JPH10252931A - Solenoid proportional control valve - Google Patents

Solenoid proportional control valve

Info

Publication number
JPH10252931A
JPH10252931A JP9062727A JP6272797A JPH10252931A JP H10252931 A JPH10252931 A JP H10252931A JP 9062727 A JP9062727 A JP 9062727A JP 6272797 A JP6272797 A JP 6272797A JP H10252931 A JPH10252931 A JP H10252931A
Authority
JP
Japan
Prior art keywords
valve
solenoid
magnetic material
valve opening
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9062727A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP9062727A priority Critical patent/JPH10252931A/en
Publication of JPH10252931A publication Critical patent/JPH10252931A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solenoid proportional control valve capable of controlling the valve opening with controlling accuracy by correctly detecting the opening of a valve disk arranged in a conduit in which the fluid flows from the conduit with simple constitution, and feeding the detected signal back to the solenoid. SOLUTION: A magnetic member 8 to be jointly operated with a valve disk 3 to be positionally controlled by a solenoid is arranged in a conduit, a primary excitation coil 31 and a plurality of secondary induction coils 32a... are juxtaposed outside the conduit along the moving direction of the magnetic member 8, the position of the magnetic member 8 is detected from the phase difference between the carrier wave of the AC voltage to be applied to the primary excitation coil 31 and the synthesized wave of the induction voltage to be generated in a plurality of secondary induction coils 32a..., and valve opening sensors 30, 40 to detect the opening of the valve disk 3 based thereon are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、管路内を通る流
体の流量を往復動電磁ソレノイドで制御するようにした
電磁比例制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic proportional control valve in which a flow rate of a fluid passing through a pipeline is controlled by a reciprocating electromagnetic solenoid.

【0002】[0002]

【従来の技術】例えばカーエアコンの冷凍サイクル中に
用いられる膨張弁には、弁を往復動電磁ソレノイドで駆
動する電磁比例制御弁によって蒸発器に送り込まれる冷
媒の流量を制御するようにしたものがある。
2. Description of the Related Art For example, an expansion valve used in a refrigeration cycle of a car air conditioner is one in which the flow rate of refrigerant sent to an evaporator is controlled by an electromagnetic proportional control valve that drives the valve with a reciprocating electromagnetic solenoid. is there.

【0003】従来、そのような電磁比例制御式の膨張弁
においては、単にソレノイドへの通電電流を制御するこ
とによって弁開度を制御していた。
Heretofore, in such an electromagnetic proportional control type expansion valve, the valve opening has been controlled simply by controlling the current supplied to a solenoid.

【0004】[0004]

【発明が解決しようとする課題】上述のように、単にソ
レノイドへの通電電流を制御することによって弁開度を
制御する方式では高精度の制御を行うことは困難であ
り、高精度の弁開度制御を行うためには、弁開度を検出
し、それによって得られた弁開度信号をソレノイド制御
にフィードバックすることが望ましい。
As described above, it is difficult to perform high-precision valve opening by controlling the valve opening by simply controlling the current supplied to the solenoid. In order to perform the degree control, it is desirable to detect the valve opening and feed back the valve opening signal obtained thereby to the solenoid control.

【0005】しかし、冷媒が流れる管路内に配置された
弁体の開度を管路外から正確に検出することは難しいた
め、そのようなフィードバック制御は実用化されておら
ず、高精度の弁開度制御を行うことができなかった。
[0005] However, since it is difficult to accurately detect the opening of the valve element disposed in the pipeline through which the refrigerant flows, such feedback control has not been put to practical use, and high precision Valve opening control could not be performed.

