JPH10249271A - Method for hydrophilization treatment - Google Patents

Method for hydrophilization treatment

Info

Publication number
JPH10249271A
JPH10249271A JP6350297A JP6350297A JPH10249271A JP H10249271 A JPH10249271 A JP H10249271A JP 6350297 A JP6350297 A JP 6350297A JP 6350297 A JP6350297 A JP 6350297A JP H10249271 A JPH10249271 A JP H10249271A
Authority
JP
Japan
Prior art keywords
treatment
silica
resin
synthetic resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6350297A
Other languages
Japanese (ja)
Inventor
Yuji Eguchi
勇司 江口
Kenji Otsuka
健二 大塚
Junko Noguchi
順子 野口
Motokazu Yuasa
基和 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP6350297A priority Critical patent/JPH10249271A/en
Publication of JPH10249271A publication Critical patent/JPH10249271A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the hydrophilicity and stain resistance by carrying out electric discharge treatment or vacuum ultraviolet ray radiation treatment to the surface of a coating film of a synthetic resin in which silica fine particles are dispersed. SOLUTION: In a coating material field, the coating film surface of a coating for exterior use is required to be hydrophilic to have stain-proofness. In order to provide high hydrophilicity, discharge treatment or vacuum ultraviolet ray radiation treatment is carried out for the surface of a coating film of synthetic resin in which silica fine particles are dispersed. The hydrophilization treatment is preferably carried out for a coating film formed by applying a composition consisting of 100 pts.wt. of synthetic resin and 20-300 pts.wt. (based on silica wt.) of colloidal silica to the substrate surface and drying the resultant substrate. Any resin of thermosetting resin, thermoplastic resin, photo-curable resin may be used for the synthetic resin. The colloidal silica to be used is one produced by dispersing silica fine particles with 5-20nm average particle size in water or an organic solvent and as the organic solvent to disperse the silica in may be methanol, ethanol, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、親水性及び耐汚染
性にすぐれた親水化処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrophilizing treatment method having excellent hydrophilicity and stain resistance.

【0002】[0002]

【従来の技術】近年、塗料の分野では屋外で使用する塗
膜に汚染防止性を付与するために、塗膜表面を親水性に
する試みがなされている。例えば、特開平4−3701
76号公報には親水性セグメントと疎水性セグメントと
を有するセグメント化ポリマーと塗料用樹脂とからなる
組成物が開示されている。又、特開平7−331136
号公報には、3官能あるいは4官能のアルキルシリケー
トあるいはその加水分解縮合物が添加されてなる塗料用
樹脂組成物が開示されている。しかしながら、上記いず
れの公報に記載の組成物によると対水接触角が40°〜
60°であって、親水性として特にすぐれているもので
はない。
2. Description of the Related Art In recent years, in the field of paints, attempts have been made to make the surface of the coating film hydrophilic in order to impart anti-staining properties to the coating film used outdoors. For example, JP-A-4-3701
No. 76 discloses a composition comprising a segmented polymer having a hydrophilic segment and a hydrophobic segment, and a coating resin. Also, Japanese Patent Laid-Open No. 7-331136
Japanese Patent Application Laid-Open Publication No. H11-157, discloses a resin composition for coatings to which a trifunctional or tetrafunctional alkyl silicate or a hydrolytic condensate thereof is added. However, according to the composition described in any of the above publications, the contact angle with water is 40 ° or more.
60 °, which is not particularly excellent as a hydrophilic property.

【0003】又、特開平7−136584号公報には、
オルガノシリケート及び/又はその加水分解縮合物を混
合した塗料を塗布硬化させた後、酸処理することにより
親水性を発現させているが、この方法でも高度な親水性
は望めない。
[0003] Japanese Patent Application Laid-Open No. Hei 7-136584 discloses that
After applying and curing a coating material in which an organosilicate and / or a hydrolyzed condensate thereof are mixed, an acid treatment is performed to develop hydrophilicity. However, even with this method, a high degree of hydrophilicity cannot be expected.

【0004】更に、コロイダルシリカはその反応性、親
水性、高硬度、耐候性等の利点を生かして種々の塗料や
コーティング剤に利用されている。しかしながら、コロ
イダルシリカと一般的な樹脂との組合せによる塗膜で
は、最外表面に樹脂の層が存在するためコロイダルシリ
カの特徴である親水性が発現しない場合が多かった。
[0004] Further, colloidal silica is utilized in various paints and coating agents by taking advantage of its reactivity, hydrophilicity, high hardness and weather resistance. However, in the case of a coating film formed of a combination of colloidal silica and a general resin, a resin layer is present on the outermost surface, and in many cases, the hydrophilicity characteristic of colloidal silica does not appear.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来の問
題点を解消し、シリカ微粒子と一般的な樹脂とを組合せ
ることにより、親水性が非常に高く、耐汚染性にすぐれ
た親水化処理方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems, and by combining silica fine particles with a general resin, has a very high hydrophilicity and a hydrophilicity excellent in stain resistance. It is an object to provide a processing method.

【0006】[0006]

【課題を解決するための手段】本発明の親水化処理方法
は、合成樹脂中にシリカ微粒子が分散されてなる皮膜の
表面を放電処理又は真空紫外光照射処理することを特徴
とする。
The hydrophilization treatment method of the present invention is characterized in that the surface of a film in which fine silica particles are dispersed in a synthetic resin is subjected to a discharge treatment or a vacuum ultraviolet light irradiation treatment.

【0007】上記皮膜は、合成樹脂100重量部に対し
てコロイド状シリカがシリカ重量で20〜300重量部
配合された組成物を基材面に塗布乾燥して形成すること
ができる。
The above-mentioned film can be formed by applying and drying a composition comprising 20 to 300 parts by weight of colloidal silica based on 100 parts by weight of synthetic resin in terms of silica weight.

