JPH10251021A - Superfine titanium oxide powder small in chlorine content and its production - Google Patents

Superfine titanium oxide powder small in chlorine content and its production

Info

Publication number
JPH10251021A
JPH10251021A JP5498697A JP5498697A JPH10251021A JP H10251021 A JPH10251021 A JP H10251021A JP 5498697 A JP5498697 A JP 5498697A JP 5498697 A JP5498697 A JP 5498697A JP H10251021 A JPH10251021 A JP H10251021A
Authority
JP
Japan
Prior art keywords
titanium oxide
powder
oxide powder
chlorine content
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5498697A
Other languages
Japanese (ja)
Other versions
JP3656355B2 (en
Inventor
Atsushi Tanaka
淳 田中
Shoichi Arai
正一 新井
Yoshinori Ueyoshi
義範 植吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP05498697A priority Critical patent/JP3656355B2/en
Publication of JPH10251021A publication Critical patent/JPH10251021A/en
Application granted granted Critical
Publication of JP3656355B2 publication Critical patent/JP3656355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a superfine titanium oxide powder small in chlorine content and suitable as a producing raw material of a dielectric such as BaTiO3 . SOLUTION: This superfine titanium oxide powder is produced by a vapor phase method and has X lower than a value expressed by an equation, X=35E0.02α, when the specific surface area of powder measured by BET method is expressed by α(m<2> /g) and the chlorine content is expressed by X(ppm). The producing method of the titanium oxide powder is by oxidizing titanium tetrachloride with oxygen, steam or the gaseous mixture at a high temp. to produce a crude titanium oxide powder and dechlorinating the powder while rolling in a cylindrical rotary heating furnace preferably with steam blown by controlling the temp. of the max. heated area of the powder to 150-650 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子酸化チタン
(TiO2 )粉末及びその製造法に関し、さらに詳しく
は四塩化チタンを原料とし、気相法により得られた微粒
子酸化チタン粉末であって、TiO2 含有のペロブスカ
イト化合物の製造に好適な塩素含有量の少ない微粒子酸
化チタン粉末及びその製造法に関する。
BACKGROUND OF THE INVENTION The present invention is fine particles of titanium dioxide (TiO 2) relates to powder and its manufacturing method, and more particularly to a titanium tetrachloride as a raw material, a fine titanium oxide powder obtained by the gas phase method, The present invention relates to a fine titanium oxide powder having a low chlorine content suitable for producing a TiO 2 -containing perovskite compound and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタン粉末の製造法は、大別して四
塩化チタンを酸素或いは水蒸気と高温で反応させる気相
法と、四塩化チタンや硫酸チタンを加水分解する液相法
がある。液相法による酸化チタン粉末は、比較的温和な
条件下で製造することができるという点は良いが、純度
が悪いこと、粒子が凝集し易いなどの欠点をもってい
る。一方気相法による酸化チタン粉末はこれらの欠点は
少ないが、原料に四塩化チタンを使うため、粉末に塩素
が含まれてしまう欠点がある。特に粉末の粒子が細かく
なる程塩素含有量が高くなることである。
2. Description of the Related Art Methods for producing titanium oxide powder are roughly classified into a gas phase method in which titanium tetrachloride is reacted with oxygen or water vapor at a high temperature, and a liquid phase method in which titanium tetrachloride or titanium sulfate is hydrolyzed. The titanium oxide powder produced by the liquid phase method is good in that it can be produced under relatively mild conditions, but has disadvantages such as poor purity and easy aggregation of particles. On the other hand, the titanium oxide powder produced by the gas phase method has few of these disadvantages, but has a disadvantage that chlorine is contained in the powder because titanium tetrachloride is used as a raw material. In particular, the finer the powder particles, the higher the chlorine content.

【0003】[0003]

【発明が解決しようとする課題】酸化チタン粉末は化粧
品、顔料、樹脂のフィラー、誘電体の原料などに使用さ
れるが、最近は特に高性能の誘電体原料として注目され
ている。誘電体として、例えばBaTiO3 は加熱下で
次の反応によって得られる。 BaCO3 + TiO2 → BaTiO3 + C
2 BaTiO3 の誘電体特性を高めるためには、先ずBa
TiO3 粒子を細かくすることが必要である。上記の反
応は固相反応であり、その際先ず高温でBaCO3 が分
解してBaOが生成し、BaOがTiO2 粒子中を拡散
固溶してBaTiO3 になると言われている。従ってB
aTiO3 粒子の大きさはTiO2 粒子の大きさに支配
されることになる。
Titanium oxide powder is used for cosmetics, pigments, fillers for resins, raw materials for dielectrics, and the like. Recently, however, it has been particularly noted as a high-performance dielectric raw material. As a dielectric, for example, BaTiO 3 is obtained by the following reaction under heating. BaCO 3 + TiO 2 → BaTiO 3 + C
In order to enhance the dielectric properties of O 2 BaTiO 3 ,
It is necessary to make the TiO 3 particles fine. It is said that the above reaction is a solid-phase reaction, in which BaCO 3 is firstly decomposed at a high temperature to produce BaO, and BaO is diffused and dissolved in TiO 2 particles to form BaTiO 3 . Therefore B
The size of the aTiO 3 particles is governed by the size of the TiO 2 particles.

【0004】TiO2 粒子に含まれる塩素は粒子のごく
表面層に吸着して存在しており、加熱中に生成したBa
Oと反応してBaCl2 が生成する。このBaCl2
溶融してフラックスの作用をし、TiO2 粒子やBaT
iO3 粒子の凝集を引き起す。また溶融したフラックス
は局在化し易く、その局在化した部分では凝集が多くな
り、他の部分との間で品質にバラツキが生ずる。また粒
子が凝集するとBaTiO3 粒子の結晶が成長して異常
粒子となり、BaTiO3 の誘電特性を低下させること
になる。さらにTiO2 中の塩素の存在はBaOとTi
2 の原料組成比をくるわす原因となる。高性能の誘電
体においてはBaOとTiO2 比は厳密に1:1に管理
する必要があるが、塩素が存在するとBaOの一部がB
aCl2 となるため、組成比にずれが生じそれが品質低
下につながる。
[0006] Chlorine contained in TiO 2 particles is present by being adsorbed on a very surface layer of the particles.
Reacts with O to produce BaCl 2 . This BaCl 2 melts and acts as a flux, and TiO 2 particles and BaT
Causes agglomeration of iO 3 particles. Further, the molten flux is likely to be localized, and the localized portion has a large amount of agglomeration, resulting in a variation in quality between other portions. When the particles aggregate, crystals of BaTiO 3 particles grow and become abnormal particles, which lowers the dielectric properties of BaTiO 3 . Furthermore, the presence of chlorine in TiO 2 is due to BaO and Ti
This causes the raw material composition ratio of O 2 to change. In a high-performance dielectric, the ratio of BaO to TiO 2 must be strictly controlled to 1: 1.
Since it becomes aCl 2 , a shift occurs in the composition ratio, which leads to quality deterioration.

