JPH10250450A - Detecting method for existence or absence and posture of occupant in automobile - Google Patents

Detecting method for existence or absence and posture of occupant in automobile

Info

Publication number
JPH10250450A
JPH10250450A JP9058180A JP5818097A JPH10250450A JP H10250450 A JPH10250450 A JP H10250450A JP 9058180 A JP9058180 A JP 9058180A JP 5818097 A JP5818097 A JP 5818097A JP H10250450 A JPH10250450 A JP H10250450A
Authority
JP
Japan
Prior art keywords
seat
distance
occupant
found
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9058180A
Other languages
Japanese (ja)
Other versions
JP3503399B2 (en
Inventor
Taichi Tanigawa
太一 谷川
Hideyuki Tanaka
秀幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05818097A priority Critical patent/JP3503399B2/en
Publication of JPH10250450A publication Critical patent/JPH10250450A/en
Application granted granted Critical
Publication of JP3503399B2 publication Critical patent/JP3503399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce using quantity of a data storage area and to easily obtain seat image distance distribution data by arranging a plurality of pairs of optical sensor arrays in the diagonal front upper part of a seat so that at least two linear view fields include a seat backrest part and finding the position and the inclination of the seat from a distance value for the seat backrest end part. SOLUTION: An occupant sensor 1 is arranged in the diagonally front upper part of a seat 4 so as to set view fields R1, R2, and then, a seat backrest end part is observed. Firstly, from the installation coordinate position S of the sensor 1, coordinates of points P1, Q1 are found on the basis of a seat end part distance in a straight line SLP1 in the seat end part, and then, an inclination angle of the seat 4 is found from an inclination of the straight line SLP1. In this way, a cross section coordinate R of a vehicle body floor face is found, while a coordinate position DS is found from a seat length DL. Subsequently, a straight line SLP2 is found from the straight line SLP1 and thickness D or the seat backrest part, and a straight line SLP3 is found from width W of the seat backrest part. In this way, points P2, Q2, P3, Q3 are found, and a seat image distance distribution can be formed with ease.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複数の光センサ
素子からなる直線状の光センサアレイを用いて自動車乗
員の有無,姿勢を検出する検出方法、特にエアバッグの
展開制御のために用いて好適な自動車乗員の有無,姿勢
検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the presence / absence and posture of an occupant of a vehicle using a linear optical sensor array comprising a plurality of optical sensor elements, and more particularly to a method for controlling deployment of an airbag. The present invention relates to a suitable method for detecting the presence / absence of a vehicle occupant and its posture.

【0002】[0002]

【従来の技術】エアバッグ装着率は、ここ数年で増加の
傾向にあり、車種によらずエアバッグは標準装備となり
つつある。しかし、子供が座席の前方に立っていたり、
小柄な女性が座っている場合は、死傷事故の原因となる
ことが報告されている。そのため、このような死傷事故
を回避するためのエアバッグの展開制御が種々提案され
ている。そのうち、自動車内の天井位置にセンサを設け
てセンサから乗員までの距離を測定(測距)し、その距
離分布から乗員の有無,姿勢を検出する従来方法につい
て、以下に説明する。
2. Description of the Related Art The mounting rate of airbags has been increasing in recent years, and airbags are becoming standard equipment regardless of the type of vehicle. However, if the child is standing in front of the seat,
It has been reported that sitting small women can cause casualties. Therefore, various deployment control of the airbag for avoiding such a casualty accident has been proposed. Among them, a conventional method in which a sensor is provided at a ceiling position in an automobile to measure a distance from the sensor to an occupant (ranging) and to detect the presence or absence and posture of the occupant from the distance distribution will be described below.