【0008】本発明で用いる合成樹脂は特に限定され
ず、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂のいず
れでもよい。例えば、アクリル樹脂、ポリエステル樹
脂、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹
脂、ビニル樹脂、シリコーン樹脂、アルコキシシラン系
樹脂、光硬化性アクリル樹脂、光硬化性エポキシ樹脂等
種々の樹脂が使用可能である。これらは単独でも2種類
以上を併用してもよい。
[0008] The synthetic resin used in the present invention is not particularly limited, and may be any of a thermosetting resin, a thermoplastic resin, and a photocurable resin. For example, various resins such as an acrylic resin, a polyester resin, a polyamide resin, a polyurethane resin, an epoxy resin, a vinyl resin, a silicone resin, an alkoxysilane-based resin, a photocurable acrylic resin, and a photocurable epoxy resin can be used. These may be used alone or in combination of two or more.

【0009】コロイド状シリカとは平均粒径5〜200
nmのシリカ微粒子が水又は有機溶媒に分散さているも
のである。このものは酸性領域あるいは塩基性領域のど
ちらで分散安定化されているものでも使用可能であり、
両者を併用することも可能である。
Colloidal silica has an average particle size of 5 to 200.
The silica fine particles of nm are dispersed in water or an organic solvent. This can be used even if the dispersion is stabilized in either the acidic region or the basic region,
Both can be used in combination.

【0010】上記シリカを分散させる有機溶媒として
は、メタノール、エタノール、n−プロパノール、i−
プロパノール、n−ブタノール、i−ブタノール、t−
ブタノール、sec−ブタノール、アセトン、メチルエ
チルケトン、メチルセロソルブ、エチルセロソルブ、テ
トラヒドロフラン等が挙げられる。これらは2種類以上
を併用することも可能である。
As the organic solvent in which the silica is dispersed, methanol, ethanol, n-propanol, i-
Propanol, n-butanol, i-butanol, t-
Butanol, sec-butanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, tetrahydrofuran and the like. These can be used in combination of two or more.

【0011】シリカ微粒子が水又は有機溶媒に分散され
たコーティング用組成物中のシリカ含有濃度は10〜4
0重量%の範囲であることが好ましい。
The silica content of the coating composition in which the silica fine particles are dispersed in water or an organic solvent is 10 to 4%.
It is preferably in the range of 0% by weight.

【0012】水分散されたコロイド状シリカの市販品と
しては、例えば、触媒化学社製「Cataloid」シ
リーズ、日産化学社製「スノーテックス」シリーズなど
があり、有機溶媒に分散されたものとしては、例えば、
触媒化学社製「OSCAL」シリーズ、日産化学社製
「オルガノシリカゾル」シリーズなどが挙げられる。
Commercial products of colloidal silica dispersed in water include, for example, "Cataloid" series manufactured by Catalysis Chemical Co., Ltd. and "Snowtex" series manufactured by Nissan Chemical Co., Ltd. For example,
Examples include the "OSCAL" series manufactured by Catalysis Chemical Co., and the "organosilica sol" series manufactured by Nissan Chemical Co., Ltd.

【0013】本発明では、前記合成樹脂100重量部に
対して、シリカ微粒子をシリカ重量で20〜300重量
部配合する。シリカ微粒子の量が20重量部よりも少な
いと、放電処理後又は真空紫外光照射後の親水性に劣り
耐汚染性が不十分となる。又、300重量部よりも多い
と均一に製膜できなくなるなどの問題があるので、シリ
カの配合量は上記の範囲に限定される。
In the present invention, 20 to 300 parts by weight of silica fine particles are blended with silica based on 100 parts by weight of the synthetic resin. If the amount of the silica fine particles is less than 20 parts by weight, the hydrophilicity after discharge treatment or after irradiation with vacuum ultraviolet light is poor, and the stain resistance becomes insufficient. On the other hand, if the amount is more than 300 parts by weight, there is a problem that the film cannot be formed uniformly, so that the compounding amount of silica is limited to the above range.

【0014】合成樹脂にシリカが混合された組成物は有
機溶媒で希釈可能である。この場合に使用する有機溶媒
としては、メタノール、エタノール、n−プロパノー
ル、i−プロパノール、n−ブタノール、i−ブタノー
ル、t−ブタノール、sec−ブタノール、アセトン、
メチルエチルケトン、メチルセロソルブ、エチルセロソ
ルブ、テトラヒドロフラン等が挙げられる。
A composition in which silica is mixed with a synthetic resin can be diluted with an organic solvent. As the organic solvent used in this case, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, sec-butanol, acetone,
Examples include methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, and tetrahydrofuran.

【0015】本発明で使用する組成物には、その性能を
損なわない範囲で種々の添加剤、例えば硬化剤及び硬化
触媒、光開始剤、紫外線吸収剤、酸化防止剤、レベリン
グ剤、増粘剤、界面活性剤、抗菌・抗黴剤等を添加して
もよい。
The composition used in the present invention may contain various additives such as a curing agent and a curing catalyst, a photoinitiator, an ultraviolet absorber, an antioxidant, a leveling agent and a thickening agent as long as their performance is not impaired. , A surfactant, an antibacterial / antifungal agent, and the like.

【0016】本発明の親水化処理方法によると、上記コ
ーティング用組成物を基材面に塗布乾燥した後、放電処
理することにより最外表面にコロイド状シリカが存在す
る形態の皮膜を形成することができるため、親水性、耐
汚染性にすぐれた表面を得ることができる。
According to the method for hydrophilization treatment of the present invention, the above coating composition is applied to a substrate surface, dried, and then subjected to a discharge treatment to form a film having colloidal silica on the outermost surface. Therefore, a surface having excellent hydrophilicity and stain resistance can be obtained.

【0017】コーティング用組成物を基材面に塗布する
には、ディッピング法、スピン塗工法、キャスティング
法、カーテン塗工法、ロール塗工法等を採用することが
できる。塗布量は乾燥後の膜厚が0.1〜100μmと
なるようにするのが好ましく、乾燥条件は室温から20
0℃程度の範囲で数分から数時間であり、基材の耐熱性
を考慮して適宜選定すればよい。光硬化性樹脂を用いる
場合は光照射によって硬化させて皮膜を形成する。光照
射の条件は用いる樹脂により調整する。
In order to apply the coating composition to the substrate surface, a dipping method, a spin coating method, a casting method, a curtain coating method, a roll coating method, or the like can be employed. The coating amount is preferably such that the film thickness after drying is 0.1 to 100 μm, and the drying condition is from room temperature to 20 μm.
It is several minutes to several hours in a range of about 0 ° C., and may be appropriately selected in consideration of the heat resistance of the base material. When a photocurable resin is used, it is cured by light irradiation to form a film. Light irradiation conditions are adjusted depending on the resin used.

