JPH10253286A - Distributor for heat exchanger - Google Patents
Distributor for heat exchangerInfo
- Publication number
- JPH10253286A JPH10253286A JP9059643A JP5964397A JPH10253286A JP H10253286 A JPH10253286 A JP H10253286A JP 9059643 A JP9059643 A JP 9059643A JP 5964397 A JP5964397 A JP 5964397A JP H10253286 A JPH10253286 A JP H10253286A
- Authority
- JP
- Japan
- Prior art keywords
- distributor
- heat exchanger
- fluid
- pressure
- plates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0265—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
- F28F9/0268—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J5/00—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
- F25J5/002—Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
- F28D9/0068—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/32—Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0033—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/08—Fins with openings, e.g. louvers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/108—Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、コルゲートフィン
型熱交換器用のデストリビュータに関し、特に該デスト
リビュータにおける流体の流れ抵抗を抑え、熱交換器全
体としての流体の圧力損失を低減し得る様に改善された
デストリビュータに関し、このデストリビュータは、例
えば空気分離設備における戻りガスと原料圧縮空気との
熱交換を行なう為に用いられる主熱交換器用のデストリ
ビュータ等として有効に活用できる。従って以下の説明
では、その一例として空気分離設備に設けられる主熱交
換器に適用する場合を主体にして説明を進めるが、本発
明はこれに限定される訳ではなく、後述する様な圧損低
減効果を有効に生かして他の熱交換器にも同様に適用す
ることができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributor for a corrugated fin type heat exchanger, and more particularly to a distributor for suppressing a flow resistance of a fluid in the distributor and reducing a pressure loss of a fluid in the entire heat exchanger. With respect to the improved distributor, the distributor can be effectively used, for example, as a distributor for a main heat exchanger used for exchanging heat between a return gas and raw material compressed air in an air separation facility. Therefore, in the following description, as an example, the description will be made mainly for a case where the invention is applied to a main heat exchanger provided in an air separation facility. However, the present invention is not limited to this, and a pressure loss reduction as described later is performed. The effect can be similarly applied to other heat exchangers.
【0002】[0002]
【従来の技術】空気を窒素ガスと酸素ガスに分離する空
気分離法は、製鉄、化学、電子工業等の広範な分野で使
用されている。この様な空気分離法については、分離効
率の向上、ランニングコストの低下、操業安定性の向上
等を目的として様々の研究が進められている。2. Description of the Related Art An air separation method for separating air into nitrogen gas and oxygen gas is used in a wide range of fields such as steelmaking, chemicals, and electronics. Various studies have been conducted on such an air separation method for the purpose of improving separation efficiency, lowering running costs, improving operation stability, and the like.
【0003】図1は、公知の空気分離設備を例示するフ
ロー図である。原料空気は、エアフィルタ1、原料空気
圧縮機2、冷却器3等を経て所望の圧力、温度、湿度の
空気(以下、圧縮空気ということがある)とされ、モレ
キュラシーブ吸着器6へ導かれる。図のモレキュラシー
ブ吸着器6は2基1対の切換え方式であり、該吸着器6
内では、ゼオライト等の吸着作用によって上記圧縮空気
中の水分、炭酸ガス、炭化水素ガス等がほゞ完全に除去
される。上記吸着器6から管路6aを通して導出された
圧縮空気は、主熱交換器7へ導かれ、後述する戻りガス
との熱交換によって液化点付近まで冷却され、精留塔8
の下塔8a下部へ導入される。FIG. 1 is a flowchart illustrating a known air separation facility. The raw air passes through an air filter 1, a raw air compressor 2, a cooler 3, and the like, is converted into air having a desired pressure, temperature, and humidity (hereinafter, may be referred to as compressed air), and is guided to a molecular sieve adsorber 6. The molecular sieve adsorber 6 shown in FIG.
Inside, the moisture, carbon dioxide gas, hydrocarbon gas and the like in the compressed air are almost completely removed by the adsorption action of zeolite and the like. The compressed air led out from the adsorber 6 through the pipe 6a is led to the main heat exchanger 7, where it is cooled to near the liquefaction point by heat exchange with a return gas, which will be described later.
Into the lower part of the lower tower 8a.
【0004】下塔8aに導入された圧縮空気は、下塔8
a内を上昇しつつ精留分離され、下塔8a上部からは低
沸点の窒素リッチ液(液体窒素)9として取り出され、
一方下部においては高沸点の酸素リッチ液10が貯留さ
れる(以下粗留工程ということがある)。上部の窒素リ
ッチガスは管路13によって主凝縮器8bへ導かれ、こ
こで液化されて管路14を下降し下塔8a上部へ戻る。
下塔8a上部の窒素リッチ液は、管路15により過冷却
器12を経て上塔8cの頂部へ導かれる。The compressed air introduced into the lower tower 8a is
A is rectified and separated while ascending in a, and is taken out from the upper portion of the lower column 8a as a low boiling point nitrogen-rich liquid (liquid nitrogen) 9,
On the other hand, in the lower part, a high boiling point oxygen-rich liquid 10 is stored (hereinafter sometimes referred to as a coarse distillation step). The nitrogen-rich gas in the upper part is guided to the main condenser 8b by the line 13, where it is liquefied and descends along the line 14 to return to the upper part of the lower column 8a.
The nitrogen-rich liquid in the upper part of the lower tower 8a is led to the top of the upper tower 8c via the supercooler 12 by the pipe 15.
【0005】一方上記酸素リッチ液10は、管路25か
ら過冷却器12を経て上塔8cの中段へ導かれる。また
下塔8aの中段からは、粗留工程中期の液体窒素が管路
11から過冷却器12を経て上塔8cの上段へ導かれ
る。この様に上塔8cの中段、上段及び頂部から導入さ
れて上塔8c内を降下する低温の液体窒素及び酸素リッ
チ液10は、上塔8c内を上昇するガスとの間で物質移
動が行なわれることによって精留が進行する。[0005] On the other hand, the oxygen-rich liquid 10 is guided from a pipe 25 to a middle stage of the upper tower 8c via the subcooler 12. From the middle stage of the lower tower 8a, liquid nitrogen in the middle stage of the rough distillation process is guided from the pipe 11 to the upper stage of the upper tower 8c via the supercooler 12. As described above, the low-temperature liquid nitrogen and oxygen-rich liquid 10 introduced from the middle, upper, and top portions of the upper tower 8c and descending in the upper tower 8c undergo mass transfer with the gas rising in the upper tower 8c. The rectification proceeds by being performed.