【0003】図5はこのような従来例を説明するための
概要図で、1は乗員センサ、2は乗員、3は自動車、4
は座席をそれぞれ示す。これは、乗員センサ1に乗員2
の像を結像させるもので、ここでは例えば乗員2に対し
て4つの直線状の検査領域(視野)R1,R2,R3,
R4を設定して各領域毎に複数部位の乗員センサ出力を
得、この出力を図示されない処理装置にて演算処理し、
乗員の各部位の測距を行ない、処理装置で予め設定され
ている座席像距離(乗員が居ない場合の乗員センサから
の距離)との差分をとることで、乗員の有無だけでなく
その姿勢を判断するものである。
FIG. 5 is a schematic view for explaining such a conventional example, wherein 1 is an occupant sensor, 2 is an occupant, 3 is an automobile,
Indicates a seat, respectively. This means that the occupant sensor 1
In this case, for example, four linear inspection areas (fields of view) R1, R2, R3 for the occupant 2 are formed.
By setting R4, occupant sensor outputs of a plurality of parts are obtained for each area, and the outputs are processed by a processing device (not shown).
By measuring the distance of each part of the occupant and calculating the difference from the seat image distance (distance from the occupant sensor when the occupant is not present) set by the processing device, not only the presence or absence of the occupant but also its posture Is to judge.

【0004】図6に乗員センサの1例を示す。乗員セン
サ1はここでは、光センサアレイ対を4対設けて作成さ
れる多段受光IC10と、結像レンズ21,22とを一
体化して構成されている。光センサアレイ対は何対とし
ても良いが、ここでは4つの検査領域または視野R1,
R2,R3,R4を設定するため、4段構成となってい
る。なお、図6の符号5は補助光源、符号Vはセンサの
視野中心方向を示す。
FIG. 6 shows an example of an occupant sensor. Here, the occupant sensor 1 is configured by integrating a multi-stage light receiving IC 10 formed by providing four pairs of optical sensor arrays and imaging lenses 21 and 22. The number of the optical sensor array pairs may be any, but here, four inspection regions or fields of view R1,
In order to set R2, R3, and R4, a four-stage configuration is used. In addition, the code | symbol 5 of FIG. 6 shows an auxiliary light source, and code | symbol V shows the direction of the visual field center of a sensor.

【0005】まず、測距原理について、図7を参照して
説明する。いま、結像レンズ21,22の中心を原点O
として横軸X,縦軸Yを設定し、結像位置L1 ,R1
座標をそれぞれ(−aL −B/2,−f),(aR +B
/2,−f)とする。また、結像レンズ21の中心点O
L の座標は(−B/2,0),結像レンズ22の中心点
R の座標は(B/2,0)であり、対象物(被写体)
の点Mの座標を(−x,y)とすれば、点MからX軸に
下ろした垂線とX軸との交点Nの座標は(−x,0)、
点OL から光センサアレイ12に下ろした垂線の位置L
0 の座標は(−B/2,f)、点OR から光センサアレ
イ11に下ろした垂線の位置R0 の座標は(B/2,
f)である。
First, the principle of distance measurement will be described with reference to FIG. Now, the center of the imaging lenses 21 and 22 is set to the origin O
, The horizontal axis X and the vertical axis Y are set, and the coordinates of the imaging positions L 1 and R 1 are respectively (−a L −B / 2, −f) and (a R + B
/ 2, -f). Also, the center point O of the imaging lens 21
L is the coordinate (-B / 2, 0), the coordinates of the center point O R of the imaging lens 22 is a (B / 2, 0), the object (subject)
Assuming that the coordinates of the point M are (-x, y), the coordinates of the intersection N of the X axis with the perpendicular drawn from the point M to the X axis are (-x, 0),
The position L of the perpendicular line lowered from the point OL to the optical sensor array 12
0 coordinates (-B / 2, f), the coordinate position R 0 of perpendicular dropped from the point O R to the optical sensor array 11 (B / 2,
f).

【0006】ここで、aL は点L0 と点L1 との間の距
離を表わし、aR は点R0 と点R1との間の距離を表わ
す。このとき、△MOL Nと△OL 0 1 ,△MOR
Nと△OR 1 0 はそれぞれ相似であることから、 (−x+B/2)f=aL ・y …(1) (x+B/2)f=aR ・y …(2) が成立する。(1),(2)式からxを消去すると、 y=B・f/(aL +aR ) …(3) となり、左の光センサアレイ12の結像位置L1 と点L
0 との距離aL と、右の光センサアレイ11の結像位置
1 とR0 との距離aR が分かれば、上記(3)式から
対象物までの距離yを求められることになる。
Here, a L represents the distance between points L 0 and L 1, and a R represents the distance between points R 0 and R 1 . At this time, △ MO L N, △ O L L 0 L 1 , △ MO R
Since N and △ O R R 1 R 0 are similar, (−x + B / 2) f = a L · y (1) (x + B / 2) f = a R · y (2) I do. When x is deleted from the equations (1) and (2), y = B ・ f / (a L + a R ) (3), and the image forming position L 1 and the point L of the left optical sensor array 12 are obtained.
If the distance a L to 0 and the distance a R between the imaging positions R 1 and R 0 of the right optical sensor array 11 are known, the distance y to the object can be obtained from the above equation (3). .