【0018】上記基材は何ら限定されるものではなく、
ガラス、金属等の無機材料、アクリル、ポリカーボネー
ト、塩化ビニル、ポリオレフィン等の合成樹脂、FRP
等の複合材料等が挙げられる。これら基材の表面は予め
コロナ放電処理、プラズマ処理、紫外線照射、薬品処
理、プライマー処理等の接着性向上処理がなされていて
もよい。
The substrate is not limited at all,
Inorganic materials such as glass and metal, synthetic resins such as acrylic, polycarbonate, vinyl chloride and polyolefin, FRP
And the like. The surface of these substrates may be previously subjected to an adhesiveness improving treatment such as a corona discharge treatment, a plasma treatment, an ultraviolet irradiation, a chemical treatment, and a primer treatment.

【0019】本発明の親水化処理方法によると、上記コ
ーティング用組成物を各種基材上に塗布乾燥、硬化させ
た後、放電処理あるいは真空紫外光照射することによ
り、親水性、耐汚染性にすぐれた皮膜を形成することが
できる。
According to the hydrophilic treatment method of the present invention, the above coating composition is applied to various substrates, dried and cured, and then subjected to discharge treatment or vacuum ultraviolet light irradiation, whereby hydrophilicity and stain resistance are reduced. An excellent film can be formed.

【0020】又、本発明の親水化処理方法は、上記の基
材の親水化を行うだけでなく、同様の合成樹脂にコロイ
ド状シリカが配合されてなる組成物を用いて、例えば、
親水化フィルム、親水シートを得ることもできる。
The hydrophilization treatment method of the present invention not only hydrophilizes the above-mentioned base material, but also uses a composition comprising the same synthetic resin and colloidal silica, for example,
A hydrophilic film and a hydrophilic sheet can also be obtained.

【0021】放電処理としてはコロナ放電処理やプラズ
マ放電処理が挙げられ、基材の前処理等に通常用いられ
ている公知の装置や方法が採用できる。コロナ放電処理
装置としては、高周波電源と放電電極及び誘電体とから
なる一般的な装置(例えば、春日電機社製、日本スタテ
ック社製のものなど)が使用できる。
Examples of the discharge treatment include a corona discharge treatment and a plasma discharge treatment, and known devices and methods generally used for pretreatment of a substrate and the like can be employed. As the corona discharge treatment device, a general device including a high-frequency power supply, a discharge electrode, and a dielectric (for example, those manufactured by Kasuga Electric Co., Ltd., manufactured by Nippon Statec, etc.) can be used.

【0022】コロナ放電による処理条件は電極構造や電
極間距離等により異なるが、通常は15kV〜60kV
程度の電圧を印加して処理すればよい。印加電圧が低す
ぎると処理に要する時間が長くなり、高すぎるとアーク
放電に移行するため上記範囲が好ましい。
The processing conditions by corona discharge vary depending on the electrode structure, the distance between the electrodes, etc., but are usually 15 kV to 60 kV.
Processing may be performed by applying a voltage of the order of magnitude. If the applied voltage is too low, the time required for the treatment is prolonged, and if the applied voltage is too high, the arc discharge starts, so the above range is preferable.

【0023】プラズマ放電処理の場合、プラズマの発生
方法としては、例えば、直流電流の印加、マイクロ波放
電、電子サイクロトロン共鳴等によってガスをプラズマ
分解する方法、熱フィラメントによって熱分解する方法
などが挙げられる。又、プラズマ処理として、処理圧力
1×10-4〜100Torrの範囲内の低圧下で行う方
法がよく知られているが、後述する方法により大気圧近
傍の圧力下で行うこともできる。
In the case of the plasma discharge treatment, the method of generating plasma includes, for example, a method of applying a direct current, a microwave discharge, a method of decomposing a gas by plasma using electron cyclotron resonance, a method of thermally decomposing a gas by a hot filament, and the like. . Further, a method of performing the plasma treatment under a low pressure within a processing pressure of 1 × 10 −4 to 100 Torr is well known, but the plasma treatment may be performed under a pressure near the atmospheric pressure by a method described later.

【0024】処理圧力1×10-4〜100Torrの範
囲内の低圧下でプラズマ放電処理を行う場合、処理圧力
は励起手段や処理ガスにより適宜選択されるが、装置が
簡便で比較的圧力が高い状態でもグロー放電やプラズマ
の発生が可能な1×10-2〜100Torrの範囲が好
ましい。処理圧力が100Torrを超えると熱プラズ
マになり、アーク放電に移行してしまうため基材が損傷
を受ける。又、1×10-4未満であると高価な真空チャ
ンバーや真空排気装置が必要になる。上記処理ガスは特
に限定されないが、例えば、アルゴン、ヘリウム、窒
素、酸素、空気等を用いることができる。
When the plasma discharge treatment is performed under a low treatment pressure of 1 × 10 -4 to 100 Torr, the treatment pressure is appropriately selected depending on the excitation means and the treatment gas, but the apparatus is simple and the pressure is relatively high. It is preferably in the range of 1 × 10 −2 to 100 Torr in which glow discharge or plasma can be generated even in the state. When the processing pressure exceeds 100 Torr, the substrate becomes thermal plasma and shifts to arc discharge, so that the substrate is damaged. If it is less than 1 × 10 −4 , expensive vacuum chambers and vacuum exhaust devices are required. Although the processing gas is not particularly limited, for example, argon, helium, nitrogen, oxygen, air and the like can be used.