【0006】そこで本発明は、流体が流れる管路内に配
置された弁体の開度を、簡単な構成で管路外から正確に
検出し、その検出信号を電磁ソレノイドにフィードバッ
クして、高精度の弁開度制御を行うことができる電磁比
例制御弁を提供することを目的とする。
Therefore, the present invention accurately detects the opening of a valve disposed in a conduit through which a fluid flows from outside the conduit with a simple configuration, and feeds back a detection signal to an electromagnetic solenoid to thereby achieve a high level. An object of the present invention is to provide an electromagnetic proportional control valve capable of performing accurate valve opening control.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の電磁比例制御弁は、流体が通される管路内
に配置された弁体の位置を往復動電磁ソレノイドで制御
することによって、上記管路内を通る流体の流量を制御
するようにした電磁比例制御弁において、上記弁体と共
動する磁性材を上記管路内に配置すると共に、その磁性
材の移動方向に沿って上記管路外に一次励磁コイルと複
数の二次誘導コイルを並設して、上記一次励磁コイルに
印加される交流電圧の搬送波と上記複数の二次誘導コイ
ルに生じる誘起電圧の合成波との位相差から上記磁性材
の位置を検出し、それに基づいて上記弁体の開度を検出
する弁開度センサーを設けたことを特徴とする。
In order to achieve the above object, an electromagnetic proportional control valve according to the present invention controls the position of a valve disposed in a pipe through which a fluid is passed by a reciprocating electromagnetic solenoid. Thereby, in the electromagnetic proportional control valve configured to control the flow rate of the fluid passing through the pipe, the magnetic material cooperating with the valve body is arranged in the pipe, and the magnetic material moves in the moving direction of the magnetic material. A primary excitation coil and a plurality of secondary induction coils are juxtaposed along the outside of the conduit, and a carrier wave of an AC voltage applied to the primary excitation coil and a composite wave of an induced voltage generated in the plurality of secondary induction coils And a valve opening sensor for detecting the position of the magnetic material from the phase difference between the two and detecting the opening of the valve body based on the detected position.

【0008】なお、上記電磁ソレノイドへの通電電流を
制御するためのソレノイド制御手段が設けられていて、
上記弁開度センサーによる検出信号が上記ソレノイド制
御手段にフィードバックされて上記弁開度が制御される
ようにするとよい。
[0008] Solenoid control means for controlling the current supplied to the electromagnetic solenoid is provided.
The detection signal from the valve opening sensor may be fed back to the solenoid control means to control the valve opening.

【0009】[0009]

【発明の実施の形態】図面を参照して本発明の実施の形
態を説明する。図1は、カーエアコンの冷凍サイクル中
において、図示されていない蒸発器に断熱膨張させなが
ら送り込む冷量の流量を制御するための膨張弁である。
ただし本発明は、膨張弁に限らず、各種流体の流量を制
御するための電磁比例制御弁に適用することができる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an expansion valve for controlling a flow rate of a cooling amount to be sent while adiabatically expanding an evaporator (not shown) during a refrigeration cycle of a car air conditioner.
However, the present invention is not limited to the expansion valve, and can be applied to an electromagnetic proportional control valve for controlling the flow rates of various fluids.

【0010】1は、図示されていないリキッドタンクか
ら送られてくる高圧冷媒が通される冷媒流路管であり、
クランク状に曲げて形成された流路部分に弁座2が形成
され、弁座2との間の隙間Aの大きさを可変な弁体3が
配置されている。
Reference numeral 1 denotes a refrigerant passage pipe through which high-pressure refrigerant sent from a liquid tank (not shown) passes.
A valve seat 2 is formed in a flow path portion formed by bending into a crank shape, and a valve body 3 having a variable gap A between the valve seat 2 and the valve seat 2 is disposed.

【0011】弁体3は細長く形成されて、冷媒流路管1
の管軸に対して垂直の向きに弁座2内を通って配置され
ており、上流側から弁座2に対向して形成されたテーパ
部分と弁座2との間の隙間Aが冷媒流路の絞り部となっ
て、そこを通る冷媒が断熱膨張を開始する。そして、弁
体3を軸線方向に移動させてその隙間Aの大きさを変え
ることによって、冷媒の流量が制御される。
The valve body 3 is formed to be elongated, and the refrigerant flow pipe 1
Is disposed through the valve seat 2 in a direction perpendicular to the pipe axis, and a gap A between the tapered portion formed opposite the valve seat 2 from the upstream side and the valve seat 2 forms a refrigerant flow. It becomes a throttle portion of the path, and the refrigerant passing therethrough starts adiabatic expansion. The flow rate of the refrigerant is controlled by moving the valve body 3 in the axial direction to change the size of the gap A.

【0012】弁体3の先側の半部は、冷媒流路管1から
側方に突出しており、冷媒が外部に漏れ出さないように
冷媒流路管1に突設された非磁性材からなる案内筒4内
に、軸線方向に進退自在に嵌挿されている。
The front half of the valve body 3 projects laterally from the refrigerant flow pipe 1 and is made of a non-magnetic material projecting from the refrigerant flow pipe 1 so that the refrigerant does not leak out. Is inserted in the guide cylinder 4 so as to be able to advance and retreat in the axial direction.