【0007】次に、座席像の設定方法について図8のフ
ローチャートを参照して説明する。なお、この設定は出
荷時に一度だけ実施される。すなわち、図8のステップ
S1は、座席背もたれの傾き(座席傾きΘ)の初期化を
実施する。この座席傾きを、図9にΘで示す。ステップ
S2は座席最先端面の位置(座席位置)の初期化を実施
する。座席位置を図9では符号DSで示す。ステップS
3では、或る座席位置,傾きでの座席像を測距し、ステ
ップS4では座席像の距離分布をセンサのデータ記憶領
域に記憶させる。図10に座席像の距離分布例を示す。
ステップS5,S6ではステップS3,S4の処理を複
数回実行して、座席位置,傾き毎の座席像の距離分布パ
ターンをそれぞれ作成し、記憶しておく。このフローチ
ャートに従い、座席をΘ=Θmin,Ds=minの位
置から始め、Ds値,Θ値を順次変えて座席距離分布を
取得することで、全座席距離分布データを取得する。
Next, a method of setting a seat image will be described with reference to a flowchart of FIG. This setting is performed only once at the time of shipment. That is, in step S1 in FIG. 8, the tilt of the seat back (the seat tilt Θ) is initialized. This seat inclination is indicated by Θ in FIG. In step S2, the position of the frontmost surface of the seat (seat position) is initialized. The seat position is indicated by the reference symbol DS in FIG. Step S
At 3, the distance of the seat image at a certain seat position and inclination is measured, and at step S4, the distance distribution of the seat image is stored in the data storage area of the sensor. FIG. 10 shows an example of the distance distribution of the seat image.
In steps S5 and S6, the processes in steps S3 and S4 are executed a plurality of times, and a distance distribution pattern of the seat image for each seat position and inclination is created and stored. According to this flowchart, the seat is started from the position of Θ = Θmin, Ds = min, and the Ds value and Θ value are sequentially changed to obtain the seat distance distribution, thereby obtaining the entire seat distance distribution data.

【0008】ここで、図10のような離散的な座席距離
分布を得る概念について、以下に説明する。図11に示
すようなn個の光センサ素子からなる左,右の光センサ
アレイ11,12の量子化データをそれぞれA1
n ,B1 〜Bn とする。センサ正面から所定の角度
(図7で、Y軸と対象物座標Mと原点Oとを結ぶ軸との
なす角度)にある対象物までの距離指標(aL +aR
を求めるには、上記データにつき、所定大きさの観測領
域(ウインドウ)W1〜Wm+1 を設定して、1センサ単
位(1ビット)ずつ交互にずらした(m+1)組の部分
集合C0 〜Cmを考え、この部分集合毎に量子化データ
の差の絶対値の和からなる評価関数f(C0 )〜f(C
m)を計算し、この評価関数値が最小となる組み合わせ
k を求めることで、添字kの値から左右の像のずれ具
合が分かり、(aL +aR )に比例する距離指標が得ら
れることが知られている。そこで、このような処理を例
えば1ビットずつ順次ずらして行きながら、1〜n個の
視野について図12のように行なえば、n個の離散的な
距離データを得ることができる。
Here, the concept of obtaining a discrete seat distance distribution as shown in FIG. 10 will be described below. Left of n optical sensor element as shown in FIG. 11, each A 1 ~ the quantization data of the right photosensor arrays 11 and 12
A n, and B 1 ~B n. A distance index (a L + a R ) from the front of the sensor to an object at a predetermined angle (in FIG. 7, an angle formed by an axis connecting the Y axis, the object coordinate M, and the origin O).
In order to obtain the data, observation areas (windows) W1 to Wm + 1 of a predetermined size are set for the data, and (m + 1) sets of subsets C 0 which are alternately shifted by one sensor unit (1 bit) are set. MCm, and an evaluation function f (C 0 ) 〜f (C
m) is calculated and the combination C k that minimizes the evaluation function value is obtained , whereby the degree of displacement between the left and right images can be determined from the value of the subscript k, and a distance index proportional to (a L + a R ) can be obtained. It is known. Therefore, if such processing is performed as shown in FIG. 12 for 1 to n fields of view while sequentially shifting, for example, one bit at a time, n discrete distance data can be obtained.