【0025】低圧下でプラズマ放電処理を行うには、電
極構造が平行平板型、同軸円筒型、曲面対向平板型、双
曲面対向平板型等の場合、直流電圧や交流電圧は容量結
合方式で印加される。又、高周波印加の場合は外部電極
を用いて誘導形式でも印加可能である。低圧下における
プラズマ放電処理に要する投入電力は電極面積や形状に
より異なるが、5〜200W(1〜10kV)が好まし
い。投入電力が低すぎると処理に時間を要して非能率的
であり、逆に高すぎると基材が損傷を受ける。
In order to perform plasma discharge treatment under a low pressure, when the electrode structure is a parallel plate type, a coaxial cylindrical type, a curved flat plate type, a hyperboloid flat plate type, or the like, a DC voltage or an AC voltage is applied by a capacitive coupling method. Is done. Further, in the case of applying a high frequency, it is also possible to apply the induction type by using an external electrode. The input power required for the plasma discharge treatment under low pressure varies depending on the electrode area and shape, but is preferably 5 to 200 W (1 to 10 kV). If the input power is too low, processing takes time and is inefficient, and if it is too high, the substrate is damaged.

【0026】電極間の距離は処理能力、基材の厚み等に
より適宜選定されるが、長すぎるとプラズマ密度が低下
し、高電力が必要となるので、基材が電極間に装着可能
な範囲でなるべく短くなるようにするのがよい。プラズ
マ放電処理を行う時間は処理条件や処理面の組成物によ
り適宜選定されるが、1〜30秒で充分な効果が発現さ
れる。
The distance between the electrodes is appropriately selected depending on the processing capacity, the thickness of the substrate, and the like. However, if the distance is too long, the plasma density decreases and high power is required. Should be as short as possible. The time for performing the plasma discharge treatment is appropriately selected depending on the treatment conditions and the composition of the treated surface, but a sufficient effect is exhibited in 1 to 30 seconds.

【0027】大気圧近傍の圧力下でプラズマ放電処理を
行う場合、大気圧近傍とは10〜800Torrの圧力
下のことであり、処理圧力は圧力調整が容易で装置が簡
便になる700〜780Torrの範囲が好ましい。
In the case where plasma discharge processing is performed at a pressure near the atmospheric pressure, the term "near the atmospheric pressure" means a pressure of 10 to 800 Torr, and the processing pressure is 700 to 780 Torr, which facilitates pressure adjustment and makes the apparatus simple. A range is preferred.

【0028】大気圧近傍の圧力下でプラズマ放電処理を
行う場合は電極の形状は特に制限されず、例えば、平行
平板型、円筒対向平板型、球対向平板型、双曲面対向平
板型、同軸円筒型構造等が挙げられ、対向電極の少なく
とも一方の対向面に固体誘導体が配置される。固体誘導
体としては、例えば、ポリテトラフルオロエチレン、ポ
リエチレンテレフタレート等の合成樹脂、ガラス、二酸
化珪素、酸化アルミニウム、二酸化ジルコニウム、二酸
化チタン等の金属酸化物、チタン酸バリウム等の複酸化
物等が挙げられる。
When the plasma discharge treatment is performed under a pressure near the atmospheric pressure, the shape of the electrode is not particularly limited. For example, a parallel plate type, a cylindrical opposed plate type, a spherical opposed plate type, a hyperboloid opposed plate type, a coaxial cylinder The solid derivative is disposed on at least one opposing surface of the opposing electrode. Examples of the solid derivative include synthetic resins such as polytetrafluoroethylene and polyethylene terephthalate, glass, silicon oxide, aluminum oxide, zirconium dioxide, metal oxides such as titanium dioxide, and double oxides such as barium titanate. .

【0029】電極間に印加される電界は、交流波形その
ものの他、パルス化された電界を用いてもよく、電界強
度は1〜100kV/cm程度となるように電圧を印加
するのが好ましい。投入電力が低すぎると処理に時間を
要して非能率的であり、高すぎると基材が損傷を受け
る。
The electric field applied between the electrodes may be a pulsed electric field other than the AC waveform itself, and it is preferable to apply a voltage so that the electric field intensity is about 1 to 100 kV / cm. If the input power is too low, processing takes time and is inefficient, and if it is too high, the substrate is damaged.

【0030】又、大気圧下では処理ガス選択の自由度を
向上させ、高速処理を行うという観点から、立ち上がり
時間及び/又は立ち下がり時間が100μs以下である
パルス電界を印加することが好ましい。更に、パルス電
界の周波数は1〜100KHz、1パルス中のON時間
は1〜1000μsの間連続することが好ましい。
From the viewpoint of improving the degree of freedom in selecting a processing gas under atmospheric pressure and performing high-speed processing, it is preferable to apply a pulse electric field having a rise time and / or a fall time of 100 μs or less. Further, the frequency of the pulse electric field is preferably 1 to 100 KHz, and the ON time during one pulse is preferably continuous for 1 to 1000 μs.

【0031】本発明で行う真空紫外光照射に用いる真空
紫外光の光源としては、エキシマレーザー、エキシマラ
ンプ、低圧水銀灯、水素放電管、希ガス放電管等が挙げ
られる。高強度の真空紫外線を得ることができるエキシ
マレーザー、エキシマランプが好ましいが、エキシマラ
ンプは照射面積が広いのでより好ましい。
Examples of the light source of the vacuum ultraviolet light used for the vacuum ultraviolet light irradiation performed in the present invention include an excimer laser, an excimer lamp, a low-pressure mercury lamp, a hydrogen discharge tube, a rare gas discharge tube and the like. Excimer lasers and excimer lamps that can obtain high-intensity vacuum ultraviolet rays are preferable, but excimer lamps are more preferable because of their large irradiation area.

【0032】エキシマレーザー又はエキシマランプの発
振波長は媒質ガスの種類により異なるが、例えば、Ar
Fレーザーでは193nm、F2 レーザーでは157n
m、Xe2 ランプでは172nm、Kr2 ランプでは1
46nm、Ar2 ランプでは126nmの波長の光を得
ることができる。
The oscillation wavelength of an excimer laser or an excimer lamp varies depending on the type of medium gas.
193 nm for F laser, 157 n for F 2 laser
m, 172 nm for Xe 2 lamp, 1 for Kr 2 lamp
With a 46 nm Ar 2 lamp, light with a wavelength of 126 nm can be obtained.