【0013】弁体3には、一端が弁座2より上流側にお
いて冷媒流路管1内に開口し、他端が弁体3の突出端に
開口する連通孔5が穿設されていて、弁体3の軸線方向
に冷媒圧がかからないようになっている。その効果を得
るために、案内筒4の内径寸法は弁座2の径と同寸法に
形成されている。
A communication hole 5 is formed in the valve body 3, one end of which opens into the refrigerant flow pipe 1 on the upstream side of the valve seat 2, and the other end of which opens at the protruding end of the valve body 3. The refrigerant pressure is not applied in the axial direction of the valve body 3. In order to obtain the effect, the inner diameter of the guide cylinder 4 is formed to be the same as the diameter of the valve seat 2.

【0014】10は、弁体3の位置を制御するために配
置された往復動電磁ソレノイドであり、弁体3の端部に
当接する可動鉄芯12が、電磁コイル11によって駆動
されて弁体3の中心軸線方向に往復動するように配置さ
れている。
Reference numeral 10 denotes a reciprocating electromagnetic solenoid arranged to control the position of the valve element 3. A movable iron core 12 abutting on an end of the valve element 3 is driven by an electromagnetic coil 11 to rotate the valve element 3. 3 so as to reciprocate in the central axis direction.

【0015】弁体3は突出端側から圧縮コイルバネ6に
よって付勢され、それと逆方向に、可動鉄芯12が圧縮
コイルバネ13によって付勢されている。したがって、
弁体3は両圧縮コイルバネ6,13の付勢力と可動鉄芯
12の推力の釣り合う位置で静止する。
The valve element 3 is urged by a compression coil spring 6 from the protruding end side, and the movable iron core 12 is urged by a compression coil spring 13 in the opposite direction. Therefore,
The valve element 3 stops at a position where the urging forces of both the compression coil springs 6 and 13 and the thrust of the movable iron core 12 are balanced.

【0016】したがって、ソレノイド制御回路20に入
力される弁開度設定信号に基づいてソレノイド制御回路
20が電磁コイル11に流す電流を変化させると、弁体
3が軸線方向に移動してその静止位置が変化し、それに
よって弁座2と弁体3との間の隙間Aの面積が変わるの
で、冷媒流路管1内を通って蒸発器に送り込まれる冷媒
の流量を変えることができる。なお、図3は、弁体3が
弁座2に密着した全閉状態を示し、図5は、弁体3が弁
座2から最も離れた全開状態を示している。
Therefore, when the solenoid control circuit 20 changes the current flowing through the electromagnetic coil 11 based on the valve opening setting signal input to the solenoid control circuit 20, the valve body 3 moves in the axial direction and its stationary position. Is changed, whereby the area of the gap A between the valve seat 2 and the valve body 3 is changed, so that the flow rate of the refrigerant sent into the evaporator through the refrigerant flow pipe 1 can be changed. 3 shows a fully closed state in which the valve body 3 is in close contact with the valve seat 2, and FIG. 5 shows a fully open state in which the valve body 3 is farthest from the valve seat 2.

【0017】弁体3の冷媒流路管1から側方に突出した
部分には、例えば真鍮材によって形成された非磁性材7
を間に挟んで、例えば鉄材からなる二つの磁性材8が、
弁体3の軸線方向に並んで固着されている。
A non-magnetic material 7 made of, for example, a brass material is provided on a portion of the valve body 3 projecting laterally from the refrigerant flow pipe 1.
Sandwiching the two magnetic materials 8 made of, for example, iron,
The valve body 3 is fixed along the axial direction.

【0018】非磁性材7と磁性材8はいずれも筒状に形
成されていて、外周面は案内筒4の内周面に面し、弁体
3が軸線方向に移動すれば、それと共に非磁性材7と磁
性材8も移動する。
The non-magnetic material 7 and the magnetic material 8 are both formed in a cylindrical shape, and the outer peripheral surface faces the inner peripheral surface of the guide cylinder 4, and when the valve body 3 moves in the axial direction, the non-magnetic material 7 and the magnetic material 8 move together. The magnetic material 7 and the magnetic material 8 also move.