【0009】図13は乗員判別処理を示し、測定した距
離分布から乗員情報を取り出すため、図8の如き処理で
得られた空の座席情報との差をとる処理を実行する。す
なわち、ステップS7では、例えば図14に示すような
乗員像を測距する。そのときの乗員像分布例を図15に
示す。ステップS8では図8で説明したような処理の結
果記憶された、例えば図10のような座席像の距離分布
をデータ記憶領域から読み出す。ステップS9では乗員
像距離分布と座席像距離分布との差を求め、差分の距離
分布を作成する。差分の距離分布例を図16に示す。こ
こでは、しきい値TH以下の距離値を示す測定点(測距
点)の個数をカウントする。このとき、図16からも明
らかなように、距離値は離散的な値をとることから、上
記のようなカウントができることが分かる。
FIG. 13 shows an occupant discriminating process. In order to extract occupant information from the measured distance distribution, a process for obtaining a difference from the empty seat information obtained by the process shown in FIG. 8 is executed. That is, in step S7, for example, the occupant image as shown in FIG. 14 is measured. FIG. 15 shows an example of the occupant image distribution at that time. In step S8, for example, the distance distribution of the seat image as shown in FIG. 10, which is stored as a result of the processing described with reference to FIG. 8, is read from the data storage area. In step S9, a difference between the occupant image distance distribution and the seat image distance distribution is obtained, and a difference distance distribution is created. FIG. 16 shows an example of the difference distance distribution. Here, the number of measurement points (distance measurement points) indicating a distance value equal to or smaller than the threshold value TH is counted. At this time, as is clear from FIG. 16, the distance value takes a discrete value, which indicates that the above-described counting can be performed.

【0010】図13のステップS10では、視野領域内
の全測距点の個数に対して、上記のしきい値以下の測距
点の占める割合Aを算出する。なお、ステップS8から
ステップS10の処理については、全座席像個数分だけ
行なわれる。そして、ステップS11で上記割合Aが最
小となる場合を選び、使用すべき座席像データを決定す
るわけである。すなわち、測定した距離分布データと、
記憶している空の座席距離分布データとの差を算出し、
最も差の小さいものを、その測定点における座席の距離
分布データとして選択するものである。
In step S10 of FIG. 13, the ratio A of the distance measurement points equal to or less than the above threshold value to the total number of distance measurement points in the visual field area is calculated. The processes in steps S8 to S10 are performed for all seat images. In step S11, the case where the ratio A is minimum is selected, and seat image data to be used is determined. That is, the measured distance distribution data,
Calculate the difference from the stored empty seat distance distribution data,
The one with the smallest difference is selected as the distance distribution data of the seat at the measurement point.

【0011】[0011]

【発明が解決しょうとする課題】上述のように、従来は
座席位置,傾きを変化させて直線状視野領域内の距離分
布の全パターンを予め記憶するための、膨大なデータ記
憶領域が必要となり、座席距離分布データを決定するに
当たってどの座席像距離分布データを使用するのかの決
定に多くの処理が必要になるという問題がある。したが
って、この発明の課題は、データ記憶領域の使用量を減
少させ、座席像距離分布データを簡単に求めることで、
処理時間を短縮することにある。
As described above, conventionally, an enormous data storage area is required to previously store all the patterns of the distance distribution in the linear visual field area by changing the seat position and the inclination. There is a problem that a lot of processing is required to determine which seat image distance distribution data to use in determining the seat distance distribution data. Therefore, an object of the present invention is to reduce the use amount of a data storage area and easily obtain seat image distance distribution data.
The object is to reduce the processing time.