【0006】こうした各工程が繰り返されることによっ
て、上塔8cの頂部には窒素ガスが分離される。一方、
上塔8cの下部には液体酸素が貯留されるが、その液面
のやや上方から酸素ガスが抽気される。そしてこれらの
ガスは、管路16及び17から前記戻りガスとなって主
熱交換器7へ導かれ、モレキュラシーブ吸着器6から導
出される圧縮空気との間で熱交換を行なって寒冷を利用
した後、窒素及び酸素として製品化される。[0006] By repeating these steps, nitrogen gas is separated at the top of the upper tower 8c. on the other hand,
Liquid oxygen is stored in the lower part of the upper tower 8c, and oxygen gas is extracted from slightly above the liquid level. These gases are returned to the main heat exchanger 7 from the pipes 16 and 17 as the return gas, and exchange heat with compressed air derived from the molecular sieve adsorber 6 to utilize the cold. Later, it is commercialized as nitrogen and oxygen.
【0007】このとき、前記吸着器6から導出される圧
縮空気の一部は、主熱交換器7へ導入される前で分岐さ
れ、膨張タービン5の入側の加圧器5aで加圧されてか
ら主熱交換器7へ導入され、主熱交換器7の高温側で冷
却された後その途中から抜き出して膨張タービン5へ返
送され、ここで断熱膨張されることにより更に冷却され
てから上塔8cの中段へ導入される。また上塔8cの上
段部よりやや下側の位置からは、管路20を経て粗分離
状態の排窒素ガスが抜き出され、過冷却器12から主熱
交換器7を経て戻りガスとして熱交換により寒冷を利用
した後、熱交換後の排窒素ガスは再生用加熱器29を経
て吸着器6へ供給され、吸着器6内のモレキュラシーブ
の再生に利用され、余剰の排窒素ガスは管路21から蒸
発クーラー4へ供給し、冷却器3の冷却に利用される冷
却水を冷却した後放出される。上記吸着器6の再生加熱
後は、バルブV1 ,V2 の切り替えによって前記排窒素
ガスを該再生加熱後の吸着器6へ供給してこれを冷却
し、吸着工程への切り替え準備を終える。尚、吸着器6
の再生に利用された排窒素ガスは逐次系外へ放出され
る。At this time, a part of the compressed air derived from the adsorber 6 is branched before being introduced into the main heat exchanger 7, and is compressed by the pressurizer 5a on the inlet side of the expansion turbine 5. From the main heat exchanger 7, is cooled on the high-temperature side of the main heat exchanger 7, is extracted from the middle thereof, is returned to the expansion turbine 5, and is further cooled by being adiabatically expanded, and then cooled in the upper tower. 8c is introduced to the middle stage. Further, from a position slightly lower than the upper part of the upper tower 8c, the roughly separated exhaust gas is extracted via the pipe 20 and is returned from the subcooler 12 via the main heat exchanger 7 as heat exchange gas. After the cold is used, the exhausted nitrogen gas after the heat exchange is supplied to the adsorber 6 through the heater 29 for regeneration, and is used for the regeneration of the molecular sieve in the adsorber 6, and the excess exhausted nitrogen gas is supplied to the pipe 21. The cooling water supplied to the evaporative cooler 4 is used to cool the cooler 3 and is discharged after cooling. After regeneration heating of the adsorber 6, which was cooled by supplying the exhaust nitrogen gas into the adsorber 6 after regeneration heating by switching the valves V 1, V 2, completing the handoff preparation for the adsorption step. The adsorber 6
Exhaust nitrogen gas used for the regeneration of methane is sequentially discharged out of the system.
【0008】この様な空気分離装置に配置される主熱交
換器は、熱交換効率を高めるためコルゲートフィン(プ
レーン型フィン、ヘリンボーン型フィン、パーフォレイ
ト型フィン、ルーバー型フィン、セレート型フィン等)
を主たる熱交換部材とし、各流体の出口側と入口側にデ
ストリビュータを取り付けたユニットを多段に積層して
組み付け、互いに隣接するユニットに相互に熱交換され
るべき流体を対向流で流すことによって熱交換が行われ
る様に構成されている。The main heat exchanger disposed in such an air separation device is a corrugated fin (a plain fin, a herringbone fin, a perforate fin, a louver fin, a serrate fin, etc.) in order to enhance heat exchange efficiency.
As a main heat exchange member, assembling the units having distributors attached to the outlet side and the inlet side of each fluid in a multi-stage manner, and flowing the fluids to be mutually heat-exchanged to the adjacent units by counterflow. It is configured to perform heat exchange.
【0009】例えば図6(A)〜(D)は、コルゲート
フィン型熱交換ユニットを例示する概略説明図であり、
熱交換が行われる4種の流体に応じてデストリビュータ
により出・入側流路を変えた4種の熱交換ユニットA1
〜A4 を示しており、これらを互いに隣接して重ね合わ
せることにより主熱交換器Aを構成している。これらの
図において、HEは熱交換部、Da ,Db ,Dc ,Dd
およびD1 ,D2 ,D 3 ,D4 はデストリビュータを示
し、これら各デストリビュータによって出口部と入口部
が異なる位置となる様に形成されており、例えば熱交換
ユニットA1 ,A2 ,A4 を窒素ガス、酸素ガスおよび
排窒素ガスの流通路、熱交換ユニットA 3 を圧縮空気の
流通路とし、これらを互いに隣接して積層することによ
り図7,8に示す様に組み付け、各流体の出入側にヘッ
ダーHを取り付けて主熱交換器Aとしている。For example, FIGS. 6A to 6D show corrugates.
It is a schematic explanatory view illustrating a fin-type heat exchange unit,
Distributor according to the four fluids undergoing heat exchange
Types of heat exchange units A with different inlet and outlet flow paths1
~ AFour Which are superimposed next to each other
Thus, the main heat exchanger A is configured. these
In the figure, HE is a heat exchange part, and Da, Db, Dc, Dd.
And D1 , DTwo , D Three , DFour Indicates distributor
And the outlet and inlet sections by each of these distributors.
Are formed at different positions, for example, heat exchange
Unit A1 , ATwo , AFour The nitrogen gas, oxygen gas and
Exhaust nitrogen gas flow path, heat exchange unit A Three The compressed air of
Flow passages, which are stacked adjacent to each other.
Assemble them as shown in Figs.
The main heat exchanger A is attached with a heater H.
【0010】ここで上記デストリビュータは、入口部か
ら入った流体を、各ユニットにおける広幅で微細ピッチ
のコルゲートフィンからなる熱交換部HEへ均等に分配
させるために設けられるもので、通常のデストリビュー
タは、例えば図6,7等にも示す如くピッチの粗いコル
ゲート板によって、流体を熱交換部の幅方向に分配して
導入し、或は熱交換部の幅方向から流体を集めて排出で
きる様に構成されている。Here, the distributor is provided for uniformly distributing the fluid entering from the inlet to the heat exchange section HE composed of wide and fine pitch corrugated fins in each unit. For example, as shown in FIGS. 6 and 7, the fluid can be distributed and introduced in the width direction of the heat exchange section by a corrugated plate having a coarse pitch, or the fluid can be collected and discharged from the width direction of the heat exchange section. Is configured.