【0005】本発明者は気相法による酸化チタン粉末に
含有する塩素の存在形態やその量について研究した結
果、次のようなことが判明した。塩素は酸化チタン粒子
の表面層に吸着して存在していること、従って粉末の比
表面積と塩素含有量との間には強い相関関係を有してい
ることである。その相関関係図を図1に示す。図1は横
軸が粉末の比表面積α(m2 /g)、縦軸が粉末の塩素
含有量X(ppm)で縦軸を対数目盛とするとほぼ直線
関係となる。
The present inventor has studied the existence form and amount of chlorine contained in titanium oxide powder by a gas phase method, and has found the following. Chlorine is adsorbed on the surface layer of the titanium oxide particles, and therefore has a strong correlation between the specific surface area of the powder and the chlorine content. FIG. 1 shows the correlation diagram. In FIG. 1, when the horizontal axis is the specific surface area α (m 2 / g) of the powder, the vertical axis is the chlorine content X (ppm) of the powder, and the vertical axis is a logarithmic scale, it has a substantially linear relationship.

【0006】この塩素の脱離には一般に加熱法が行なわ
れているが、あまり高い温度で加熱するとTiO2 粒子
が成長するので加熱温度には制限があり、その温度範囲
において大気中で単に加熱しただけでは十分に塩素含有
量を下げることはできず、そのため気相法TiO2 粉末
はある程度以上塩素を含んだまま使用されているのが現
状である。本発明は高純度にして粒子の凝集の少ない気
相法による微粒子酸化チタン粉末において、特に塩素の
含有量を低減させることを目的とする。さらに他の目的
は粒度が細かく、かつシャープな粒度分布の粉末を得る
ことにある。
A heating method is generally used for desorption of chlorine. However, heating at an excessively high temperature causes TiO 2 particles to grow, so that the heating temperature is limited. It is not possible to sufficiently reduce the chlorine content by just doing so, and at present, the vapor phase TiO 2 powder is used while containing chlorine to some extent. SUMMARY OF THE INVENTION An object of the present invention is to reduce the content of chlorine, particularly, in a fine particle titanium oxide powder obtained by a gas phase method with high purity and less aggregation of particles. Still another object is to obtain a powder having a fine particle size and a sharp particle size distribution.

【0007】[0007]

【課題を解決するための手段】本発明者は、酸化チタン
粒子の塩素含有量の低減について種々研究した結果、粉
末の比表面積と塩素含有量の相関関係において、従来の
ものよりも低い塩素含有量の微粒子の酸化チタン粉末を
得ることに成功したものである。即ち、本発明はBET
法で測定した粉末の比表面積をα(m2 /g)、塩素含
有量をX(ppm)とした場合、その塩素含有量XがX
=35E0.02αなる関係式で示される数値より低い
ことを特徴とする気相法によって得られた塩素含有量の
少ない微粒子酸化チタン粉末である。
As a result of various studies on the reduction of the chlorine content of titanium oxide particles, the present inventor found that the correlation between the specific surface area of the powder and the chlorine content was lower than that of the conventional powder. It succeeded in obtaining a fine amount of fine titanium oxide powder. That is, the present invention is a BET
When the specific surface area of the powder measured by the method is α (m 2 / g) and the chlorine content is X (ppm), the chlorine content X is X
= 35E0.02α, which is a fine particle titanium oxide powder having a low chlorine content obtained by a gas phase method, which is lower than the numerical value represented by the relational expression: 35E0.02α.

【0008】また、方法の発明は四塩化チタンを酸素又
は水蒸気、或いはこれらの混合気体を用いて高温酸化す
ることにより粗酸化チタン粉末を製造する第1工程と、
該粉末を円筒形回転式加熱炉中で転動させながら脱塩素
を行なう第2工程とからなる塩素含有量の少ない微粒子
酸化チタン粉末の製造法である。またこの製造法におけ
る第2工程において、粉末に水蒸気を接触させることに
より塩素含有量を前記の関係式で表わされるXの値より
も低くすることを特徴とする微粒子酸化チタン粉末の製
造法である。
Further, the invention of the method comprises a first step of producing a coarse titanium oxide powder by oxidizing titanium tetrachloride at a high temperature using oxygen or steam or a mixed gas thereof,
A second step of dechlorinating the powder while tumbling the powder in a cylindrical rotary heating furnace to produce a fine titanium oxide powder having a low chlorine content. Further, in the second step of the production method, a fine particle titanium oxide powder is produced, wherein the chlorine content is made lower than the value of X represented by the above relational expression by bringing water vapor into contact with the powder. .