【0012】[0012]

【課題を解決するための手段】このような課題を解決す
べく、この発明では、複数の光センサ素子からなる直線
状の光センサアレイを複数対設けて自動車乗員の像を結
像させ、その乗員像の少なくとも1つの直線状視野領域
内の距離分布を測定して、自動車乗員の有無,姿勢を検
出するに当たり、前記複数対の光センサアレイを座席斜
め前方上部に、各光センサアレイに対応する直線状視野
の少なくとも2つが座席背もたれ部を含むように配置
し、座席背もたれ端部の距離値から座席位置,傾きを求
めることにより、任意の座席位置,傾きの距離分布を算
出可能にしている。
SUMMARY OF THE INVENTION In order to solve such a problem, according to the present invention, a plurality of pairs of linear optical sensor arrays each composed of a plurality of optical sensor elements are provided to form an image of a vehicle occupant. The distance distribution in at least one linear visual field region of the occupant image is measured to detect the presence / absence and posture of the vehicle occupant. At least two of the rectilinear fields of view are arranged so as to include the seat back portion, and by calculating the seat position and the inclination from the distance value of the end portion of the seat back, the distance distribution of the arbitrary seat position and the inclination can be calculated. .

【0013】すなわち、自動車座席の形状は比較的簡単
なため、座席形状を簡単な平面の組み合わせとして近似
できることを利用する。つまり、座席像距離分布データ
を作成するのに、座席の位置,傾きから数個の方程式を
解くだけで済むようにし、処理時間を短縮させる。ま
た、この方程式を解くに当たっては数個の定数をデータ
記憶領域に記憶させておくだけでよいので、メモリ容量
をほとんど使用する必要がなく、データ記憶領域使用量
を減少させることが可能となる。
That is, since the shape of an automobile seat is relatively simple, the fact that the seat shape can be approximated as a combination of simple planes is used. In other words, it is only necessary to solve several equations from the position and inclination of the seat to create the seat image distance distribution data, thereby shortening the processing time. Further, in solving this equation, only a few constants need to be stored in the data storage area, so that it is not necessary to use almost any memory capacity, and it is possible to reduce the data storage area usage.

【0014】[0014]

【発明の実施の形態】図1はこの発明の実施の形態を説
明するためのフローチャート、図2は図1の理解を容易
にするための説明図である。乗員センサ2を、ここでは
図2に示すように座席斜め前方上部に取り付けて、常に
座席背もたれ端部を観測し、座席像距離分布データを作
成できるようにしている。また、背もたれ部にはここで
は2つの視野(R1,R2)を設定する。この2つの視
野R1,R2に対応するセンサ対を図1では、それぞれ
センサ1,センサ2としている。
FIG. 1 is a flowchart for explaining an embodiment of the present invention, and FIG. 2 is an explanatory diagram for facilitating understanding of FIG. Here, the occupant sensor 2 is attached to the upper part of the seat diagonally forward as shown in FIG. 2 so that the end of the seat back can always be observed and seat image distance distribution data can be created. In this case, two fields of view (R1, R2) are set for the backrest. In FIG. 1, the sensor pairs corresponding to the two visual fields R1 and R2 are referred to as a sensor 1 and a sensor 2, respectively.

【0015】ステップS7では図13でも説明したよう
に、図15のような距離分布が得られるので、ステップ
S12では座席端部距離を求める。この座席端部距離は
図2に示すセンサ1の取り付け座標位置Sから点P1,
Q1までの距離を示し、座席端部は図2に直線SLP1
として示される。ここで、座席端部距離を求めるには、
図15で示す距離値の変化量が最大となる部分を探し、
その最大変化を与える部分のうち、距離値の小さい方と
する。これは、乗員センサ1の取り付け位置がここでは
座席の左側斜め前方上部にあるからである。
In step S7, as described with reference to FIG. 13, a distance distribution as shown in FIG. 15 is obtained. In step S12, the seat end distance is obtained. The distance between the seat ends is from the mounting coordinate position S of the sensor 1 shown in FIG.
The distance to Q1 is shown, and the end of the seat is shown in FIG.
As shown. Here, to find the seat edge distance,
Find the part where the amount of change of the distance value shown in FIG.
Among the parts giving the maximum change, the smaller distance value is used. This is because the mounting position of the occupant sensor 1 is located at the upper left side of the seat.