【0019】その非磁性材7と磁性材8とが配置された
案内筒4の外部には、非磁性材7と磁性材8の位置に対
応して弁開度検出部30が設けられている。この弁開度
検出部30とそれに電気的に接続された弁開度検出回路
40とは、磁性材8の位置から弁体3の位置を検出し、
それによって弁体3の開度(弁開度)を検出する弁開度
検出センサーを構成している。
Outside the guide cylinder 4 in which the non-magnetic material 7 and the magnetic material 8 are arranged, valve opening detectors 30 are provided corresponding to the positions of the non-magnetic material 7 and the magnetic material 8. . The valve opening detection section 30 and the valve opening detection circuit 40 electrically connected thereto detect the position of the valve body 3 from the position of the magnetic material 8,
This constitutes a valve opening detection sensor that detects the opening of the valve body 3 (valve opening).

【0020】図2に拡大して示されるように、弁開度検
出部30内には、薄いドーナツ状に形成された5つの一
次励磁コイル31と4つの二次誘導コイル32a,33
a,32b,33bとが交互に配置されている。
As shown in FIG. 2 in an enlarged manner, five primary exciting coils 31 and four secondary induction coils 32a and 33 formed in a thin donut shape are provided in the valve opening detecting section 30.
a, 32b and 33b are arranged alternately.

【0021】5つの一次励磁コイル31には、コイルの
巻き線が同方向に連続して巻かれていて、一つの一次励
磁コイルを5つに分散配置した構造になっている。な
お、一次励磁コイル31は一まとめに構成してもよい。
Each of the five primary excitation coils 31 has a structure in which the windings of the coils are continuously wound in the same direction, and one primary excitation coil is dispersedly arranged in five. In addition, the primary excitation coil 31 may be configured collectively.

【0022】このような構造により、一次励磁コイル3
1に一定の交流電圧を印加すると、磁束をよく通す二つ
の磁性材8との位置関係に左右される大きさの二次誘起
電圧が、各二次誘導コイル32a,33a,32b,3
3bに誘起される。
With such a structure, the primary excitation coil 3
When a constant AC voltage is applied to the first and second induction coils 32, 33a, 32a, and 32b, the magnitude of the secondary induced voltage depends on the positional relationship between the two magnetic materials 8 that pass the magnetic flux well.
3b.

【0023】4つの二次誘導コイル32a,33a,3
2b,33bは、一つおきに配置された二つずつが連続
した巻き線で巻かれている。ただし、同じ巻き線で繋が
っている二つの二次誘導コイルの巻き方向は逆になって
いる。
The four secondary induction coils 32a, 33a, 3
2b and 33b are wound in a continuous winding in which every other two are arranged. However, the winding directions of the two secondary induction coils connected by the same winding are opposite.

【0024】即ち、第1の二次誘導コイル32aと第3
の二次誘導コイル32bとが巻き方向を逆にして同じ巻
き線で繋がっていて、第2の二次誘導コイル33aと第
4の二次誘導コイル33bとが巻き方向を逆にして同じ
巻き線で繋がっている。
That is, the first secondary induction coil 32a and the third
Are connected by the same winding with the winding direction reversed, and the second secondary induction coil 33a and the fourth secondary induction coil 33b have the same winding with the winding direction reversed. It is connected by.

【0025】したがって、一次励磁コイル31に一定の
交流電圧を印加すると、第1の二次誘導コイル32aの
誘起電圧と第3の二次誘導コイル32bの誘起電圧との
差分の電圧値V1と、第2の二次誘導コイル33aの誘
起電圧と第4の二次誘導コイル33bの誘起電圧との差
分の電圧値V2とが出力されて、弁開度検出回路40に
入力される。
Therefore, when a constant AC voltage is applied to the primary excitation coil 31, a voltage value V1 of a difference between the induced voltage of the first secondary induction coil 32a and the induced voltage of the third secondary induction coil 32b is obtained. The voltage value V2 of the difference between the induced voltage of the second secondary induction coil 33a and the induced voltage of the fourth secondary induction coil 33b is output and input to the valve opening detection circuit 40.