【0033】真空紫外光は空気により光が吸収されてし
まうため、処理効率を上げるために、希ガスや窒素等の
不活性ガス雰囲気下、あるいは真空下で照射することが
望ましい。照射量は処理条件等により適宜決定され、例
えば、10W/cm2 の光を照射した場合、処理時間は
10〜60秒間で充分な効果が発現される。
Since the vacuum ultraviolet light is absorbed by air, it is desirable to irradiate it in an atmosphere of an inert gas such as a rare gas or nitrogen, or in a vacuum in order to increase the processing efficiency. The irradiation amount is appropriately determined depending on the processing conditions and the like. For example, when light of 10 W / cm 2 is irradiated, a sufficient effect is exhibited if the processing time is 10 to 60 seconds.

【0034】本発明の親水化処理方法によると、合成樹
脂中にシリカ微粒子が分散されてなる皮膜に放電処理あ
るいは真空紫外光を照射することにより、該皮膜の最表
面に存在する合成樹脂層が破壊されてシリカ微粒子が露
出する。そのために高度な親水性が得られ、水洗等によ
り汚れが容易に除去できるようになり、耐汚染性にすぐ
れた表面層が得られる。
According to the hydrophilization treatment method of the present invention, the coating film in which the silica fine particles are dispersed in the synthetic resin is subjected to discharge treatment or irradiation with vacuum ultraviolet light, so that the synthetic resin layer present on the outermost surface of the coating film is formed. The silica particles are destroyed and the silica fine particles are exposed. Therefore, a high degree of hydrophilicity is obtained, and dirt can be easily removed by washing with water or the like, and a surface layer having excellent stain resistance can be obtained.

【0035】放電処理を行うと、放電空間中の電子や分
子、原子、イオン等が最外表面樹脂層に衝突し、樹脂の
結合が切断されると考えられる。真空紫外光は波長10
0〜200nmの光であり、樹脂の結合(C−C、C−
O等)を切断するために充分な光子エネルギーを有す
る。このため最表面の樹脂層の結合が切断されると考え
られる。
When the discharge treatment is performed, it is considered that electrons, molecules, atoms, ions, and the like in the discharge space collide with the outermost surface resin layer, thereby breaking the resin bond. Vacuum ultraviolet light has a wavelength of 10
It is light of 0 to 200 nm, and the resin bond (C-C, C-
O) have sufficient photon energy to sever the photons. Therefore, it is considered that the bond of the outermost resin layer is broken.

【0036】[0036]

【実施例】以下に本発明の親水化処理方法の実施例を説
明する。 (実施例1)γ−グリシドキシプロピルトリメトキシシ
ラン(東レ・ダウコーニング社製,商品名「SH604
0」)100重量部に0.1NのHCl水溶液23重量
部を添加し、室温で1時間攪拌して加水分解溶液を調整
した。この加水分解溶液に、コロイド状シリカ(シリカ
分30重量%,i−プロパノール分散,触媒化学社製,
商品名「OSCAL1432」)274重量部を配合
し、均一に混合してコーティング用組成物を得た。
EXAMPLES Examples of the hydrophilic treatment method of the present invention will be described below. Example 1 γ-glycidoxypropyltrimethoxysilane (manufactured by Dow Corning Toray, trade name “SH604”)
0 ") 23 parts by weight of a 0.1N HCl aqueous solution were added to 100 parts by weight, and the mixture was stirred at room temperature for 1 hour to prepare a hydrolysis solution. This hydrolysis solution was added to colloidal silica (silica content 30% by weight, i-propanol dispersion;
274 parts by weight (trade name “OSCAL1432”) were mixed and uniformly mixed to obtain a coating composition.

【0037】得られた組成物を透明なポリカーボネート
板(厚み3mm,旭硝子社製,商品名「レキサン」)表
面に乾燥後の厚みが2μmとなるようにスピン塗工法に
より塗布し、80℃で1時間乾燥させて皮膜を形成し
た。この皮膜は非常に透明性がよく、硬度も高いもので
あった。該皮膜表面のコロナ放電処理前の対水接触角を
測定した。上記皮膜に印加電圧30kV、出力0.4k
W、処理速度1m/minでコロナ放電処理を行ったと
ころ、外観変化は認められなかった。
The resulting composition was applied to the surface of a transparent polycarbonate plate (thickness: 3 mm, trade name “Lexan” manufactured by Asahi Glass Co., Ltd.) by a spin coating method so that the thickness after drying was 2 μm. After drying for a period of time, a film was formed. This film was very transparent and had high hardness. The contact angle of water on the film surface before corona discharge treatment was measured. 30 kV applied voltage and 0.4 k output to the above film
W, when the corona discharge treatment was performed at a treatment speed of 1 m / min, no change in appearance was observed.

【0038】(実施例2)ポリ(2−ヒドロキシエチル
メタクリレート)(Aldrich社製,Mw=30
0,000)100重量部をエチルセロソルブ900重
量部に均一に溶解し、これにコロイド状シリカ(シリカ
分30重量%,i−プロパノール分散,触媒化学社製,
商品名「OSCAL1432」)333重量部を配合
し、均一に混合してコーティング用組成物を得た。
Example 2 Poly (2-hydroxyethyl methacrylate) (manufactured by Aldrich, Mw = 30)
000) was uniformly dissolved in 900 parts by weight of ethyl cellosolve, and colloidal silica (silica content 30% by weight, i-propanol dispersion, manufactured by Catalysis Chemical Co., Ltd.)
333 parts by weight (trade name “OSCAL1432”) were mixed and uniformly mixed to obtain a coating composition.

【0039】得られた組成物を実施例1で用いたものと
同じポリカーボネート板に、実施例1と同様に塗布乾燥
して皮膜を形成した。この状態でコロナ放電処理前の対
水接触角を測定した。更に、上記皮膜に実施例1と同様
にしてコロナ放電処理を行った。
The obtained composition was applied and dried on the same polycarbonate plate as used in Example 1 in the same manner as in Example 1 to form a film. In this state, the contact angle with water before the corona discharge treatment was measured. Further, the above-mentioned film was subjected to corona discharge treatment in the same manner as in Example 1.