【0016】ステップS13では、ステップS12で求
められた各座席距離を、図3に示すようなセンサの仰角
情報θ1と、図15で示す座席端部距離の結像している
視野内距離の位置情報とから、点P1,Q1の座標を求
める。図3の符号ωはセンサ回転角、Vはセンサ中心方
向を示す。ステップS14では、この点P1,Q1の座
標から直線の式SLP1が算出され、ステップS15で
は、この直線の傾きから座席の傾き角度Θを求める。ス
テップ16では、直線SLP1と車体床面の方程式を解
き、車体床面の交点座標Rを算出する。図2または図9
で示すように座席シート長DLは定数なので、ステップ
17ではこの値から座席位置DSを簡単に求めることが
できる。
In step S13, the respective seat distances obtained in step S12 are converted into the elevation angle information θ1 of the sensor as shown in FIG. 3 and the position of the imaged distance in the field of view of the seat end distance shown in FIG. From the information, the coordinates of the points P1 and Q1 are obtained. In FIG. 3, symbol ω indicates the sensor rotation angle, and V indicates the sensor center direction. In step S14, a straight line equation SLP1 is calculated from the coordinates of the points P1 and Q1, and in step S15, the inclination angle 傾 き of the seat is obtained from the inclination of the straight line. In step 16, the equation of the straight line SLP1 and the floor of the vehicle body is solved, and the coordinates R of intersection of the floor of the vehicle body are calculated. FIG. 2 or FIG.
Since the seat length DL is a constant as shown in FIG. 7, the seat position DS can be easily obtained from this value in step 17.

【0017】ステップS18では、直線SLP1とSL
P2が平行であることと、定数である座席背もたれ部の
厚みDとから直線SLP2を求め、ステップS19で
は、直線SLP1とSLP3が平行であることと、定数
である座席背もたれ部の幅Wとから直線SLP3を求め
る。ステップS20では、ステップS18,S19で求
めた直線SLP2,SLP3と、センサ1,センサ2の
視野平面である平面1,2との方程式を解くことで、点
P2,Q2,P3,Q3を求める。その際、直線SP
2,SQ2,SP3,SQ3の距離値から、センサ1の
視野内距離のどの位置に結像しているかが求まる。よっ
て、ステップS21では、これらの情報からセンサ1,
センサ2の座席像距離分布を作成することができる。図
4にその座席像距離分布例を示す。なお、視野R3,R
4については、座席位置,傾きによらず同一距離分布を
示すよう、センサの取り付け態様を予め定めている。
In step S18, the straight lines SLP1 and SL
A straight line SLP2 is determined from P2 being parallel and the constant thickness D of the seat back portion. In step S19, the straight line SLP1 and SLP3 are parallel and the constant width W of the seat back portion being a constant. A straight line SLP3 is obtained. In step S20, the points P2, Q2, P3, and Q3 are obtained by solving the equations of the straight lines SLP2 and SLP3 obtained in steps S18 and S19 and the planes 1 and 2 that are the viewing planes of the sensors 1 and 2. At that time, a straight line SP
From the distance values of SQ2, SQ2, SP3, and SQ3, it is determined at which position in the visual field distance of the sensor 1 the image is formed. Therefore, in step S21, the sensor 1, the sensor 1,
The seat image distance distribution of the sensor 2 can be created. FIG. 4 shows an example of the seat image distance distribution. Note that the fields of view R3, R
Regarding No. 4, the mounting mode of the sensor is determined in advance so as to show the same distance distribution regardless of the seat position and the inclination.

【0018】以上のように、この発明では、簡単な方程
式を数回解くことで、簡単に座席像距離分布が作成でき
るので処理時間の短縮が可能となり、センサのデータ記
憶領域には座席とセンサに関する数個の情報を記憶させ
ておくだけで良く、データ記憶領域使用量を大幅に削減
できることになる。
As described above, according to the present invention, the seat image distance distribution can be easily created by solving a simple equation several times, so that the processing time can be shortened. It is only necessary to store a few pieces of information regarding the data storage area, and the amount of data storage area used can be greatly reduced.