【0026】その出力電圧値V1及びV2の値は、各二
次誘導コイル32a,33a,32b,33bと磁性材
8との位置関係によって相違する。なお、図4は全閉状
態の弁開度検出部30を示し、図6は全開状態の弁開度
検出部30を示している。
The values of the output voltage values V1 and V2 differ depending on the positional relationship between the secondary induction coils 32a, 33a, 32b, 33b and the magnetic material 8. FIG. 4 shows the valve opening detector 30 in a fully closed state, and FIG. 6 shows the valve opening detector 30 in a fully open state.

【0027】弁開度検出回路40においては、一次励磁
コイル31に流される交流電圧の搬送波と弁開度検出部
30からの出力電圧V1,V2の合成波との位相差か
ら、磁性材8の位置(即ち弁体3の位置)が検出され、
それに基づいて弁体3の開度が検出される。その具体的
内容については「日経メディカル1996.10.14no.491」第
49頁〜第55頁等に記載されているが、概略は次の通
りである。
In the valve opening detection circuit 40, the phase difference between the carrier of the AC voltage flowing through the primary excitation coil 31 and the composite wave of the output voltages V 1 and V 2 from the valve opening detection section 30 is used to determine the magnetic material 8. The position (ie, the position of the valve element 3) is detected,
Based on this, the opening of the valve body 3 is detected. The specific contents are described in "Nikkei Medical 1996.10.14 no.491", pages 49 to 55, etc., and the outline is as follows.

【0028】即ち、一次励磁コイル31に搬送波V=A
sinωt の交流電圧を印加すると、 V1=Bsinωt・sinx V2=Bsinωt・cosx の二次誘起電圧が得られる。ただし、xは、磁性材8の
基準位置(例えば全閉の状態)からの変移量である。
That is, the carrier wave V = A is applied to the primary excitation coil 31.
When an AC voltage of sinωt is applied, a secondary induced voltage of V1 = Bsinωt · sinx V2 = Bsinωt · cosx is obtained. Here, x is a displacement amount of the magnetic material 8 from a reference position (for example, a fully closed state).

【0029】そこで、 V3=V2+(1/ω)・(dV1/dt) =B(cosωt・sinx+sinωt・cosx) =Bsin(ωt+x) を求める。Then, V3 = V2 + (1 / ω) · (dV1 / dt) = B (cosωt · sinx + sinωt · cosx) = Bsin (ωt + x)

【0030】そして、この合成波V3と一次励磁コイル
31への印加電圧の搬送波Vとの位相差から、磁性材8
の基準位置からの移動量が検出され、さらに、それに基
づいて弁体3の位置、そして弁体3の開度が検出され
る。
From the phase difference between the composite wave V3 and the carrier V of the voltage applied to the primary excitation coil 31, the magnetic material 8
Is detected from the reference position, and the position of the valve body 3 and the opening degree of the valve body 3 are detected based on the movement amount.

【0031】図1に戻って、上述のようにして弁開度検
出部30と弁開度検出回路40において検出された弁開
度の信号は、弁開度検出回路40からソレノイド制御回
路20にフィードバックされ、その弁開度が設定信号に
よって入力された値と一致するように電磁ソレノイド1
0の電磁コイル11への通電電流値が制御される。
Returning to FIG. 1, the signal of the valve opening detected by the valve opening detecting section 30 and the valve opening detecting circuit 40 as described above is sent from the valve opening detecting circuit 40 to the solenoid control circuit 20. The electromagnetic solenoid 1 is fed back so that the valve opening coincides with the value input by the setting signal.
The value of the current supplied to the electromagnetic coil 11 of 0 is controlled.

【0032】図7は、本発明の第2の実施の形態を示し
ており、スリーブによって形成した案内筒4の端部が弁
座2になっており、可動鉄芯12を案内するスリーブ1
4も弁座2部分まで長く形成されている。
FIG. 7 shows a second embodiment of the present invention. An end portion of a guide cylinder 4 formed by a sleeve serves as a valve seat 2 and a sleeve 1 for guiding a movable iron core 12.
4 is also formed long up to the valve seat 2 portion.

【0033】また、弁体3は短く形成されていて、弁体
3に連結された細長いパイプ状の連結部材9の先側の部
分に磁性材8と非磁性材7が固着されていて、それらが
一体となって軸線方向に移動できるようになっている。
弁開度検出部30等の構成は上述の第1の実施の形態と
同じである。
The valve body 3 is formed short, and a magnetic material 8 and a non-magnetic material 7 are fixed to a front portion of an elongated pipe-like connecting member 9 connected to the valve body 3. Are integrally movable in the axial direction.
The configuration of the valve opening detector 30 and the like is the same as in the above-described first embodiment.