【0011】ところがこの様な従来の主熱交換器では、
各熱交換ユニットの特に出口側デストリビュータ部分で
流体の流れ方向が変更されると共に、熱交換部HEより
も流路を狭められた状態で各流体が流れるため、この間
に大きな圧力損失の発生が避けられない。こうした圧力
損失が、戻りガス、その中でも特に流量の多い排窒素ガ
スや窒素ガスの流路内で生じると、後述する様な理由か
ら空気分離装置全体としての操業圧力に顕著な悪影響を
及ぼし、原料空気圧縮機の動力をかなり高めなければな
らなくなる。However, in such a conventional main heat exchanger,
The flow direction of the fluid is changed particularly at the outlet side distributor portion of each heat exchange unit, and each fluid flows in a state where the flow path is narrower than the heat exchange portion HE. Inevitable. If such pressure loss occurs in the return gas, particularly in the flow path of exhaust gas or nitrogen gas, which has a particularly high flow rate, it has a noticeable adverse effect on the operating pressure of the entire air separation device for the reasons described below, The power of the air compressor must be considerably increased.
【0012】一方、この様な空気分離設備においては、
空気圧縮機の動力が即当該装置の動力性能となるが、該
空気圧縮機の出口圧力が低ければ低いほど空気圧縮機の
動力は小さくなり、装置全体としての性能が高まること
が知られており、性能向上手段として該空気圧縮機の出
口圧力を下げる方向で種々検討が進められている。On the other hand, in such an air separation facility,
It is known that the power of the air compressor immediately becomes the power performance of the device, but the lower the outlet pressure of the air compressor, the lower the power of the air compressor and the higher the performance of the device as a whole. Various studies have been made as a means for improving performance in a direction of lowering the outlet pressure of the air compressor.
【0013】即ち本発明者らが実験により確認したとこ
ろによると、該排出側ラインの圧力を例えば0.1kg/c
m2G 低減することは、空気圧縮機の出口圧力を約0.3
5kg/cm2G 低下させることにつながる。これは、空気分
離設備内に主凝縮器8bが設けられており、ここで精留
塔上塔底部の酸素と下塔頂部の窒素との間で熱交換が行
なわれ、ここで酸素−窒素の各圧力下の沸点により、低
圧系統の差圧が高圧系統の差圧に関係してくるからであ
る。That is, according to the results of experiments conducted by the present inventors, the pressure of the discharge line was set to, for example, 0.1 kg / c.
Reducing m 2 G reduces the air compressor outlet pressure by about 0.3
This leads to a reduction of 5 kg / cm 2 G. In this, a main condenser 8b is provided in an air separation facility, in which heat exchange is performed between oxygen at the bottom of the upper rectification column and nitrogen at the top of the lower column, where oxygen-nitrogen is exchanged. This is because the differential pressure in the low-pressure system is related to the differential pressure in the high-pressure system due to the boiling point under each pressure.
【0014】たとえば精留塔上塔底部の酸素の沸点が、
例えば約1.4kg/cm2A で−180℃である場合、この
酸素は、下塔頂部における5.4kg/cm2A で−178.
2℃の窒素によって蒸発する(即ち、酸素は窒素によっ
て蒸発し、窒素は凝縮する)が、精留塔上塔底部の酸素
の圧力が0.1kg/cm2A 下がって約1.3kg/cm2A にな
ると温度は−180.7℃となり、下塔頂部における
5.05kg/cm2A で−179℃の窒素によって蒸発す
る。即ち、低圧系統すなわち上塔からの出側圧力を0.
1kg/cm2A 下げれば、高圧系統すなわち下塔の入側圧力
は0.35kg/cm2A(5.4−5.05kg/cm2A )下が
ることになるのである。For example, the boiling point of oxygen at the bottom of the rectification column is
For example, at -1.4 ° C. at about 1.4 kg / cm 2 A, this oxygen is -178 at 5.4 kg / cm 2 A at the top of the lower tower.
Although it is evaporated by nitrogen at 2 ° C. (that is, oxygen is evaporated by nitrogen and nitrogen is condensed), the pressure of oxygen at the bottom of the rectification column is reduced by about 0.1 kg / cm 2 A to about 1.3 kg / cm 2. At 2 A, the temperature is -180.7 ° C. and evaporates with nitrogen at -179 ° C. at 5.05 kg / cm 2 A at the top of the lower tower. That is, the outlet pressure from the low pressure system, that is, the upper tower, is set to 0.
If the pressure is reduced by 1 kg / cm 2 A, the inlet pressure of the high-pressure system, that is, the lower tower, is reduced by 0.35 kg / cm 2 A (5.4-5.05 kg / cm 2 A).
【0015】このことからも明らかである様に、空気分
離法を実施する際の空気圧縮機の出口圧力を小さくする
には、高圧系統(即ち、精留塔までの入側ライン)の圧
力を抑えるよりも、低圧系統(即ち、精留塔上塔からの
抜出しライン)の圧力を抑える方が効果的であり、即ち
低圧系統の圧力損失を極力少なくすることが、空気分離
法を実施する際の動力低減に大きく寄与する。そして、
該低圧系統の抜出しラインで生じる圧力損失の中でも、
主熱交換器の部分で生じる圧力損失はかなりの比率を占
めており、該主熱交換器における圧力損失を低減するこ
とは、空気分離設備の低圧系統の操作圧力低減、ひいて
は原料空気圧縮機の動力低減に大きく寄与してくる。As is clear from this, in order to reduce the outlet pressure of the air compressor at the time of performing the air separation method, the pressure of the high-pressure system (that is, the inlet line to the rectification column) must be reduced. It is more effective to suppress the pressure of the low-pressure system (that is, the extraction line from the upper tower of the rectification tower) than to suppress the pressure, that is, to reduce the pressure loss of the low-pressure system as much as possible when performing the air separation method. Greatly contributes to power reduction. And
Among the pressure losses occurring in the extraction line of the low-pressure system,
The pressure loss occurring in the main heat exchanger part accounts for a considerable proportion, and reducing the pressure loss in the main heat exchanger is due to the reduction in the operating pressure of the low pressure system of the air separation equipment and, consequently, the feed air compressor. This greatly contributes to power reduction.