【0009】[0009]

【発明の実施の形態】四塩化チタンを原料とする気相法
によるTiO2 粉末の塩素含有量は図1に示すようにT
iO2 粒子の大きさと相関関係があり、粒子が細かい程
塩素含有量は多くなる。そして従来のTiO2 粉末の塩
素含有量X(ppm)は図1の式X=35E0.02α
(図1の直線)で表わされる値より高いものであった
(図1の白丸印)。ここでαはTiO2 粉末の比表面積
(m2 /g)である。本発明の微粒子酸化チタン粉末は
前記式で表わされるXの値より低い塩素含有量である
(図1の黒丸印)。さらに好ましくはX=30E0.0
2αで表わされる量よりも低い塩素含有量である。また
比表面積αは好ましくは5(m2 /g)以上である。
BEST MODE FOR CARRYING OUT THE INVENTION The chlorine content of TiO 2 powder obtained by a gas phase method using titanium tetrachloride as a raw material is shown in FIG.
There is a correlation with the size of the iO 2 particles, and the finer the particles, the higher the chlorine content. Then, the chlorine content X (ppm) of the conventional TiO 2 powder is calculated by the equation X = 35E0.02α in FIG.
It was higher than the value represented by (the straight line in FIG. 1) (open circles in FIG. 1). Here, α is the specific surface area (m 2 / g) of the TiO 2 powder. The particulate titanium oxide powder of the present invention has a chlorine content lower than the value of X represented by the above formula (black circles in FIG. 1). More preferably, X = 30E0.0
The chlorine content is lower than the amount represented by 2α. The specific surface area α is preferably 5 (m 2 / g) or more.

【0010】塩素含有量は上記のようにTiO2 粒子が
細かい程多くなるが、誘電体原料として使用する場合、
その他一般に粒子は細かい程よく、好ましくはD90が2
μm以下、即ち粉末の90%(重量)以上が0.2μm
以下である。また粉末中の粒子はできるだけ粒径がそろ
っているのが良い。本発明はこれを粉末の粒度分布に関
する式として知られているロジン−ラムラー(Rosi
n−Rammler)式を用い、その粒度の均一性を表
わす分布定数(n)で規定することにする。ロジン−ラ
ムラー式(文献名:セラミック工学ハンドブック(社団
法人 日本セラミック協会編 1版、P.596〜59
8)記載されている。) R=100exp(−bDn ) (1) ここでRはD(粒径)より大きな粒子の百分率である。
b=1/Den とおくと(1)式は R=100exp{(D/De)n } (2) ここでDeは粒度特性数、nは分布定数と呼ばれる定数
である。(1)式から log{log(100/R)}=nlogD+C (3) C=logloge−nlogDe
As described above, the chlorine content increases as the TiO 2 particles become finer, but when used as a dielectric material,
Other general particles finer moderately, preferably D 90 of 2
μm or less, that is, 90% (weight) or more of the powder is 0.2 μm
It is as follows. The particles in the powder are preferably as uniform as possible. The present invention discloses that this is known as Rosin-Rammler (Rosi
The distribution constant (n) representing the uniformity of the particle size is determined using the (n-Rammler) equation. Rosin-Rammler formula (Literature: Ceramic Engineering Handbook (edited by The Ceramic Society of Japan, 1st Edition, pp. 596-59)
8) described. R = 100 exp (−bD n ) (1) where R is the percentage of particles larger than D (particle size).
b = 1 / De n and put the (1) formula R = 100exp {(D / De ) n} (2) where De is the number of particle size characteristics, n represents a constant called the distributed constant. From equation (1), log {log (100 / R)} = nlogD + C (3) C = loglog−nlogDe

【0011】(3)式からx軸にlogD、y軸にlo
g{log(100/R)}の目盛りをつけたロジン−
ラムラー線図にそれらの関係をプロットすると直線とな
る。その勾配nは粒度の均一性を表わし、nが大きい程
均一性が大となる。またD=DeのときR=36.8%
であるから、図上でR=36.8%の粒子径を読めばD
eが求められる。本発明の微粒子酸化チタン粉末は、粒
径Dを上記の線図上にプロットした場合nの値が好まし
くは1.5以上である。
From equation (3), logD is on the x-axis and logD is on the y-axis.
Rosin with g {log (100 / R)} scale
Plotting their relationship on a Ramler diagram results in a straight line. The gradient n indicates the uniformity of the particle size, and the greater the n, the greater the uniformity. When D = De, R = 36.8%
Therefore, if the particle diameter of R = 36.8% is read on the figure, D
e is required. In the particulate titanium oxide powder of the present invention, when the particle diameter D is plotted on the above-mentioned diagram, the value of n is preferably 1.5 or more.

【0012】次に製造法の発明について説明する。塩素
を低減させる前の粗酸化チタン粉末の製造法(第1工
程)は基本的には四塩化チタンを酸素又は水蒸気を用い
て300〜1600℃程度の高温で酸化反応させる公知
のいわゆる気相法である。通常TiCl4 1モルに対
し、O2 (H2Oの場合はH2 O中のO2 換算)が1.
0〜10モル程度用いられる。装置は一般に石英ガラス
製等の反応管が用いられる。この方法で得られた酸化チ
タン粉末は通常0.1〜2重量%程度の塩素を含んでお
り、その量は粒度が細かいもの程多い。この粗酸化チタ
ン粉末は脱塩素処理される。その方法は一般的には粉末
を大気中200〜700℃程度で熱処理する方法であ
る。温度の上限に限界があるのは粉末粒子の成長による
粒子の粗大化を防ぐためである。
Next, the invention of the manufacturing method will be described. The method for producing crude titanium oxide powder before the reduction of chlorine (first step) is basically a known so-called gas phase method in which titanium tetrachloride is oxidized at a high temperature of about 300 to 1600 ° C. using oxygen or steam. It is. To Normal TiCl 4 1 mole, O 2 (H 2 O O 2 conversion in H 2 O in the case of) one.
About 0 to 10 mol is used. In general, a reaction tube made of quartz glass or the like is used for the apparatus. The titanium oxide powder obtained by this method usually contains about 0.1 to 2% by weight of chlorine, and the amount thereof is larger as the particle size is smaller. This crude titanium oxide powder is dechlorinated. The method is generally a method of heat-treating the powder at about 200 to 700 ° C. in the atmosphere. The upper limit of the temperature is limited in order to prevent coarsening of particles due to growth of powder particles.