【0040】(実施例3)実施例2と同様にして形成し
た皮膜を、処理ガスとしてアルゴンを使用し、処理圧力
1Torr、処理電力25W、電極間距離2.5cm、
処理時間10秒でプラズマ放電処理(サムコ インター
ナショナル研究所社製の装置使用)した。処理後の皮膜
に外観変化はなかった。
Example 3 A film formed in the same manner as in Example 2 was processed using argon as a processing gas at a processing pressure of 1 Torr, a processing power of 25 W, a distance between electrodes of 2.5 cm,
Plasma discharge treatment (using a device manufactured by Samco International Laboratories) was performed with a treatment time of 10 seconds. The appearance of the film after the treatment was not changed.

【0041】(実施例4)水添ビスフェノールA型エポ
キシ樹脂のプロピレンオキシド変性物(共栄化学社製,
商品名「エポライト3002」)100重量部にコロイ
ド状シリカ(シリカ分30重量%,i−プロパノール分
散)500重量部を均一に混合してコーティング用組成
物を得た。
Example 4 A propylene oxide-modified hydrogenated bisphenol A type epoxy resin (manufactured by Kyoei Chemical Co., Ltd.)
A coating composition was obtained by uniformly mixing 500 parts by weight of colloidal silica (silica content 30% by weight, i-propanol dispersion) with 100 parts by weight of trade name “Epolite 3002”.

【0042】得られた組成物を実施例1で用いたものと
同じポリカーボネート板に、実施例1と同様に塗布乾燥
して皮膜を形成し、コロナ放電処理前の対水接触角を測
定した。上記皮膜に実施例1と同様にしてコロナ放電処
理を行った。
The obtained composition was applied and dried on the same polycarbonate plate as used in Example 1 in the same manner as in Example 1 to form a film, and the contact angle with water before corona discharge treatment was measured. Corona discharge treatment was performed on the above-mentioned film in the same manner as in Example 1.

【0043】(実施例5)実施例4と同様にして形成し
た皮膜に、処理ガスとしてヘリウムを使用し、処理圧力
760Toor、処理電力100Wの交流電界電極間距
離2mm、固体誘導体としてTiO2 を使用し、処理時
間10秒でプラズマ放電処理を行った。処理後の皮膜に
は外観の変化はなかった。
Example 5 Helium was used as a processing gas for the film formed in the same manner as in Example 4, a processing pressure of 760 Toor, a processing power of 100 W, an AC electric field distance of 2 mm, and TiO 2 as a solid derivative. Then, a plasma discharge treatment was performed for a treatment time of 10 seconds. There was no change in the appearance of the film after the treatment.

【0044】(実施例6)光硬化性アクリル樹脂である
ペンタエリスリトールトリアクリレート(日本化薬社
製,商品名「PET−30」)100重量部に、光開始
剤として1−ヒドロキシシクロヘキシルフェニルケトン
(日本チバガイギー社製,商品名「イルガキュアー18
4」)2重量部、光開始助剤として4−ジエチルアミノ
安息香酸エチル(日本化薬社製,商品名「カヤキュアー
EPA」)2重量部と、コロイド状シリカ(シリカ分3
0重量%,i−プロパノール分散)333重量部とを均
一に混合してコーティング用組成物を得た。
(Example 6) 100 parts by weight of pentaerythritol triacrylate (trade name "PET-30", manufactured by Nippon Kayaku Co., Ltd.), which is a photocurable acrylic resin, was mixed with 1-hydroxycyclohexyl phenyl ketone (1-hydroxycyclohexylphenylketone) as a photoinitiator. Product name "Irgacure 18" manufactured by Nippon Ciba Geigy
4 ") 2 parts by weight, 2 parts by weight of ethyl 4-diethylaminobenzoate (trade name" Kayacure EPA ", manufactured by Nippon Kayaku Co., Ltd.) as a photoinitiator and colloidal silica (silica content 3)
333 parts by weight (0% by weight, i-propanol dispersion) were uniformly mixed to obtain a coating composition.

【0045】得られた組成物を実施例1で用いたものと
同じポリカーボネート板に、実施例1と同様に塗布乾燥
して皮膜を形成した後、高圧水銀灯により500mJ/
cm 2 で紫外線を照射した。この皮膜は非常に透明性が
よく、硬度も高いものであった。コロナ放電処理前の対
水接触角を測定した後、該皮膜に実施例1と同様にして
コロナ放電処理を行った。
The composition obtained was the same as that used in Example 1.
Apply and dry on the same polycarbonate plate as in Example 1.
After forming a film by 500mJ /
cm TwoWas irradiated with ultraviolet rays. This film is very transparent
Good and high hardness. Before corona discharge treatment
After measuring the water contact angle, the film was treated in the same manner as in Example 1.
Corona discharge treatment was performed.

【0046】(実施例7)実施例6と同様にして形成し
た皮膜を、中心波長172nm、光量10W/cm2
照射時間30秒、大気圧下で真空紫外光照射処理(ウシ
オ電機社製エキシマランプ,型式「UER20−17
2」使用)を行った。処理後の皮膜の外観に変化はなか
った。
Example 7 A film formed in the same manner as in Example 6 was applied to a film having a center wavelength of 172 nm, a light amount of 10 W / cm 2 ,
Irradiation time 30 seconds, vacuum ultraviolet light irradiation treatment under atmospheric pressure (Ushio Inc. excimer lamp, model "UER20-17")
2 "use). There was no change in the appearance of the film after the treatment.

【0047】(実施例8)脂環式エポキシ樹脂(ダイセ
ル化学社製,商品名「セロキサイド2021P」)10
0重量部と、コロイド状シリカ(シリカ分30重量%,
i−プロパノール分散,触媒化成社製,商品名「OSC
AL1432」)500重量部とを均一に混合してコー
ティング用組成物を得た。得られた組成物を実施例1で
用いたものと同じポリカーボネート板に、実施例1と同
様に塗布乾燥して皮膜を形成した後、中心波長172n
m、光量10W/cm2 、照射時間15秒、真空中で真
空紫外光照射処理(ウシオ電機社製エキシマランプ,型
式「UER20−172」使用)を行った。処理後の皮
膜の外観に変化はなかった。
(Example 8) Alicyclic epoxy resin (trade name "CELLOXIDE 2021P" manufactured by Daicel Chemical Industries, Ltd.) 10
0 parts by weight and colloidal silica (silica content 30% by weight,
i-propanol dispersion, manufactured by Catalyst Kasei Co., Ltd., trade name "OSC
AL1432 ") (500 parts by weight) to obtain a coating composition. The obtained composition was applied and dried on the same polycarbonate plate as that used in Example 1 in the same manner as in Example 1 to form a film.
m, a light amount of 10 W / cm 2 , an irradiation time of 15 seconds, and a vacuum ultraviolet light irradiation treatment (using an excimer lamp manufactured by Ushio Inc., model “UER20-172”) in vacuum. There was no change in the appearance of the film after the treatment.