【0016】ところが、前述の様な従来の主熱交換器で
は、各熱交換ユニットの出側デストリビュータ部分で流
体の流れ方向が変更されると共に、熱交換部HEよりも
流路を狭められた状態で各流体が流れるため、この間に
大きな圧力損失の発生が避けられない。こうした圧力損
失が、戻りガス、その中でも特に流量の多い排窒素ガス
や窒素ガスの流路内で生じると、空気分離装置全体とし
ての操業圧力に顕著な悪影響を及ぼし、原料空気圧縮機
の動力をかなり高めなければならなくなる。However, in the conventional main heat exchanger as described above, the flow direction of the fluid is changed at the outlet distributor portion of each heat exchange unit, and the flow path is narrower than the heat exchange portion HE. Since each fluid flows in the state, a large pressure loss is unavoidable during this time. If such a pressure loss occurs in the return gas, especially in the flow path of exhaust gas or nitrogen gas, which has a particularly high flow rate, it has a significant adverse effect on the operating pressure of the air separation device as a whole, and the power of the raw material air compressor is reduced. You have to raise it considerably.
【0017】こうしたデストリビュータ部で生じる圧力
損失は、上記の様な空気分離設備に設けられる主熱交換
器のデストリビュータに限らず、例えば他の化学装置や
空調設備などに設けられるコルゲートフィン型熱交換器
用のデストリビュータの場合にも同様に生じてくる。The pressure loss occurring in such a distributor section is not limited to the distributor of the main heat exchanger provided in the above-described air separation facility, but may be, for example, a corrugated fin-type heat exchanger provided in other chemical equipment or air conditioning equipment. This also occurs in the case of a distributor for an exchange.
【0018】[0018]
【発明が解決しようとする課題】本発明は、上記の様な
事情に着目してなされたものであって、その目的は、空
気分離設備に設けられる主熱交換器を始めとするコルゲ
ートフィン型熱交換器で避けることのできない圧力損失
とそれに伴う動力の増大を軽減することを目的として、
該コルゲートフィン型熱交換器で生じる圧力損失の最大
の原因となるデストリビュータ部での圧力損失を可及的
に低減しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a corrugated fin type including a main heat exchanger provided in an air separation facility. In order to reduce the pressure loss that cannot be avoided in heat exchangers and the accompanying increase in power,
It is an object of the present invention to reduce as much as possible the pressure loss at the distributor, which is the largest cause of the pressure loss generated in the corrugated fin type heat exchanger.
【0019】[0019]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るデストリビュータとは、コルゲー
トフィン型熱交換器における流体の出口部または入口部
に配置されるデストリビュータであって、各プレートの
間に、流体の通過空間を残して複数本の支柱を適宜間隔
で組み付けたものであるところに要旨が存在する。該デ
ストリビュータにおいて、各プレートの間に組み付けら
れる支柱の組付け間隔は、該デストリビュータ部での圧
力損失をより効果的に低減するため、コルゲートフィン
型熱交換器の熱交換部を構成するコルゲートフィン部に
おけるコルゲートピッチの3〜15倍程度とするのがよ
い。また該支柱は棒状であっても構わないが、成形や組
付けの作業性を考慮して最も好ましいのは板状のもので
ある。またこの支柱は、上記プレートとは別体に成形し
てその両端を両側のプレートに溶接することにより組み
付けてもよく、或は支柱の一端を一方のプレートと一体
的に成形し、他端を他方のプレートに溶接することによ
って組み付けることも有効である。A distributor according to the present invention which can solve the above-mentioned problems is a distributor arranged at an outlet or an inlet of a fluid in a corrugated fin type heat exchanger, The gist lies in that a plurality of columns are assembled at appropriate intervals between the plates, leaving a space for fluid passage. In the distributor, an assembling interval of the columns assembled between the respective plates is set so that a pressure loss in the distributor portion is more effectively reduced. The pitch is preferably about 3 to 15 times the corrugated pitch in the fin portion. The support may be rod-shaped, but a plate-shaped support is most preferable in consideration of the workability of molding and assembly. Also, this support may be assembled separately from the plate by welding the both ends to the plates on both sides, or one end of the support may be integrally formed with one plate, and the other end may be formed. Assembling by welding to the other plate is also effective.
【0020】[0020]
【発明の実施の形態】上記の様に本発明のデストリビュ
ータは、コルゲートフィン型熱交換器における流体の出
口部または入口部に配置されるもので、各プレートの間
に、流体の通過空間を残して複数本の支柱を適宜間隔で
組み付けることによって構成される。従来のコルゲート
フィン型熱交換器内に設けられるデストリビュータは、
前述の如く熱交換器の入口部から入った流体を、各ユニ
ットにおける広幅で微細ピッチのコルゲートフィンから
なる熱交換部HEへ均等に分配させるために必須と考え
られており、その構成としては、例えば前記図6,7等
にも示した様にプレートの間にピッチの粗いコルゲート
板を挟み込んで組み付けた構造のものが用いられてお
り、このタイプのデストリビュータでは、前述の如くこ
の部分で大きな圧力損失を生じることが避けられない。DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the distributor of the present invention is arranged at the outlet or inlet of a fluid in a corrugated fin type heat exchanger. It is constituted by assembling a plurality of pillars at appropriate intervals while leaving them. The distributor provided in the conventional corrugated fin type heat exchanger is:
As described above, it is considered essential to uniformly distribute the fluid entering from the inlet of the heat exchanger to the heat exchanger HE composed of corrugated fins having a wide width and fine pitch in each unit. For example, as shown in FIGS. 6 and 7 and the like, a structure in which a corrugated plate having a coarse pitch is interposed between plates and assembled is used. In this type of distributor, a large portion is formed in this portion as described above. It is inevitable that pressure loss will occur.
【0021】ところが本発明者等が種々検討を重ねたと
ころによると、該デストリビュータでは、その流体流れ
方向にある程度の長さを確保してやれば、内部にコルゲ
ート板を配置せずともプレートの間を単に中空状態にし
ておくだけで流体は十分に分配することが確認された。
ところが、デストリビュータを取り付けた熱交換ユニッ
トを多数重ね合わせ熱交換器として組付ける際には、該
デストリビュータを構成するプレート間に大きな締め付
け力が作用するので、該締め付け力に耐え得るだけの耐
圧強度を確保することが必須となる。However, the inventors of the present invention have conducted various studies, and found that in the distributor, if a certain length is secured in the fluid flow direction, the gap between the plates can be maintained without disposing the corrugated plate inside. It was confirmed that the fluid was sufficiently distributed only by keeping the hollow state.
However, when assembling a heat exchanger with a large number of heat exchange units to which a distributor is attached, a large clamping force acts between the plates constituting the distributor, so that a pressure resistance sufficient to withstand the clamping force is applied. It is essential to ensure strength.