【0013】しかし、本発明者の研究によると粗粉末を
単に加熱するだけでは粉末中の塩素含有量は十分に下が
らず、そのため従来の市販品では図1に示すようにX=
35E0.02αの線よりも上であった。本発明の製造
法はこの粗酸化チタン粉末を第2工程において円筒形回
転式加熱炉中で転動させながら脱塩素化することを特徴
とする。転動させながら脱塩素化することにより静止状
態で脱塩素化するよりも脱塩素化率がかなり高まる。脱
塩素化装置は、例えばチタン製円筒回転炉が用いられ
る。脱塩素の温度は高すぎると結晶成長を起こし、低い
と脱塩素の効率が下がるので150〜650℃の範囲が
好ましい。加熱時間は回転炉内の滞留時間で0.1〜3
時間が適当である。
However, according to the study of the present inventor, simply heating the coarse powder does not sufficiently lower the chlorine content in the powder. Therefore, as shown in FIG.
Above the 35E0.02α line. The production method of the present invention is characterized in that the crude titanium oxide powder is dechlorinated while being rolled in a cylindrical rotary heating furnace in a second step. Dechlorination while rolling makes the dechlorination rate considerably higher than dechlorination at rest. As the dechlorination apparatus, for example, a titanium cylindrical rotary furnace is used. If the temperature of dechlorination is too high, crystal growth occurs, and if the temperature is low, the efficiency of dechlorination decreases, so the range of 150 to 650 ° C is preferable. The heating time is the residence time of 0.1 to 3 in the rotary furnace.
Time is appropriate.

【0014】回転式加熱炉の雰囲気は大気中でもよく、
これによっても塩素含有量はかなり下がるが、塩素低減
の効果を高めるには水蒸気を吹込むのがよく、特に前記
の式X=35E0.02αよりも低い塩素含有量とする
場合は加熱炉内に水蒸気を吹込み、TiO2 とH2 Oを
接触させる必要がある。空気と水蒸気の混合の場合は水
蒸気を0.1容量%以上含むことが好ましい。表面吸着
の塩素との反応性は、酸素により水の方が高い。このた
め、水蒸気を酸化チタン粉末粒子に接触させることによ
り、効率的な脱塩素化が進むと考えられる。
The atmosphere of the rotary heating furnace may be air,
Although the chlorine content is considerably lowered by this, it is preferable to blow steam in order to enhance the effect of chlorine reduction. It is necessary to blow water vapor to bring TiO 2 and H 2 O into contact. In the case of mixing air and steam, it is preferable to contain steam at 0.1 volume% or more. The reactivity of chlorine with surface adsorption is higher in water than in oxygen. For this reason, it is considered that efficient dechlorination proceeds by bringing the water vapor into contact with the titanium oxide powder particles.

【0015】[0015]

【実施例】以下実施例により具体的に説明するが、本発
明は実施例に限られるものではない。先ず粗酸化チタン
を次の方法で製造した。 (1)粗酸化チタンI ガス状四塩化チタン8.9Nm3 /hrと、酸素11.
3Nm3 /hrをそれぞれ1000℃まで予熱し、連続
的に石英ガラス製反応器に導入した。得られた反応混合
物を急速冷却後、テフロン製バグフィルターにて粉を補
集して、微粒子酸化チタンを30kg/hrで得た。こ
の酸化チタンは、比表面積3.2m2 /g、ルチル化率
97%、残留塩素0.1%(重量%、以下同じ)であっ
た。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples. First, crude titanium oxide was produced by the following method. (1) Crude titanium oxide I Gaseous titanium tetrachloride 8.9 Nm 3 / hr and oxygen
3 Nm 3 / hr was preheated to 1000 ° C. and continuously introduced into a quartz glass reactor. After rapidly cooling the obtained reaction mixture, the powder was collected with a Teflon bag filter to obtain fine particle titanium oxide at 30 kg / hr. This titanium oxide had a specific surface area of 3.2 m 2 / g, a rutile ratio of 97%, and residual chlorine of 0.1% (% by weight, the same applies hereinafter).

【0016】(2)粗酸化チタンII ガス状四塩化チタン5.9Nm3 /hrと、酸素5.2
Nm3 /hrおよび水蒸気7.9Nm3 /hrの混合気
体をそれぞれ900℃まで予熱し、連続的に石英ガラス
製反応器に導入した。得られた反応混合物を急速冷却
後、テフロン製バグフィルターにて粉を補集して、微粒
子酸化チタンを20kg/hrで得た。この酸化チタン
は、比表面積28m2 /g、ルチル化率32%、残留塩
素1.2%であった。
(2) Crude titanium oxide II Gaseous titanium tetrachloride 5.9 Nm 3 / hr, oxygen 5.2
Nm 3 / hr and steam 7.9 nm 3 / hr the mixture gas was preheated to 900 ° C., respectively, were continuously introduced into a quartz glass reactor. After rapidly cooling the obtained reaction mixture, the powder was collected with a Teflon bag filter to obtain fine particle titanium oxide at 20 kg / hr. This titanium oxide had a specific surface area of 28 m 2 / g, a rutile ratio of 32%, and a residual chlorine of 1.2%.

【0017】(3)粗酸化チタンIII ガス状四塩化チタン5.9Nm3 /hrと、酸素2.2
Nm3 /hrおよび水蒸気10.3Nm3 /hrの混合
気体をそれぞれ900℃まで予熱し、連続的に石英ガラ
ス製反応器に導入した。得られた反応混合物を急速冷却
後、テフロン製バグフィルターにて粉を補集して、微粒
子酸化チタンを20kg/hrで得た。この酸化チタン
は、比表面積101m2 /g、ルチル化率15%、残留
塩素2.1%であった。
(3) Crude titanium oxide III Gaseous titanium tetrachloride 5.9 Nm 3 / hr, oxygen 2.2
Nm 3 / hr and steam 10.3 nm 3 / hr the mixture gas was preheated to 900 ° C., respectively, were continuously introduced into a quartz glass reactor. After rapidly cooling the obtained reaction mixture, the powder was collected with a Teflon bag filter to obtain fine particle titanium oxide at 20 kg / hr. This titanium oxide had a specific surface area of 101 m 2 / g, a rutile ratio of 15%, and a residual chlorine of 2.1%.