【0019】[0019]

【発明の効果】この発明によれば、乗員の有無,姿勢を
認識するために必要な座席データの作成の際に、簡単な
座席像距離分布作成アルゴリズムを適用するだけで良い
ため処理時間を短縮でき、記憶するデータ数は座席とセ
ンサに関する数個の情報だけで良いため、データ記憶領
域使用量を大幅に削減することができる、などの利点が
得られる。
According to the present invention, when creating seat data necessary for recognizing the presence / absence and posture of an occupant, it is only necessary to apply a simple seat image distance distribution creating algorithm, thereby shortening the processing time. Since only a few pieces of information about the seat and the sensor need be stored, there is an advantage that the amount of data storage area used can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を説明するためのフロー
チャートである。
FIG. 1 is a flowchart for explaining an embodiment of the present invention.

【図2】図1の説明を容易にするための説明図である。FIG. 2 is an explanatory diagram for facilitating the description of FIG. 1;

【図3】センサの仰角,回転角および中心方向の説明図
である。
FIG. 3 is an explanatory diagram of an elevation angle, a rotation angle, and a center direction of a sensor.

【図4】図1の処理で作成される座席像距離分布例を示
す説明図である。
FIG. 4 is an explanatory diagram showing an example of a seat image distance distribution created by the processing of FIG. 1;

【図5】従来例を示す概要図である。FIG. 5 is a schematic diagram showing a conventional example.

【図6】図5で用いるセンサと視野の関係を説明する説
明図である。
FIG. 6 is an explanatory diagram illustrating a relationship between a sensor used in FIG. 5 and a visual field.

【図7】測距原理説明図である。FIG. 7 is an explanatory diagram of a distance measuring principle.

【図8】従来の座席像距離分布の作成処理を示すフロー
チャートである。
FIG. 8 is a flowchart showing a conventional process of creating a seat image distance distribution.

【図9】座席に関する諸定数の説明図である。FIG. 9 is an explanatory diagram of various constants relating to a seat.

【図10】図8の処理で得られる座席像距離分布例の説
明図である。
10 is an explanatory diagram of an example of a seat image distance distribution obtained by the processing of FIG. 8;

【図11】測距原理における相関演算説明図である。FIG. 11 is an explanatory diagram of a correlation calculation based on the principle of distance measurement.

【図12】多点の測距原理説明図である。FIG. 12 is a diagram illustrating the principle of multi-point distance measurement.

【図13】従来の座席像距離分布の設定(決定)処理を
示すフローチャートである。
FIG. 13 is a flowchart showing a conventional process of setting (determining) a seat image distance distribution.

【図14】乗員が居る場合の座席に関する諸定数の説明
図である。
FIG. 14 is an explanatory diagram of various constants relating to a seat when an occupant is present.

【図15】乗員の各視野ごとの距離分布例説明図であ
る。
FIG. 15 is an explanatory diagram of an example of a distance distribution for each field of view of an occupant.

【図16】乗員像と座席像との差分の距離分布説明図で
ある。
FIG. 16 is an explanatory diagram of a distance distribution of a difference between an occupant image and a seat image.

【符号の説明】[Explanation of symbols]

1…乗員センサ、2…乗員、3…自動車、4…座席、5
…補助光源、10…多段受光IC、11,12…光セン
サアレイ、21,22…結像レンズ。
1 ... occupant sensor, 2 ... occupant, 3 ... automobile, 4 ... seat, 5
... Auxiliary light source, 10 ... Multistage light receiving IC, 11, 12 ... Optical sensor array, 21,22 ... Imaging lens.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01V 8/20 G01V 9/04 Q ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G01V 8/20 G01V 9/04 Q

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の光センサ素子からなる直線状の光
センサアレイを複数対設けて自動車乗員の像を結像さ
せ、その乗員像の少なくとも1つの直線状視野領域内の
距離分布を測定して、自動車乗員の有無,姿勢を検出す
るに当たり、 前記複数対の光センサアレイを座席斜め前方上部に、各
光センサアレイに対応する直線状視野の少なくとも2つ
が座席背もたれ部を含むように配置し、座席背もたれ端
部の距離値から座席位置,傾きを求めることにより、任
意の座席位置,傾きの距離分布を算出可能にしたことを
特徴とする自動車乗員の有無,姿勢検出方法。
An image of an occupant of an automobile is formed by providing a plurality of pairs of linear optical sensor arrays composed of a plurality of optical sensor elements, and a distance distribution of the occupant image in at least one linear visual field region is measured. In detecting the presence / absence and posture of a vehicle occupant, the plurality of pairs of optical sensor arrays are arranged diagonally forward and in the upper part of the seat such that at least two of the linear visual fields corresponding to the respective optical sensor arrays include the seat back. A method for detecting the presence / absence and posture of a vehicle occupant, wherein a distance distribution of an arbitrary seat position and inclination can be calculated by obtaining a seat position and inclination from a distance value of an end portion of a seat backrest.
JP05818097A 1997-03-13 1997-03-13 Presence / absence of car occupants, posture detection method Expired - Fee Related JP3503399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05818097A JP3503399B2 (en) 1997-03-13 1997-03-13 Presence / absence of car occupants, posture detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05818097A JP3503399B2 (en) 1997-03-13 1997-03-13 Presence / absence of car occupants, posture detection method