【0048】(実施例9)耐熱性ガラス容器(容量5リ
ットル)を備えたプラズマ処理装置で、上部電極(直径
80mmのステンレス(SUS304)板に直径1mm
の孔が10mm間隔で設けられたもの)と、下部電極
(直径80mmのステンレス(SUS304)板)との
電極間距離6mmの空間中の下部電極上に、固体誘導体
として8重量%の酸化イットリウムで部分安定化された
ジルコニウムの溶射膜(厚み500μm)を配置し、実
施例1と同様にして形成した皮膜面を上側にして配置し
た。
Example 9 A plasma processing apparatus equipped with a heat-resistant glass container (capacity: 5 liters) was used to attach an upper electrode (a stainless steel (SUS304) having a diameter of 80 mm) to a 1 mm diameter.
And a lower electrode (a stainless steel (SUS304) plate having a diameter of 80 mm) in a space with a distance of 6 mm between the lower electrode and a lower electrode (a stainless steel (SUS304) plate having a diameter of 80 mm). A partially stabilized thermal sprayed film of zirconium (thickness: 500 μm) was arranged, and the film surface formed in the same manner as in Example 1 was arranged with its upper surface facing upward.

【0049】油回転ポンプで装置内が1Toorになる
まで排気を行い、次にガス導入管から所望量のガスを導
入して装置内の圧力を大気圧とした。電極間にインパル
ス波形で表2に示す波高値、周波数、パルス幅、(立ち
上がり/立ち下がり)時間のパルス化された電界を15
秒印加して放電プラズマを発生させ、これを基材に接触
させてプラズマ放電処理を行った。
The inside of the apparatus was evacuated by an oil rotary pump until the internal pressure of the apparatus became 1 Toor. Then, a desired amount of gas was introduced from a gas introduction pipe to bring the pressure in the apparatus to atmospheric pressure. A pulsed electric field having a peak value, a frequency, a pulse width, and a (rising / falling) time shown in Table 2 in an impulse waveform is applied between the electrodes.
For 2 seconds, discharge plasma was generated, and this was brought into contact with the base material to perform a plasma discharge process.

【0050】(実施例10)実施例2と同様にして形成
した皮膜を使用し、インパルス波の条件を表1に示すと
おりとした以外は実施例9と同様にしてプラズマ放電処
理を行った。
Example 10 A plasma discharge treatment was performed in the same manner as in Example 9 except that the film formed in the same manner as in Example 2 was used and the conditions of the impulse wave were as shown in Table 1.

【0051】(実施例11)実施例4と同様にして形成
した皮膜を使用し、インパルス波の条件を表1に示すと
おりとした以外は実施例9と同様にしてプラズマ放電処
理を行った。
Example 11 A plasma discharge treatment was performed in the same manner as in Example 9 except that the film formed in the same manner as in Example 4 was used and the conditions of the impulse wave were as shown in Table 1.

【0052】(比較例1)コーティング用組成物を塗布
しないポリカーボネート板(対水接触角86°,汚染性
試験×)を実施例1と同様の条件でコロナ放電処理した
後、対水接触角を測定した。
(Comparative Example 1) A polycarbonate plate to which the coating composition was not applied (contact angle to water: 86 °, contamination test ×) was subjected to corona discharge treatment under the same conditions as in Example 1, and then the contact angle to water was measured. It was measured.

【0053】(比較例2)実施例8と同様にして形成し
た皮膜に、3kVの高圧水銀灯により照射量10j/c
2 で紫外線を照射した。この皮膜に、コンベア式紫外
線照射装置(光源3kVの高圧水銀灯,アイグラフィッ
ク社製,型式「H03−L31」)を用いて紫外線を照
射した。
(Comparative Example 2) A film formed in the same manner as in Example 8 was irradiated with a 3 kV high-pressure mercury lamp at an irradiation dose of 10 j / c.
Irradiated with ultraviolet light at m 2 . The film was irradiated with ultraviolet rays using a conveyor-type ultraviolet irradiation device (high-pressure mercury lamp with a light source of 3 kV, manufactured by Eye Graphic, model “H03-L31”).

【0054】性能評価 実施例及び比較例で得た皮膜について下記の方法で対水
接触角及び汚染性の評価を行った。その結果を表2に示
す。 1)対水接触角の測定:協和界面科学社製 接触角計
(商品名「CA−X150型」)を用いて3点ずつ測定
し、その平均値で表した。 2)汚染性:カーボンブラック/流動パラフィン/イオ
ン交換水=9/1/40の割合で混合したものを汚染代
替物質とし、こを皮膜表面に塗布して70℃で5分間乾
燥した後、流水により洗浄し、汚れの除去状態を目視に
より観察して以下の3段階で評価した。 ○;汚れなし △;少し汚れあり ×;汚れが目立つ
Evaluation of Performance The coatings obtained in Examples and Comparative Examples were evaluated for contact angle with water and contamination by the following methods. Table 2 shows the results. 1) Measurement of contact angle with water: Each was measured at three points using a contact angle meter (trade name “CA-X150”) manufactured by Kyowa Interface Science Co., Ltd., and expressed as an average value. 2) Stainability: A mixture of carbon black / liquid paraffin / ion-exchanged water = 9/1/40 was used as a stain substitute substance, which was applied to the surface of the film and dried at 70 ° C. for 5 minutes. And the state of removal of dirt was visually observed and evaluated in the following three stages. ;: No stain △: Slight stain ×: Stain is conspicuous

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】表2から明らかなとおり、実施例1〜11
のものはいずれも親水性にすぐれ、耐汚染性にもすぐれ
たものである。しかし比較例1、2のものは親水性に劣
り耐汚染性が悪い。
As is clear from Table 2, Examples 1 to 11
Are excellent in hydrophilicity and also excellent in stain resistance. However, those of Comparative Examples 1 and 2 are inferior in hydrophilicity and poor in stain resistance.