【0022】即ちデストリビュータは、流体の通過空間
を十分に確保するという前提のもとでは、流体分配機能
よりもむしろ耐圧強度に主眼をおいて設計するのが有効
と考えられる。ところが、従来のコルゲート板をプレー
トに挟み込んだタイプのデストリビュータでは、該コル
ゲート板の耐圧強度が十分でないため、そのピッチを大
きめにして通過抵抗を下げるにしても自ずと限界があ
り、その結果として、該コルゲート板の部分での圧力損
失の増大が避けられなかった。That is, it is considered effective to design the distributor with a focus on the pressure resistance rather than the fluid distribution function, on the premise that a sufficient fluid passage space is secured. However, in the conventional distributor of a type in which a corrugated plate is sandwiched between plates, the pressure resistance of the corrugated plate is not sufficient.Therefore, even if the pitch is increased to lower the passage resistance, there is naturally a limit. An increase in pressure loss at the corrugated plate was inevitable.
【0023】これに対し本発明は、デストリビュータ内
での流体の分配は格別の配慮をせずとも十分に確保でき
るという確認結果を元に、特に組付け時に必要となるプ
レート間の耐圧強度向上に主眼をおいた改良研究の結果
完成されたもので、例えば図2に示す如くプレートP,
P間に任意の間隔で支柱Sを組み付け、該支柱Sによっ
て組付け時の拘束力に十分耐え得る耐圧強度を確保でき
る様にしたものである。即ちこの支柱Sは、その両端に
配置されるプレートP,Pの間で梁としての機能を果た
し、図面の上下方向からかかる拘束力を支持する。そし
てこの様な支柱は、従来のコルゲート板に比べると優れ
た耐圧強度を有しているので、その取付け間隔を十分に
広く取ることができ、即ち流体の通過空間を十分に広く
取ることができ、その結果として、デストリビュータ部
分での圧力損失を可及的に抑えることができるのであ
る。On the other hand, according to the present invention, based on the result of confirmation that the distribution of fluid in the distributor can be sufficiently ensured without special consideration, the pressure resistance between the plates, which is particularly required at the time of assembly, is improved. It was completed as a result of an improvement study with a focus on, for example, as shown in FIG.
The pillars S are assembled at arbitrary intervals between Ps, and the pillars S can secure a pressure resistance enough to withstand the binding force at the time of assembly. That is, the support S functions as a beam between the plates P disposed at both ends thereof, and supports the restraining force applied in the vertical direction of the drawing. And since such a pillar has a superior pressure resistance compared with the conventional corrugated plate, it is possible to take a sufficiently large mounting interval, that is, it is possible to take a sufficiently large fluid passage space. As a result, the pressure loss at the distributor portion can be suppressed as much as possible.
【0024】この様に本発明では、要するにプレート
P,Pの間に適宜間隔で支柱Sを組み付けて耐圧強度を
高めたところに最大の特徴を有するものであり、支柱S
の形状や構造はどの様なものであってもよく、流体の通
過空間を確保するという意味からすると断面が丸棒状や
矩形状等の棒状の支柱として組み付けることが有効であ
るが、その様な支柱ではその両端をプレートP,P間に
ロウ付けなどによって接合する作業が極めて煩雑とな
り、製作費用が嵩むばかりでなく大量生産も困難とな
る。従って製作コストや生産性などを考慮すると、例え
ば図2に示した様な板状の支柱Sを使用し、これをプレ
ートP,Pの間にロウ付けなど公知の手段で組み付ける
のが有利である。このとき、図3に示す如く一方のプレ
ートPと板状の支柱Sを引抜き成形法等によって一体成
形する方法を採用し、該支柱Sの他端側に他のプレート
Pを接合する方法を採用すれば、支柱Sを組み付ける際
の位置決めや位置固定等も極めて簡単に行なうことがで
きるので、この様な構造のものは製作の容易性なども踏
まえて最も実用性の高いものといえる。As described above, the present invention is characterized in that the struts S are assembled at appropriate intervals between the plates P and P to increase the pressure resistance, and the most significant feature is obtained.
Any shape or structure may be used, and it is effective to assemble it as a rod-shaped support with a cross section of round or rectangular from the viewpoint of securing the passage space for the fluid. In the case of the column, the operation of joining both ends of the column by brazing between the plates P becomes extremely complicated, which not only increases the production cost but also makes mass production difficult. Therefore, in consideration of manufacturing cost, productivity, and the like, it is advantageous to use a plate-shaped support S as shown in FIG. 2 and assemble it between the plates P, P by a known means such as brazing. . At this time, as shown in FIG. 3, a method of integrally forming one plate P and a plate-shaped support S by a drawing method or the like, and a method of joining another plate P to the other end of the support S is employed. Then, the positioning and fixing of the column S can be performed very easily, so that such a structure can be said to be the most practical one in view of the easiness of manufacture.
【0025】但し本発明では、前述の如く支柱によって
プレート間の耐圧強度を高めるところに特徴を有するも
のであるから、支柱の具体的な形状や構造は制限的でな
く、棒状など他の形状・構造の支柱を用いることも勿論
可能である。また板状の支柱を用いる場合、該板状支柱
は直線状の他、例えば図4に示す如く流体流れ方向に湾
曲させて流れ抵抗を小さくしたり、あるいは図5に示す
様に任意形状、任意サイズ、任意数の穴Wを明け、該穴
Wを通して流体が相互に分流できる様にすることも可能
である。However, since the present invention is characterized in that the pressure resistance between the plates is enhanced by the columns as described above, the specific shape and structure of the columns are not limited, and other shapes such as a rod shape or the like may be used. Of course, it is also possible to use a structural support. When a plate-shaped support is used, the plate-shaped support is not only linear, but also curved in the fluid flow direction as shown in FIG. 4 to reduce the flow resistance, or as shown in FIG. It is also possible to drill any size and any number of holes W through which fluids can diverge from one another.