Publications (2)

Publication Number Publication Date
JPH10250450A true JPH10250450A (en) 1998-09-22
JP3503399B2 JP3503399B2 (en) 2004-03-02

Family

ID=13076819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05818097A Expired - Fee Related JP3503399B2 (en) 1997-03-13 1997-03-13 Presence / absence of car occupants, posture detection method

Country Status (1)

Country Link
JP (1) JP3503399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032451A1 (en) * 1998-11-27 2000-06-08 Hamamatsu Photonics K.K. Driver sensor and apparatus for controlling air bag
US6850268B1 (en) 1998-09-25 2005-02-01 Honda Giken Kogyo Kabushiki Kaisha Apparatus for detecting passenger occupancy of vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850268B1 (en) 1998-09-25 2005-02-01 Honda Giken Kogyo Kabushiki Kaisha Apparatus for detecting passenger occupancy of vehicle
US7363123B2 (en) 1998-09-25 2008-04-22 Honda Giken Kogyo Kabushiki Kaisha Apparatus for detecting passenger occupancy of vehicle
WO2000032451A1 (en) * 1998-11-27 2000-06-08 Hamamatsu Photonics K.K. Driver sensor and apparatus for controlling air bag
US6572139B2 (en) 1998-11-27 2003-06-03 Hamamatsu Photonics K.K. Occupant sensor and airbag control apparatus

Also Published As

Publication number Publication date
JP3503399B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US7363123B2 (en) Apparatus for detecting passenger occupancy of vehicle
EP1983484B1 (en) Three-dimensional-object detecting device
US6116640A (en) Apparatus for detecting occupant's posture
WO2014002849A1 (en) Three-dimensional measurement method, apparatus, and system, and image processing device
EP1005234B1 (en) Three-dimensional scope system for vehicles with a single camera
US8970853B2 (en) Three-dimensional measurement apparatus, three-dimensional measurement method, and storage medium
US6252973B1 (en) Apparatus and method for determining vehicle wheel alignment measurements from three dimensional wheel positions and orientations
JP3205477B2 (en) Inter-vehicle distance detection device
EP1828979B1 (en) Method for determining the position of an object from a digital image
US7015951B1 (en) Picture generating apparatus and picture generating method
US20080056609A1 (en) Fine Stereoscopic Image Matching And Dedicated Instrument Having A Low Stereoscopic Coefficient
US20020029127A1 (en) Method and apparatus for measuring 3-D information
US6333997B1 (en) Image recognizing apparatus
JP2509386B2 (en) Distance detection device
KR100686564B1 (en) Apparatus for detecting occupant's posture
US5291424A (en) Distance detecting apparatus
US6683977B1 (en) Method of taking three-dimensional measurements of object surfaces
IL184993A (en) Method for extracting edge in photogrammetry with subpixel accuracy
JPH10250450A (en) Detecting method for existence or absence and posture of occupant in automobile
US8102516B2 (en) Test method for compound-eye distance measuring apparatus, test apparatus, and chart used for the same
EP0495508B1 (en) Image following apparatus
US20020085747A1 (en) Image processing apparatus and method, image capturing apparatus, and information provision medium
JPH09210649A (en) Three dimensional measurement device
US5923773A (en) Measured value processing method, a shape reconstructing method, and a shape reconstructing apparatus
JPH11217056A (en) Device for discriminating posture of occupant

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031201

LAPS Cancellation because of no payment of annual fees