【0034】[0034]

【発明の効果】本発明の電磁比例制御弁によれば、管路
外に設けた一次励磁コイルに印加される交流電圧の搬送
波と複数の二次誘導コイルに生じる誘起電圧の合成波と
の位相差から弁体の開度を検出する弁開度センサーを設
けたことにより、流体が流れる管路内に配置された弁体
の開度を、簡単な構成で管路外から正確に検出すること
ができ、その検出信号をソレノイドにフィードバックす
ることによって、高精度の弁開度制御を行うことができ
る。
According to the electromagnetic proportional control valve of the present invention, the position of the carrier of the AC voltage applied to the primary excitation coil provided outside the pipeline and the combined wave of the induced voltages generated in the plurality of secondary induction coils are changed. By providing a valve opening sensor that detects the opening of the valve body from the phase difference, it is possible to accurately detect the opening degree of the valve body arranged in the pipeline through which the fluid flows from outside the pipeline with a simple configuration By feeding back the detection signal to the solenoid, highly accurate valve opening control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の電磁比例制御式膨
張弁の縦断面図である。
FIG. 1 is a longitudinal sectional view of an electromagnetic proportional control type expansion valve according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の弁開度センサー部
分の縦断面図である。
FIG. 2 is a longitudinal sectional view of a valve opening sensor portion according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の電磁比例制御式膨
張弁の全閉状態の縦断面図である。
FIG. 3 is a longitudinal sectional view of the electromagnetic proportional control type expansion valve according to the first embodiment of the present invention in a fully closed state.

【図4】本発明の第1の実施の形態の全閉状態の弁開度
センサー部分の縦断面図である。
FIG. 4 is a longitudinal sectional view of a valve opening sensor portion in a fully closed state according to the first embodiment of the present invention.

【図5】本発明の第1の実施の形態の電磁比例制御式膨
張弁の全開状態の縦断面図である。
FIG. 5 is a longitudinal sectional view of the electromagnetic proportional control type expansion valve according to the first embodiment of the present invention in a fully opened state.

【図6】本発明の第1の実施の形態の全開状態の弁開度
センサー部分の縦断面図である。
FIG. 6 is a longitudinal sectional view of a valve opening sensor portion in a fully opened state according to the first embodiment of the present invention.

【図7】本発明の第2の実施の形態の電磁比例制御式膨
張弁の全閉状態の縦断面図である。
FIG. 7 is a vertical cross-sectional view of the electromagnetic proportional control type expansion valve according to a second embodiment of the present invention in a fully closed state.

【符号の説明】[Explanation of symbols]

1 冷媒流路管 2 弁座 3 弁体 10 電磁ソレノイド 11 電磁コイル 20 ソレノイド制御回路 30 弁開度検出部 31 一次励磁コイル 32a,32b,33a,33b 二次誘導コイル 40 弁開度検出回路 DESCRIPTION OF SYMBOLS 1 Refrigerant flow pipe 2 Valve seat 3 Valve body 10 Electromagnetic solenoid 11 Electromagnetic coil 20 Solenoid control circuit 30 Valve opening detection part 31 Primary excitation coil 32a, 32b, 33a, 33b Secondary induction coil 40 Valve opening detection circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】流体が通される管路内に配置された弁体の
位置を往復動電磁ソレノイドで制御することによって、
上記管路内を通る流体の流量を制御するようにした電磁
比例制御弁において、 上記弁体と共動する磁性材を上記管路内に配置すると共
に、その磁性材の移動方向に沿って上記管路外に一次励
磁コイルと複数の二次誘導コイルを並設して、上記一次
励磁コイルに印加される交流電圧の搬送波と上記複数の
二次誘導コイルに生じる誘起電圧の合成波との位相差か
ら上記磁性材の位置を検出し、それに基づいて上記弁体
の開度を検出する弁開度センサーを設けたことを特徴と
する電磁比例制御弁。
1. A reciprocating electromagnetic solenoid controls the position of a valve disposed in a pipe through which a fluid passes.
An electromagnetic proportional control valve configured to control a flow rate of a fluid passing through the pipeline, wherein a magnetic material cooperating with the valve body is disposed in the pipeline, and the magnetic material is moved along a moving direction of the magnetic material. A primary excitation coil and a plurality of secondary induction coils are juxtaposed outside a conduit, and a position of a carrier wave of an AC voltage applied to the primary excitation coil and a composite wave of an induced voltage generated in the plurality of secondary induction coils are arranged. An electromagnetic proportional control valve, comprising: a valve opening sensor that detects a position of the magnetic material from a phase difference and detects an opening of the valve body based on the detected position.
【請求項2】上記電磁ソレノイドへの通電電流を制御す
るためのソレノイド制御手段が設けられていて、上記弁
開度センサーによる検出信号が上記ソレノイド制御手段
にフィードバックされて上記弁開度が制御される請求項
1記載の電磁比例制御弁。
2. A solenoid control means for controlling a current supplied to the electromagnetic solenoid is provided, and a detection signal from the valve opening sensor is fed back to the solenoid control means to control the valve opening. The electromagnetic proportional control valve according to claim 1.
JP9062727A 1997-03-17 1997-03-17 Solenoid proportional control valve Pending JPH10252931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9062727A JPH10252931A (en) 1997-03-17 1997-03-17 Solenoid proportional control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9062727A JPH10252931A (en) 1997-03-17 1997-03-17 Solenoid proportional control valve