【0026】またこれら支柱Sの取り付け間隔は、求め
られる耐圧強度を確保できる限度でできるだけ広くする
方が圧損低減に有利であるが、本発明者等が確認したと
ころによると、圧損低減効果を有効に発揮させるには、
適用される熱交換ユニットにおける熱交換部(たとえば
図6,7における符号HE)を構成するコルゲートフィ
ンのフィンピッチに対して3〜15倍程度の間隔で板状
支柱を組み付ければ、当該熱交換ユニットにおける圧力
損失を十分に低減できることが分かった。しかして、該
組付け間隔が15倍を超えて過度に広くなると、耐圧強
度が不足気味になったり或は支柱を過度に太くしなけれ
ばならなくなり、一方支柱の取付け間隔が3倍未満で
は、耐圧強度は十分に高められるが満足のいく圧損低減
効果が得られ難くなるからである。Although it is advantageous to reduce the pressure loss, it is advantageous to set the interval between the columns S as wide as possible as long as the required pressure resistance can be ensured. However, the present inventors have confirmed that the effect of reducing the pressure loss is effective. In order to demonstrate
If the plate-like supports are assembled at intervals of about 3 to 15 times the fin pitch of the corrugated fins constituting the heat exchange section (for example, reference numeral HE in FIGS. 6 and 7) of the applied heat exchange unit, the heat exchange It has been found that the pressure loss in the unit can be sufficiently reduced. Thus, if the installation interval is excessively wide exceeding 15 times, the pressure resistance strength tends to be insufficient or the support must be excessively thick. On the other hand, if the support installation interval is less than 3 times, This is because the pressure resistance can be sufficiently increased, but it is difficult to obtain a satisfactory pressure loss reduction effect.
【0027】ちなみに、コルゲートフィン型熱交換器に
おける設計圧力とピッチと板厚の関係は下記式で表わす
ことができ、 tp =Pt √(P/200σa) tp :セパレートシートの板厚、Pt :ピッチ、P:圧
力、σa:材料の許容応力(通常のAl合金は2.3) 熱交換器用コルゲートフィンに用いられるシートの板厚
は通常1mm、σaは2.3であるから、例えば設計圧
力を1.0kg/cm2 GとしたときのピッチP t を上
記式から求めると Pt =tp /√(P/200σa) =1.0/√(1.0/200・2.3)=21.4m
m となる。By the way, the corrugated fin type heat exchanger
The relationship between design pressure, pitch and plate thickness in the following equation
Can be tp = Pt √ (P / 200σa) tp : Separate sheet thickness, Pt : Pitch, P: Pressure
Force, σa: allowable stress of material (normal Al alloy is 2.3) Sheet thickness used for corrugated fin for heat exchanger
Is usually 1 mm and σa is 2.3.
Force 1.0kg / cmTwo Pitch P when G t On
From the notation, Pt = Tp /√(P/200σa)=1.0/√(1.0/200·2.3)=21.4m
m.
【0028】一方、熱交換ユニットをロウ付けで組み付
ける時の荷重に耐える強度を確保するには、下記式によ
って算出される耐座屈強度(Pcr)を満たすものでなけ
ればならない。 座屈強度(Pcr)=4π2 EI/l2 、 I=tl3 /12 (式中、E:弾性係数、I:断面2次モーメント、l:
フィン高さ t:フィン板厚をそれぞれ表わす)On the other hand, in order to secure the strength to withstand the load when the heat exchange unit is assembled by brazing, it must satisfy the buckling resistance (P cr ) calculated by the following equation. During buckling strength (P cr) = 4π 2 EI / l 2, I = tl 3/12 ( wherein, E: elastic modulus, I: sectional secondary moment, l:
Fin height t: Indicates fin plate thickness)
【0029】いま、同一素材からなり、同一フィン高さ
で板厚の異なる2種のコルゲートフィン(従ってEとl
は同一)について、夫々の座屈強度PCr1 ,PCr2 の計
算式を求めると、下記式の様になり、 フィン板厚がt1 のとき:PCr1 =[4π2・E・(t1・l3/1
2)/l3)] フィン板厚がt2 のとき:PCr2 =[4π2・E・(t2・l3/1
2)/l3)] 上記式より、 PCr1 /PCr2 =t1 /t2 が導かれる。また、同一の座屈強度を確保するという条
件の下では、フィンピッチ(P)とフィン板厚(t)の
間にはほぼ比例関係があるので、 t1 /t2 =Pt1/Pt2 の式が成立する。Now, two types of corrugated fins of the same material, of the same fin height and of different plate thicknesses (therefore E and l)
The same), when determining the formula of the seat of each column strength P Cr1, P Cr2, becomes as the following equation, when the fin thickness is t 1: P Cr1 = [4π 2 · E · (t 1 · l 3/1
2) / l 3)] When the fin thickness is t 2: P Cr2 = [4π 2 · E · (t 2 · l 3/1
Than 2) / l 3)] the above equation, P Cr1 / P Cr2 = t 1 / t 2 is derived. Further, under the condition that the same buckling strength is ensured, there is a substantially proportional relationship between the fin pitch (P) and the fin plate thickness (t), so that t 1 / t 2 = P t1 / P t2 Holds.
【0030】そして、たとえば空気分離器用主熱交換器
のコルゲートフィンとして一般的に用いられる4.2m
mピッチのフィンの板厚は0.4mmであり、前述の如
く板厚が1mmの場合の設計フィンピッチは21.4m
mであるから、これらの値を前記式に代入し、組み付け
時の負荷に耐える座屈強度を得る為のフィン板厚さを求
めると、 4.2/0.4=21.4/t、即ち、t≒2mm が導かれる。その結果、21.4ピッチでフィン厚さは
2mmとなるが、これは、4.2ピッチでフィン厚さが
0.4mmであるものよりも流路面積を大きく確保する
ことが可能となる。Then, for example, 4.2 m generally used as a corrugated fin of a main heat exchanger for an air separator.
The thickness of the m-pitch fin is 0.4 mm, and the design fin pitch is 21.4 m when the thickness is 1 mm as described above.
m, these values are substituted into the above equation to determine the fin plate thickness for obtaining the buckling strength that can withstand the load at the time of assembling: 4.2 / 0.4 = 21.4 / t, That is, t ≒ 2 mm is derived. As a result, the fin thickness is 2 mm at the 21.4 pitch, but it is possible to secure a larger flow path area than that of the fin thickness of 0.4 mm at the 4.2 pitch.
【0031】一方、熱交換器用として用いられる通常の
コルゲートフィンのフィンピッチはMax:4.2m
m,Min:1.4mmであるから、これらの値を考慮
してロウ付け時の荷重に耐える座屈強度を、デストリビ
ュータに設けられる補強用支柱によって確保するため
の、該補強用支柱の好適取付け間隔を求めると、最小値
は上記フィンピッチのMax/min比、即ち4.2/
1.4(=3倍)となり、最大値は、上記コルゲートフ
ィンピッチのMin値(1.4)に対する前記設定フィ
ンピッチ(即ち21.4)に対する比(即ち、21.4
/1.4=15倍)となり、 補強用支柱の好ましい最小ピッチ間隔=4.2/1.4
=3倍、 補強用支柱の好ましい最大ピッチ間隔=21.4/1.