【0018】実施例1 粗酸化チタンIを、チタン製外熱式回転炉(径200m
m、長さ1500mm、回転速度3rpm)に、30k
g/hrでフィードした。炉内には水蒸気を1.0Nm
3 /hr導入した。炉内の最高温度帯域を600℃にし
て粉末を炉内に1時間滞留させ脱塩素処理した。その結
果、比表面積は3.1m2 /gでほぼ変りないが、残留
塩素は30ppmに低減していた。上記の比表面積αの
値3.1(m2 /g)をX=35E0.02αに代入し
てXを求めると40(ppm)となり、実施例1の酸化
チタンの塩素含有量は上記式で表わされる量よりも低く
なっている。この粉末のレーザー回折式粒度分布測定法
(測定手順は、下記)による粒度分布D90(以下、単に
90と略す)は1.5μmであり、RR−線図(ロジン
−ラムラー線図)におけるn値(以下、単に「n値」と
略す)は2.5であった。粒度分布測定手順は、酸化チ
タン0.05gに純水5.0ccおよび10%ヘキサメ
タリン酸ソーダ水溶液100μlを加え、3分間超音波
照射(46KHz、65W)する。このスラリーをレー
ザー回折式粒度分布測定装置((株)島津製作所製SA
LD−2000J)にかけた。レーザー回折において得
られた3点データ、D10、D50、D90をそれぞれロジン
−ラムラー線図においてR=90%、R=50%、R=
10%としてプロットする。これらの点を通る直線を引
き、これからn値を求める。
EXAMPLE 1 A crude titanium oxide I was placed in a titanium external heating rotary furnace (diameter 200 m).
m, length 1500mm, rotation speed 3rpm), 30k
g / hr. 1.0 Nm of steam in the furnace
3 / hr introduced. The maximum temperature zone in the furnace was set to 600 ° C., and the powder was kept in the furnace for 1 hour to perform a dechlorination treatment. As a result, the specific surface area was almost unchanged at 3.1 m 2 / g, but the residual chlorine was reduced to 30 ppm. Substituting the value of the specific surface area α of 3.1 (m 2 / g) into X = 35E0.02α to obtain X results in 40 (ppm), and the chlorine content of the titanium oxide of Example 1 is calculated by the above equation. It is lower than the amount represented. The particle size distribution D 90 (hereinafter simply abbreviated as D 90 ) of the powder according to a laser diffraction particle size distribution measuring method (measurement procedure is described below) is 1.5 μm, and The n value (hereinafter, simply abbreviated as “n value”) was 2.5. In the particle size distribution measurement procedure, 0.05 cc of titanium oxide, 5.0 cc of pure water and 100 μl of a 10% sodium hexametaphosphate aqueous solution are added, and ultrasonic irradiation (46 KHz, 65 W) is performed for 3 minutes. This slurry is subjected to a laser diffraction particle size distribution analyzer (SA manufactured by Shimadzu Corporation).
LD-2000J). The three-point data, D 10 , D 50 , and D 90 , obtained in the laser diffraction, are respectively represented by R = 90%, R = 50%, and R = in a rosin-Rammler diagram.
Plot as 10%. A straight line passing through these points is drawn, and the n value is determined from this.

【0019】実施例2 粗酸化チタンIIを実施例1と同じ回転炉に20kg/h
rでフィードした。炉内の最高温度帯域を550℃とし
た以外は実施例1と同様にして脱塩素処理した。その結
果、比表面積は27m2 /gでほぼ変りないが、残留塩
素は100ppmに低減していた。X=35E0.02
αのαを27とするとXは121となり、粉末の実測の
塩素含有量は前記の式の値より低くなっている。またD
90は0.7μmであり、n値は3.5であった。
EXAMPLE 2 20 kg / h of crude titanium oxide II was placed in the same rotary furnace as in Example 1.
r. Dechlorination was performed in the same manner as in Example 1 except that the maximum temperature zone in the furnace was set to 550 ° C. As a result, the specific surface area was almost unchanged at 27 m 2 / g, but the residual chlorine was reduced to 100 ppm. X = 35E0.02
If α of α is 27, X is 121, and the measured chlorine content of the powder is lower than the value of the above equation. Also D
90 was 0.7 μm, and the n value was 3.5.

【0020】実施例3 粗酸化チタンIII を実施例1と同じ回転炉に20kg/
hrでフィードした。炉内の最高温度帯域を350℃と
した以外は実施例1と同様にして脱塩素処理した。その
結果、比表面積は99m2 /gでほぼ変りないが、残留
塩素は2800ppmに低減していた。X=35E0.
02αのαを99とするとXは3300となり、粉末の
実測の塩素含有量は前記の式の値より低くなっている。
またD90は1.3μmであり、n値は2.4であった。
Example 3 Crude titanium oxide III was placed in the same rotary furnace as in Example 1 at a rate of 20 kg / kg.
hr. Dechlorination was performed in the same manner as in Example 1 except that the maximum temperature zone in the furnace was set to 350 ° C. As a result, the specific surface area was almost unchanged at 99 m 2 / g, but the residual chlorine was reduced to 2800 ppm. X = 35E0.
If α of 02α is 99, X is 3300, and the measured chlorine content of the powder is lower than the value of the above equation.
D 90 was 1.3 μm and n value was 2.4.

【0021】実施例4 粗酸化チタンIIを回転炉に水蒸気を導入せず、大気中と
した以外は実施例2と同様にして脱塩素処理した。その
結果、比表面積は27m2 /gでほぼ変りないが、残留
塩素は150ppmで、水蒸気を導入した実施例2に比
べやや高かった。これからX=35E0.02αに従っ
てXを求めると121となり、実測値の方がわずか高
い。なお、D90は0.9μmであり、n値は3.1であ
った。
Example 4 Dechlorination treatment was carried out in the same manner as in Example 2 except that crude titanium oxide II was used in the atmosphere without introducing steam into a rotary furnace. As a result, the specific surface area was almost unchanged at 27 m 2 / g, but the residual chlorine was 150 ppm, which was slightly higher than that of Example 2 in which steam was introduced. From this, when X is calculated according to X = 35E0.02α, it becomes 121, and the actually measured value is slightly higher. Incidentally, D 90 is 0.9 .mu.m, n value was 3.1.