【0058】[0058]

【発明の効果】本発明の親水化処理方法は以上の構成で
あるから、皮膜の最表面に存在する合成樹脂層が破壊さ
れて露出したシリカによりすぐれた親水性が得られるの
で、水洗等により汚れが容易に除去できるようになり、
耐汚染性にすぐれた表面層が得られる。
The method for hydrophilization of the present invention has the above-mentioned structure, and the synthetic resin layer existing on the outermost surface of the film is destroyed, so that the exposed silica provides excellent hydrophilicity. Dirt can be easily removed,
A surface layer with excellent stain resistance is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯浅 基和 大阪府三島郡島本町百山2−1 積水化学 工業株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Motokazu Yuasa 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka Sekisui Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂中にシリカ微粒子が分散されて
なる皮膜の表面を放電処理又は真空紫外光照射処理する
ことを特徴とする親水化処理方法。
1. A method for hydrophilizing, comprising subjecting a surface of a film formed by dispersing silica fine particles in a synthetic resin to a discharge treatment or a vacuum ultraviolet light irradiation treatment.
【請求項2】 合成樹脂中にシリカ微粒子が分散されて
なる皮膜が、合成樹脂100重量部に対してコロイド状
シリカがシリカ重量で20〜300重量部配合されてな
る組成物からなるものである請求項1記載の親水化処理
方法。
2. A film in which fine silica particles are dispersed in a synthetic resin is composed of a composition in which 20 to 300 parts by weight of colloidal silica is blended with respect to 100 parts by weight of the synthetic resin. The hydrophilic treatment method according to claim 1.
JP6350297A 1997-03-17 1997-03-17 Method for hydrophilization treatment Pending JPH10249271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6350297A JPH10249271A (en) 1997-03-17 1997-03-17 Method for hydrophilization treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6350297A JPH10249271A (en) 1997-03-17 1997-03-17 Method for hydrophilization treatment

Publications (1)

Publication Number Publication Date
JPH10249271A true JPH10249271A (en) 1998-09-22

Family

ID=13231082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6350297A Pending JPH10249271A (en) 1997-03-17 1997-03-17 Method for hydrophilization treatment

Country Status (1)

Country Link
JP (1) JPH10249271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323757A (en) * 1999-05-07 2000-11-24 Seiwa Electric Mfg Co Ltd Optical catalyst film coating method, optical catalyst film coated thereby, led lamp coated by the method, and display device using the same
WO2009110152A1 (en) * 2008-03-04 2009-09-11 株式会社レニアス Transparent resin plate and method for producing the same
JP2012007147A (en) * 2010-05-26 2012-01-12 Dic Corp Substrate having surface-treated cured material layer of resin composition on surface, and protective sheet on light receiving-side for solar battery and solar battery module using the same
JP2015510445A (en) * 2011-12-29 2015-04-09 スリーエム イノベイティブ プロパティズ カンパニー Cleanable article and method for making and using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323757A (en) * 1999-05-07 2000-11-24 Seiwa Electric Mfg Co Ltd Optical catalyst film coating method, optical catalyst film coated thereby, led lamp coated by the method, and display device using the same
WO2009110152A1 (en) * 2008-03-04 2009-09-11 株式会社レニアス Transparent resin plate and method for producing the same
JP4536824B2 (en) * 2008-03-04 2010-09-01 株式会社レニアス Transparent resin plate and manufacturing method thereof
JPWO2009110152A1 (en) * 2008-03-04 2011-07-14 株式会社レニアス Transparent resin plate and manufacturing method thereof
US9533327B2 (en) 2008-03-04 2017-01-03 Kabushiki Kaisha Reniasu Transparent resin plate and a method for producing the same
JP2012007147A (en) * 2010-05-26 2012-01-12 Dic Corp Substrate having surface-treated cured material layer of resin composition on surface, and protective sheet on light receiving-side for solar battery and solar battery module using the same
JP2015510445A (en) * 2011-12-29 2015-04-09 スリーエム イノベイティブ プロパティズ カンパニー Cleanable article and method for making and using the same

Similar Documents

Publication Publication Date Title
EP0061653B1 (en) Coated plastic article
US5965629A (en) Process for modifying surfaces of materials, and materials having surfaces modified thereby
ES2381034T3 (en) Method for treating fluoropolymer particles and products thereof
JP5798747B2 (en) Manufacturing method of laminate
JP2002509852A (en) Steam plasma treatment of glass surface
JP4144042B2 (en) Gas barrier plastic packaging material and manufacturing method thereof
JPH10249271A (en) Method for hydrophilization treatment
JP3141790B2 (en) Active energy ray irradiation method and active energy ray irradiated object
JPH0418423A (en) Polymerizable silica dispersion and curable coating composition using the same dispersion
JP2003335983A (en) Hard coat composition, reflection-preventing film and method for producing reflection-preventing film
US9481010B2 (en) Method for producing gas barrier film
JP3373065B2 (en) Method of forming water-repellent coating
JP2002060687A (en) Transparent coating composition for photocatalyst
JP2003329805A (en) Antireflection film and method for manufacturing antireflection film
TWI617458B (en) a laminate having a top coat composed of scaly metal oxide fine particles
JP2000156153A (en) Manufacture of secondary electron emission film, and the secondary electron emission film
JPH07204581A (en) Production of laminated body
JP2000070728A (en) Photocatalytic material irradiated with electron beam, its coating material and coating film
JPH11293031A (en) Antifouling film and formation thereof
JP5919028B2 (en) Method for forming a cured layer containing scaly metal oxide fine particles
CN101353429B (en) Method for stabilizing silicone material, stabilized silicone material, and devices incorporating that material
JPH10152350A (en) Anti-fogging pair glass
He et al. Deposition of Polymer Thin Films on ZnO Nanoparticles by a Plasma Treatment
JP2008521162A (en) Gas discharge lamp, system and method for curing materials curable by UV light and materials curable by UV light
JP2004258278A (en) Plastic lens and its manufacturing method