4=15倍、 が導かれる。即ち、デストリビュータ部分における補強
用支柱の取付け間隔は、熱交換部におけるフィンピッチ
に対し3〜15倍の間隔とすることにより、流体の流れ
を疎外することなく十分な座屈強度を確保し得ることに
なる。On the other hand, the fin pitch of a normal corrugated fin used for a heat exchanger is Max: 4.2 m.
Since m and Min are 1.4 mm, considering these values, it is preferable to use the reinforcing column for securing the buckling strength against the load at the time of brazing by the reinforcing column provided in the distributor. When the mounting interval is determined, the minimum value is the Max / min ratio of the fin pitch, that is, 4.2 /
1.4 (= 3 times), and the maximum value is the ratio (ie, 21.4) of the corrugated fin pitch to the set fin pitch (ie, 21.4) with respect to the Min value (1.4).
/1.4=15 times), and the preferable minimum pitch interval of the reinforcing columns = 4.2 / 1.4.
= 3 times, preferred maximum pitch spacing of reinforcement columns = 21.4 / 1.
4 = 15 times. That is, by setting the mounting interval of the reinforcing columns in the distributor portion to be 3 to 15 times the fin pitch in the heat exchange section, sufficient buckling strength can be secured without alienating the fluid flow. Will be.
【0032】尚、本発明に係るデストリビュータの構成
素材は特に制限的でなく、ステンレス鋼、銅やその合
金、アルミニウムやその合金などを任意に選択して用い
ることができるが、強度や組付け時のロウ付け性等を総
合的に考えて最も一般的なのはアルミニウム合金であ
る。The constituent material of the distributor according to the present invention is not particularly limited, and stainless steel, copper and its alloys, aluminum and its alloys can be arbitrarily selected and used. Aluminum alloys are the most common, considering the brazing properties at the time.
【0033】上記の様に本発明では、コルゲートフィン
型熱交換器に設けられるデストリビュータにつき、特に
組付け固定に必要な耐圧強度向上に主眼をおいて、プレ
ート間に強化用支柱を組み付けた構造とすることによ
り、熱交換ユニット組付け時の強度や流体の分配性能に
は実質的な悪影響を及ぼすことなく圧力損失を低減する
ことができ、その結果として、熱交換器へ導入される流
体の送給駆動力を低減し、熱交換装置の稼働電力コスト
等を抑えることができる。従って本発明のデストリビュ
ータは、例えば図1に示した様な空気分離設備に設けら
れる主熱交換器はもとより、他の様々の分野で用いられ
る熱交換装置を作動する際のランニングコスト低減に著
しく寄与することができる。As described above, in the present invention, the distributor provided in the corrugated fin type heat exchanger has a structure in which reinforcing columns are assembled between the plates with a particular focus on improving the pressure resistance required for the assembly and fixing. By doing so, the pressure loss can be reduced without substantially affecting the strength and fluid distribution performance when assembling the heat exchange unit, and as a result, the fluid introduced into the heat exchanger can be reduced. The feed driving force can be reduced, and the operating power cost and the like of the heat exchange device can be suppressed. Therefore, the distributor of the present invention can significantly reduce the running cost when operating a heat exchanger used in various other fields as well as a main heat exchanger provided in an air separation facility as shown in FIG. 1, for example. Can contribute.
【0034】[0034]
【発明の効果】本発明は以上の様に構成されており、こ
のデストリビュータを使用することによって、熱交換ユ
ニット組付け時の強度や流体の分配性能には実質的な悪
影響を及ぼすことなく圧力損失を低減し、ひいては、熱
交換器へ導入される流体の送給駆動力を低減し、熱交換
装置の稼働電力コスト等を含めたランニングコストの低
減に寄与できる。The present invention is configured as described above. By using this distributor, the pressure and the fluid distribution performance at the time of assembling the heat exchange unit can be reduced without substantially affecting the fluid distribution performance. The loss can be reduced, and the driving force for feeding the fluid introduced into the heat exchanger can be reduced, which can contribute to the reduction of running costs including the operating power cost of the heat exchanger.
【図1】本発明のデストリビュータ付き熱交換器の一つ
の利用形態として、空気分離設備を例示するフロー図で
ある。FIG. 1 is a flowchart illustrating an air separation facility as one use form of a heat exchanger with a distributor of the present invention.
【図2】本発明にかかるデストリビュータを例示する一
部破断見取り図である。FIG. 2 is a partially cutaway perspective view illustrating a distributor according to the present invention.
【図3】本発明にかかる他のデストリビュータを例示す
る一部破断見取り図である。FIG. 3 is a partially cutaway perspective view illustrating another distributor according to the present invention.
【図4】本発明にかかる更に他のデストリビュータを例
示する一部破断見取り図である。FIG. 4 is a partially cutaway perspective view illustrating still another distributor according to the present invention.
【図5】本発明にかかる更に他のデストリビュータを例
示する一部破断見取り図である。FIG. 5 is a partially cutaway perspective view illustrating still another distributor according to the present invention.
【図6】空気分離設備用主熱交換器を構成する熱交換ユ
ニットを例示する概略正面図である。FIG. 6 is a schematic front view illustrating a heat exchange unit constituting a main heat exchanger for an air separation facility.
【図7】熱交換ユニットの組付け状態を示す一部破断見
取り図である。FIG. 7 is a partially cutaway view showing an assembled state of the heat exchange unit.
【図8】流体の出・入部にヘッダーを取り付けた主熱交
換器を例示する見取り図である。FIG. 8 is a schematic view illustrating a main heat exchanger in which a header is attached to an inlet / outlet of a fluid.
1 エアフィルタ 2 原料空気圧縮機 3 冷却器 4 蒸発クーラ− 5 膨張タービン 6 モレキュラシーブ吸着器 7 主熱交換器 8 精留塔 8a 下塔 8b 主凝縮器 8c 上塔 9 窒素リッチ液 10 酸素リッチ液 29 再生用加熱器 U,U’ 熱交換ユニット D1 ,D2 ,D3 ,D4 ,D5 デストリビュータ F コルゲートフィン P プレート S 支柱 W 穴DESCRIPTION OF SYMBOLS 1 Air filter 2 Raw material air compressor 3 Cooler 4 Evaporative cooler 5 Expansion turbine 6 Molecular sieve adsorber 7 Main heat exchanger 8 Rectification tower 8a Lower tower 8b Main condenser 8c Upper tower 9 Nitrogen rich liquid 10 Oxygen rich liquid 29 regeneration heater U, U 'heat exchange unit D 1, D 2, D 3 , D 4, D 5 distributor F corrugated fin P plate S strut W hole
Claims (5)
体の出口部または入口部に配置されるデストリビュータ
であって、各プレートの間に、流体の通過空間をに残し
て複数本の支柱を適宜間隔で組み付けたものであること
を特徴とする熱交換器用デストリビュータ。1. A distributor arranged at an outlet or an inlet of a fluid in a corrugated fin type heat exchanger, wherein a plurality of columns are appropriately spaced between respective plates while leaving a fluid passage space. Distributor for heat exchangers, characterized by being assembled in the above.