【0022】比較例1 粗酸化チタンIIの2kgを、チタン製バットに粉厚み3
0mmにて敷き詰めた。これを電熱炉に入れ550℃、
3hrで脱塩素したところ、比表面積は26m2 /g
で、残留塩素は380ppmに低減していた。X=35
E0.02αのαを26としてXを求めると115とな
る。従って残留塩素は前記式の値よりもかなり高い。ま
た、D90は1.3μmであり、n値は2.8であった。
Comparative Example 1 2 kg of crude titanium oxide II was placed in a titanium vat with a powder thickness of 3
It was spread at 0 mm. Put this in an electric furnace at 550 ° C,
After dechlorination for 3 hours, the specific surface area was 26 m 2 / g.
The residual chlorine was reduced to 380 ppm. X = 35
When X is obtained by setting α of E0.02α to 26, it becomes 115. Therefore, the residual chlorine is much higher than the value of the above equation. D 90 was 1.3 μm and the n value was 2.8.

【0023】 比較例2日本アエロジル社の超微粉酸化チタンP−25
を分析したところ、比表面積48m2 /gで塩素を82
0ppm含有していた。X=35E0.02αからXを
求めると319となり、残留塩素は前記式の値よりも相
当高い。また、D90は3.1μmであり、n値は1.4
であった。
Comparative Example 2 Ultrafine titanium oxide P-25 from Aerosil Japan
Was analyzed to find that chlorine was reduced to 82 at a specific surface area of 48 m 2 / g.
The content was 0 ppm. When X is calculated from X = 35E0.02α, it becomes 319, and the residual chlorine is considerably higher than the value of the above equation. Further, D 90 is 3.1 .mu.m, n value 1.4
Met.

【0024】比較例3 東邦チタニウム社製の高純度酸化チタンを分析したとこ
ろ、比表面積は2.2m2 /gで塩素を60ppm含有
していた。X=35E0.02αからXを求めると39
となり、残留塩素は前記式の値よりも高い。また、D90
は3.2μmであり、n値は1.7であった。
Comparative Example 3 When high-purity titanium oxide manufactured by Toho Titanium Co., Ltd. was analyzed, the specific surface area was 2.2 m 2 / g and contained 60 ppm of chlorine. When X is obtained from X = 35E0.02α, 39 is obtained.
And the residual chlorine is higher than the value of the above equation. D 90
Was 3.2 μm, and the n value was 1.7.

【0025】[0025]

【発明の効果】本発明により気相法の酸化チタンであっ
て従来にない低塩素含有量の微粒子粉末が得られた。こ
の粉末は特にTiO2 を成分とした高性能のペロブスカ
イ化合物の原料として有用である。また粒度の揃った、
即ち粒度分布がシャープであり、かつ微細な粒子とする
ことが可能なので、上記化合物以外の種々用途にも好適
である。
Industrial Applicability According to the present invention, titanium oxide fine particles having an unprecedented low chlorine content obtained by a gas phase method have been obtained. This powder is particularly useful as a raw material for a high performance perovskite compound containing TiO 2 as a component. In addition, uniform particle size,
That is, since the particle size distribution is sharp and fine particles can be formed, it is suitable for various uses other than the above compounds.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化チタン粉末の粒径と塩素含有量の関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the particle size of titanium oxide powder and chlorine content.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 BET法で測定した粉末の比表面積をα
(m2 /g)、塩素含有量をX(ppm)とした場合、
その塩素含有量XがX=35E0.02αなる関係式で
示される数値より低いことを特徴とする気相法によって
得られた塩素含有量の少ない微粒子酸化チタン粉末。
1. The specific surface area of a powder measured by the BET method is α
(M 2 / g) and when the chlorine content is X (ppm),
The fine particle titanium oxide powder having a low chlorine content obtained by a gas phase method, wherein the chlorine content X is lower than the numerical value represented by the relational expression of X = 35E0.02α.
【請求項2】 ペロブスカイト化合物製造用の請求項1
記載の微粒子酸化チタン粉末。
2. A method for producing a perovskite compound according to claim 1.
The particulate titanium oxide powder as described in the above.
【請求項3】 レーザー回折式粒度分布測定法で測定し
た粒度分布曲線において、D90が2μm以下である請求
項1又は2記載の微粒子酸化チタン粉末。
3. The fine particle titanium oxide powder according to claim 1, wherein D 90 is 2 μm or less in a particle size distribution curve measured by a laser diffraction type particle size distribution measuring method.
【請求項4】 粒度分布を表わすロジン−ラムラー式に
おけるn値が1.5以上である請求項1〜3記載の微粒
子酸化チタン粉末。
4. The finely divided titanium oxide powder according to claim 1, wherein an n value in a rosin-Rammler equation representing a particle size distribution is 1.5 or more.
【請求項5】 四塩化チタンを酸素又は水蒸気、或いは
これらの混合気体を用いて高温酸化することにより粗酸
化チタン粉末を製造する第1工程と、該粉末を円筒形回
転式加熱炉中で転動させながら脱塩素を行なう第2工程
とからなる塩素含有量の少ない微粒子酸化チタン粉末の
製造法。
5. A first step of producing titanium oxide powder by high-temperature oxidation of titanium tetrachloride using oxygen, steam, or a mixture thereof, and rolling the powder in a cylindrical rotary heating furnace. And a second step of dechlorination while moving the powder.
【請求項6】 脱塩素を行なう第2工程において、粉末
に水蒸気を接触させることにより塩素含有量を請求項1
に記載の量とする請求項5記載の微粒子酸化チタン粉末
の製造法。
6. The chlorine content in the second step of dechlorination by bringing steam into contact with the powder.
The method for producing a fine particle titanium oxide powder according to claim 5, wherein the amount is as described in (1).
【請求項7】 第2工程における粉末の最高加熱帯の温
度が150℃以上650℃以下である請求項5又は6記
載の微粒子酸化チタン粉末の製造法。
7. The method according to claim 5, wherein the temperature of the highest heating zone of the powder in the second step is 150 ° C. or more and 650 ° C. or less.
JP05498697A 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same Expired - Lifetime JP3656355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05498697A JP3656355B2 (en) 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05498697A JP3656355B2 (en) 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same

Publications (2)

Publication Number Publication Date
JPH10251021A true JPH10251021A (en) 1998-09-22
JP3656355B2 JP3656355B2 (en) 2005-06-08