Publications (1)

Publication Number Publication Date
JPH10252931A true JPH10252931A (en) 1998-09-22

Family

ID=13208695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9062727A Pending JPH10252931A (en) 1997-03-17 1997-03-17 Solenoid proportional control valve

Country Status (1)

Country Link
JP (1) JPH10252931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027357A (en) * 1999-07-12 2001-01-30 Smc Corp Selector valve with position detecting function
JP2006099980A (en) * 2004-09-28 2006-04-13 Toyota Motor Corp Fuel cell system
KR100620371B1 (en) * 1999-12-31 2006-09-08 삼성전자주식회사 Solenoid device
CN104235450A (en) * 2014-08-22 2014-12-24 海门市油威力液压工业有限责任公司 Pressure closed loop control digital integrated direct acting type proportional overflow valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027357A (en) * 1999-07-12 2001-01-30 Smc Corp Selector valve with position detecting function
KR100620371B1 (en) * 1999-12-31 2006-09-08 삼성전자주식회사 Solenoid device
JP2006099980A (en) * 2004-09-28 2006-04-13 Toyota Motor Corp Fuel cell system
CN104235450A (en) * 2014-08-22 2014-12-24 海门市油威力液压工业有限责任公司 Pressure closed loop control digital integrated direct acting type proportional overflow valve

Similar Documents

Publication Publication Date Title
US7969146B2 (en) Displacement measurement device
JP4732433B2 (en) Fluid control valve
JP7339947B2 (en) compact control valve
US20080304772A1 (en) Hydrostatic guide system
EP0672224A4 (en) Magnetorheological valve and devices incorporating magnetorheological elements.
US11664144B2 (en) Single coil apparatus and method
US6390129B2 (en) Proportional solenoid-operated fluid metering device
US6467592B1 (en) Arrangement for a piston and cylinder device
US20010018928A1 (en) Method of operation of mass flow controller
CN103842700A (en) Valve module
WO2005103541A1 (en) Flow rate characteristic adjustment mechanism of solenoid proportional valve and flow rate characteristic adjustment method using the same
JPH10252931A (en) Solenoid proportional control valve
JPS5926835B2 (en) solenoid control valve
JPH05126505A (en) Induction-type length measuring machine
US4480202A (en) Magnetic linear drive
JP5462753B2 (en) Electric / hydraulic linear servo valve
JPS59113303A (en) Direct-acting type servo valve
US10619755B2 (en) Solenoid operated valve with flux density concentration ring and molded-in valve seat
JP2006508365A (en) Speed sensor for moving parts
JPH07110077A (en) Flow control linear solenoid valve and driving circuit therefor
CN100545490C (en) Electric-powered air release valve and sphygmomanometer
CN112855982A (en) Magnetoelectric self-sensing flow control valve
US8464750B1 (en) Magnetostrictive pressure regulating system
JPS5940612Y2 (en) Solenoid proportional control valve
JPS59223820A (en) Display device for position of mobile member