flow and second fluid flow
US9399089B2 (en) 2010-03-15 2016-07-26 Fresenius Medical Care Deutschland Gmbh Cassette with a sensor for determining the difference between a first and a second fluid stream
US10260682B2 (en) 2010-03-15 2019-04-16 Fresenius Medical Care Deutschland Gmbh Cassette with a sensor for determining the difference between a first and a second fluid stream
US11085588B2 (en) 2010-03-15 2021-08-10 Fresenius Medical Care Deutschland Gmbh Cassette with a sensor for determining the difference between a first and a second fluid stream

Similar Documents

Publication Publication Date Title
JPH05501916A (en) Electromagnetic flowmeters and related improvements
CN103134558A (en) Magnetic-inductive flow measuring apparatus
JP5818415B2 (en) Calibration device for electromagnetic flow measurement system
US5421210A (en) Capacitance type electromagnetic flowmeter
JP3023174B2 (en) Device for inductively measuring the flow state of conductive liquid
JP3788776B2 (en) Electromagnetic flow meter
JPH10253411A (en) Low-conductivity electromagnetic flow meter
US2771771A (en) Detector for an induction liquid flow meter
US3750469A (en) Ionization-type flow meter
US4248086A (en) Device for measuring the mass flow or flow rate of an insulating liquid
US7287435B2 (en) Inductive flow meter for electrically conductive liquids
CN219084148U (en) Electromagnetic water meter
CN111504600B (en) Device and method for measuring cold-state two-phase interface parameters of tube bundle channel
Mukherjee et al. Electric field distortion caused by asymmetric pollution on insulator surfaces
Maalouf The derivation and validation of the practical operating equation for electromagnetic flowmeters: Case of having an electrolytic conductor flowing through
Gupta et al. Finite-difference resistance modelling for liquid level measurement in stratified gas-liquid systems
US3465585A (en) Flow detection signal generator for electromagnetic flowmeters
Grossman et al. Turbulence in civil engineering: Investigations in liquid shear flow by electromagnetic induction
JP2001281028A (en) Electromagnetic flowmeter
JPH03205513A (en) Detector of electromagnetic flow meter
JP2001241981A (en) Electromagnetic flowmeter
Jones et al. Nanosecond pre-breakdown and breakdown phenomena in water: influence of pressure, conductivity, and ionic sheath formation
Mackenzie Impedance and induced voltage measurements on iron conductors
Ogawa et al. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils
Hemp Theory of a simple electromagnetic velocity probe with prediction of the effect on sensitivity of a nearby wall