Family

ID=12985981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05498697A Expired - Lifetime JP3656355B2 (en) 1997-03-10 1997-03-10 Fine particle titanium oxide powder with low chlorine content and process for producing the same

Country Status (1)

Country Link
JP (1) JP3656355B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016027A1 (en) * 1999-08-30 2001-03-08 Showa Denko K.K. Titanium oxide particles and method for production thereof
WO2001023305A1 (en) * 1999-09-27 2001-04-05 Showa Denko K.K. Fine particulate titanium oxide and method for producing the same
WO2001081245A1 (en) * 2000-04-25 2001-11-01 Showa Denko K.K. Process for producing finely particulate oxide composite containing titanium oxide
JP2002316821A (en) * 2001-04-12 2002-10-31 Nippon Aerosil Co Ltd Titanium dioxide containing chlorine in low content and method for producing the same
US6544493B1 (en) 1999-08-30 2003-04-08 Showa Denko Kabushiki Kaisha Ultrafine particulate titanium oxide and production process therof
US6548169B2 (en) 2000-04-25 2003-04-15 Showa Denko Kabushiki Kaisha Production process for ultrafine particulate complex oxide containing titanium oxide
JP2003522713A (en) * 2000-02-14 2003-07-29 ミレニアム インオーガニック ケミカルズ インコーポレイテッド Controlled gas phase oxidation of titanium tetrachloride to produce titanium dioxide
US6824758B2 (en) 2000-09-15 2004-11-30 Showa Denko K.K. Particulate titanium oxide and production process therefor
EP1483205A1 (en) * 2002-03-06 2004-12-08 Showa Denko K.K. Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
JP2005306728A (en) * 2004-03-25 2005-11-04 Showa Denko Kk Titanium-containing perovskite-type compound and manufacturing method therefor
JP2006076876A (en) * 2004-08-11 2006-03-23 Showa Denko Kk Particulate titanium dioxide, its manufacturing method and its application
JP2006265094A (en) * 2005-02-28 2006-10-05 Showa Denko Kk Particulate titanium dioxide, its manufacturing method, and its application
US7449166B2 (en) 1999-09-27 2008-11-11 Showa Denko K.K. Particulate titanium oxide and production process therefor
EP1995217A1 (en) 2007-05-22 2008-11-26 Evonik Degussa GmbH Titanium dioxide with increased sinter activity
WO2008141866A1 (en) * 2007-05-22 2008-11-27 Evonik Degussa Gmbh Titanium dioxide having a variable sintering stability
WO2009017212A1 (en) * 2007-07-27 2009-02-05 Toho Titanium Co., Ltd. Method for producing titanium oxide powder with low halogen content, and titanium oxide powder with low halogen content
JP2010509163A (en) * 2006-11-02 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing titanium dioxide particles with reduced chloride
JP2010143783A (en) * 2008-12-18 2010-07-01 Toho Titanium Co Ltd Method for producing low halogen titanium oxide powder
JP4812213B2 (en) * 1999-09-27 2011-11-09 昭和電工株式会社 Fine particulate titanium oxide and method for producing the same
JP5013643B2 (en) * 1999-08-30 2012-08-29 昭和電工株式会社 Titanium oxide fine particles and method for producing the same
US8298507B2 (en) 2004-08-11 2012-10-30 Showa Denko K.K. Fine particulate titanium dioxide, and production process and use thereof
JP2012211076A (en) * 2004-08-11 2012-11-01 Showa Denko Kk Fine particle titanium dioxide, and production method and application of the same
TWI382959B (en) * 2007-06-11 2013-01-21 Showa Denko Kk Production method for titanium oxide particles
WO2023228952A1 (en) * 2022-05-23 2023-11-30 東邦チタニウム株式会社 Titanium oxide powder, method for producing titanium oxide powder, and method for identifying titanium oxide powders

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178074B2 (en) 2008-08-29 2012-05-15 Showa Denko K.K. Method for producing titanium oxide particles