ィン型熱交換器の熱交換部を構成するコルゲートフィン
部におけるコルゲートピッチの3〜15倍である請求項
1記載のデストリビュータ。2. The distributor according to claim 1, wherein the spacing between the columns is 3 to 15 times the corrugated pitch of the corrugated fins constituting the heat exchange section of the corrugated fin heat exchanger.
は2記載のデストリビュータ。3. The distributor according to claim 1, wherein the support is a plate-like member.
的に成形され、他端が他方のプレートに溶接されている
請求項2記載のデストリビュータ。4. The distributor according to claim 2, wherein one end of the support is integrally formed with one plate and the other end is welded to the other plate.
接されている請求項2記載のデストリビュータ。5. The distributor according to claim 2, wherein both ends of said column are welded to plates on both sides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9059643A JPH10253286A (en) | 1997-03-13 | 1997-03-13 | Distributor for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9059643A JPH10253286A (en) | 1997-03-13 | 1997-03-13 | Distributor for heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10253286A true JPH10253286A (en) | 1998-09-25 |
Family
ID=13119117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9059643A Withdrawn JPH10253286A (en) | 1997-03-13 | 1997-03-13 | Distributor for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10253286A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071288A (en) * | 2000-06-16 | 2002-03-08 | Sumitomo Precision Prod Co Ltd | Plate fin type heat exchanger |
BE1018518A3 (en) * | 2009-04-06 | 2011-02-01 | Atlas Copco Airpower Nv | IMPROVED HEAT EXCHANGER. |
JP2016200346A (en) * | 2015-04-13 | 2016-12-01 | 日野自動車株式会社 | Heat exchanger and waste heat recovery device |
US20170350660A1 (en) * | 2016-06-06 | 2017-12-07 | Kamaldeep KALSI | Heat exchanger |
FR3074886A1 (en) * | 2017-12-07 | 2019-06-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | EXCHANGER-REACTOR OR EXCHANGER WITH IMPROVED HYDRAULIC PASSAGES |
EP3647703A1 (en) * | 2018-11-05 | 2020-05-06 | Hamilton Sundstrand Corporation | Additively manufactured fin slots for thermal growth |
EP3667217A1 (en) * | 2018-12-13 | 2020-06-17 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device for separating or liquefaction of a gas operating at cryogenic temperatures |
US11415256B2 (en) | 2019-12-12 | 2022-08-16 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus for the separation or liquefaction of a gas operating at cryogenic temperatures |
-
1997
- 1997-03-13 JP JP9059643A patent/JPH10253286A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071288A (en) * | 2000-06-16 | 2002-03-08 | Sumitomo Precision Prod Co Ltd | Plate fin type heat exchanger |
BE1018518A3 (en) * | 2009-04-06 | 2011-02-01 | Atlas Copco Airpower Nv | IMPROVED HEAT EXCHANGER. |
WO2010115246A3 (en) * | 2009-04-06 | 2011-03-03 | Atlas Copco Airpower | Improved heat exchanger |
US20120031597A1 (en) * | 2009-04-06 | 2012-02-09 | Atlas Copco Airpower | Improved heat exchanger |
US9574828B2 (en) | 2009-04-06 | 2017-02-21 | Atlas Copco Airpower Naamloze Vennootschap | Heat exchanger |
JP2016200346A (en) * | 2015-04-13 | 2016-12-01 | 日野自動車株式会社 | Heat exchanger and waste heat recovery device |
US20170350660A1 (en) * | 2016-06-06 | 2017-12-07 | Kamaldeep KALSI | Heat exchanger |
JP2019518931A (en) * | 2016-06-06 | 2019-07-04 | エナジー テクノロジーズ インスティチュート エルエルピーEnergy Technologies Institute LLP | Heat exchanger |
US10401096B2 (en) * | 2016-06-06 | 2019-09-03 | Energy Technologies Institute Llp | Heat exchanger |
FR3074886A1 (en) * | 2017-12-07 | 2019-06-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | EXCHANGER-REACTOR OR EXCHANGER WITH IMPROVED HYDRAULIC PASSAGES |
EP3647703A1 (en) * | 2018-11-05 | 2020-05-06 | Hamilton Sundstrand Corporation | Additively manufactured fin slots for thermal growth |
EP3667217A1 (en) * | 2018-12-13 | 2020-06-17 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device for separating or liquefaction of a gas operating at cryogenic temperatures |
FR3090082A1 (en) * | 2018-12-13 | 2020-06-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus for separating or liquefying a gas operating at cryogenic temperatures. |
US11415256B2 (en) | 2019-12-12 | 2022-08-16 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus for the separation or liquefaction of a gas operating at cryogenic temperatures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3527609B2 (en) | Air separation method and apparatus | |
JP2009511849A (en) | Vaporization and / or condensation methods in heat exchangers | |
US10378833B2 (en) | Stacking-type header, heat exchanger, and air-conditioning apparatus | |
CN1119618C (en) | Improved heat exchanger with brazed plates | |
US7779899B2 (en) | Plate-fin heat exchanger having application to air separation | |
KR20060025081A (en) | An evaporator using micro- channel tubes | |
AU1135400A (en) | Heat exchanger, in particular plate heat exchanger for an air separation unit | |
JPH10253286A (en) | Distributor for heat exchanger | |
JP2002130866A (en) | Condenser for air conditioning | |
JP4592125B2 (en) | Flowing film condensing evaporator | |
CN110678712B (en) | Heat exchanger, air separation device and heat exchanger assembling method | |
JPH09206588A (en) | Liquid-vapor contactor | |
JP2006105581A (en) | Laminated heat exchanger | |
JP2013024517A (en) | Laminated heat exchanger | |
JP3661275B2 (en) | Stacked evaporator | |
WO2021182161A1 (en) | Heat exchanger | |
GB2333972A (en) | Brazed plates cryogenic condenser | |
JPH10259991A (en) | Heat exchanger for air separation device and air separation device | |
JP2017090035A (en) | Plate heat exchanger/condensation vaporizer and low temperature separation method of air | |
KR100265818B1 (en) | Method of and apparatus for air separation | |
JPH10259988A (en) | Air separation method and device | |
JPH0534082A (en) | Condensor/evaporator | |
CN113474956B (en) | Device for heat and mass exchange | |
JPH10185471A (en) | Heat exchanger | |
JP3863217B2 (en) | Stacked evaporator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040601 |