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016027A1 (en) * 1999-08-30 2001-03-08 Showa Denko K.K. Titanium oxide particles and method for production thereof
US7018608B2 (en) 1999-08-30 2006-03-28 Showa Denko K.K. Ultrafine particulate titanium oxide and production process thereof
JP5013643B2 (en) * 1999-08-30 2012-08-29 昭和電工株式会社 Titanium oxide fine particles and method for producing the same
US6830742B2 (en) 1999-08-30 2004-12-14 Showa Denko Kabushiki Kaisha Ultrafine particulate titanium oxide and production process thereof
AU755976B2 (en) * 1999-08-30 2003-01-02 Showa Denko Kabushiki Kaisha Titanium oxide particles and method for production thereof
US6544493B1 (en) 1999-08-30 2003-04-08 Showa Denko Kabushiki Kaisha Ultrafine particulate titanium oxide and production process therof
AU775479B2 (en) * 1999-09-27 2004-08-05 Showa Denko Kabushiki Kaisha Fine particulate titanium oxide and method for producing the same
WO2001023305A1 (en) * 1999-09-27 2001-04-05 Showa Denko K.K. Fine particulate titanium oxide and method for producing the same
JP4812213B2 (en) * 1999-09-27 2011-11-09 昭和電工株式会社 Fine particulate titanium oxide and method for producing the same
US7449166B2 (en) 1999-09-27 2008-11-11 Showa Denko K.K. Particulate titanium oxide and production process therefor
JP2003522713A (en) * 2000-02-14 2003-07-29 ミレニアム インオーガニック ケミカルズ インコーポレイテッド Controlled gas phase oxidation of titanium tetrachloride to produce titanium dioxide
JP2011126778A (en) * 2000-02-14 2011-06-30 Millennium Inorganic Chemicals Inc Controlled vapor phase oxidation of titanium tetrachloride to manufacture titanium dioxide
JP4718744B2 (en) * 2000-02-14 2011-07-06 ミレニアム インオーガニック ケミカルズ インコーポレイテッド Controlled gas phase oxidation of titanium tetrachloride to produce titanium dioxide.
US6548169B2 (en) 2000-04-25 2003-04-15 Showa Denko Kabushiki Kaisha Production process for ultrafine particulate complex oxide containing titanium oxide
US6835455B2 (en) 2000-04-25 2004-12-28 Showa Denko Kabushiki Kaisha Ultrafine particulate complex oxide containing titanium oxide
WO2001081245A1 (en) * 2000-04-25 2001-11-01 Showa Denko K.K. Process for producing finely particulate oxide composite containing titanium oxide
JP4979174B2 (en) * 2000-04-25 2012-07-18 昭和電工株式会社 Method for producing titanium oxide-containing particulate oxide composite
US6824758B2 (en) 2000-09-15 2004-11-30 Showa Denko K.K. Particulate titanium oxide and production process therefor
JP2002316821A (en) * 2001-04-12 2002-10-31 Nippon Aerosil Co Ltd Titanium dioxide containing chlorine in low content and method for producing the same
EP1483205A1 (en) * 2002-03-06 2004-12-08 Showa Denko K.K. Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
EP1483205A4 (en) * 2002-03-06 2009-03-04 Showa Denko Kk Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
US7591991B2 (en) 2002-03-06 2009-09-22 Showa Denko K.K. Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
JP2005306728A (en) * 2004-03-25 2005-11-04 Showa Denko Kk Titanium-containing perovskite-type compound and manufacturing method therefor
JP2012211076A (en) * 2004-08-11 2012-11-01 Showa Denko Kk Fine particle titanium dioxide, and production method and application of the same
US8298507B2 (en) 2004-08-11 2012-10-30 Showa Denko K.K. Fine particulate titanium dioxide, and production process and use thereof
JP2006076876A (en) * 2004-08-11 2006-03-23 Showa Denko Kk Particulate titanium dioxide, its manufacturing method and its application
JP2006265094A (en) * 2005-02-28 2006-10-05 Showa Denko Kk Particulate titanium dioxide, its manufacturing method, and its application
JP2011057552A (en) * 2005-02-28 2011-03-24 Showa Denko Kk Fine particulate titanium dioxide, and production process and use thereof
JP4667271B2 (en) * 2005-02-28 2011-04-06 昭和電工株式会社 Fine particle titanium dioxide, method for producing the same, and use thereof
JP2010509163A (en) * 2006-11-02 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for producing titanium dioxide particles with reduced chloride
EP1995217A1 (en) 2007-05-22 2008-11-26 Evonik Degussa GmbH Titanium dioxide with increased sinter activity
EP1997781A1 (en) 2007-05-22 2008-12-03 Evonik Degussa GmbH Titanium dioxide with variable sinter activity
US8071070B2 (en) 2007-05-22 2011-12-06 Evonik Degussa Gmbh Titanium dioxide having a variable sintering stability
WO2008141866A1 (en) * 2007-05-22 2008-11-27 Evonik Degussa Gmbh Titanium dioxide having a variable sintering stability
JP2010527878A (en) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー Titanium dioxide with variable sintering stability
JP2013053067A (en) * 2007-05-22 2013-03-21 Evonik Degussa Gmbh Method for producing titanium dioxide powder
EP1997781B1 (en) * 2007-05-22 2014-07-16 Evonik Degussa GmbH Method for making titanium dioxide with variable sinter activity
TWI382959B (en) * 2007-06-11 2013-01-21 Showa Denko Kk Production method for titanium oxide particles
WO2009017212A1 (en) * 2007-07-27 2009-02-05 Toho Titanium Co., Ltd. Method for producing titanium oxide powder with low halogen content, and titanium oxide powder with low halogen content
JP5553601B2 (en) * 2007-07-27 2014-07-16 東邦チタニウム株式会社 Method for producing titanium oxide powder
JP2010143783A (en) * 2008-12-18 2010-07-01 Toho Titanium Co Ltd Method for producing low halogen titanium oxide powder
WO2023228952A1 (en) * 2022-05-23 2023-11-30 東邦チタニウム株式会社 Titanium oxide powder, method for producing titanium oxide powder, and method for identifying titanium oxide powders
JP2023172357A (en) * 2022-05-23 2023-12-06 東邦チタニウム株式会社 Titanium oxide powder, method for producing titanium oxide powder, and method for discriminating titanium oxide powder

Also Published As

Publication number Publication date
JP3656355B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP3656355B2 (en) Fine particle titanium oxide powder with low chlorine content and process for producing the same
RU2127221C1 (en) Powder of metal oxide, powder of titanium oxide, method of producing metal oxide powder
JP5021106B2 (en) Titanium oxide sol, its production method, ultrafine titanium oxide, its production method and use
KR19980063767A (en) Exothermic Doped Oxides
JP2005194183A (en) Silicon/titanium mixed oxide powder manufactured by flame hydrolysis, its manufacturing method, and its use
JP2003327432A (en) Low halogen-low rutile type hyperfine-grained titanium oxide and production method thereof
EP1483205B1 (en) Vapor phase process for producing titanium dioxide
AU775479B2 (en) Fine particulate titanium oxide and method for producing the same
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
JP2001220157A (en) Amorphous synthetic silica powder and glass compact using the same
JPH03252315A (en) Production of high-purity titanium oxide
JPH05208824A (en) Production of trimanganese tetroxide
JP3993956B2 (en) Method for producing spherical titanium oxide fine particles
JP4979174B2 (en) Method for producing titanium oxide-containing particulate oxide composite
US6824758B2 (en) Particulate titanium oxide and production process therefor
JP4530238B2 (en) Method for producing titanium oxide powder containing anatase-type titanium oxide single crystal
US7449166B2 (en) Particulate titanium oxide and production process therefor
JP6243649B2 (en) Titanium oxide particles and method for producing the same
JP5311707B2 (en) Method for producing fine particle titanium dioxide
JP4812213B2 (en) Fine particulate titanium oxide and method for producing the same
JP6423501B2 (en) Titanium oxide particles and method for producing the same
JP4140695B2 (en) Titanium tetrachloride aqueous solution and method for producing titanium composite oxide powder using the same
CN115650292B (en) Preparation method of rutile phase vanadium dioxide nano powder
JPH06340421A (en) Acicular, porous and fine-particle titanium oxide and its production
JP5013643B2 (en) Titanium oxide fine particles and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

EXPY Cancellation because of completion of term