JPH10248558A - Enzymatic reaction in supercritical fluid - Google Patents

Enzymatic reaction in supercritical fluid

Info

Publication number
JPH10248558A
JPH10248558A JP5656297A JP5656297A JPH10248558A JP H10248558 A JPH10248558 A JP H10248558A JP 5656297 A JP5656297 A JP 5656297A JP 5656297 A JP5656297 A JP 5656297A JP H10248558 A JPH10248558 A JP H10248558A
Authority
JP
Japan
Prior art keywords
enzyme
reaction
lipid
supercritical fluid
enzymatic reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5656297A
Other languages
Japanese (ja)
Inventor
Shigeo Okahata
恵雄 岡畑
Toshiaki Mori
俊明 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP5656297A priority Critical patent/JPH10248558A/en
Publication of JPH10248558A publication Critical patent/JPH10248558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an industrial process capable of carrying out reaction at a high speed, yield and selectivity and simplifying purification by coating the surface of an enzyme with a lipid monomolecular film and carrying out enzymatic reaction in a supercritical fluid. SOLUTION: Enzymatic reaction in supercritical fluid is carried out by a lipid-modified enzyme hardly causing deactivation which is obtained by coating the surface of an enzyme such as glycosidase with a lipid monomolecular film. This method is useful for synthesis of a physiologically active substance such as an ester or a peptide, an optically active organic intermediate raw material, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界流体中で酵
素反応を行わせる際に、脂質単分子膜で酵素表面を被覆
してなる脂質修飾酵素を用いる酵素反応方法に関する。
TECHNICAL FIELD The present invention relates to an enzyme reaction method using a lipid-modifying enzyme in which an enzyme surface is coated with a lipid monolayer when an enzyme reaction is carried out in a supercritical fluid.

【0002】[0002]

【従来の技術】医薬品工業、食品工業、農水産分野、高
分子分野及び有機中間体原料の製造分野等において、酵
素の有する優れた特性を利用し、エステル類やペプチド
類等の生理活性物質、光学活性な有機中間体原料等の様
々な化合物を合成しようとする工業的製造法が研究され
ている。これらの研究において、酵素反応の基質及び生
成物の溶解度の観点から、近年有機溶媒の使用が盛んに
検討されるようになった。
2. Description of the Related Art In the pharmaceutical industry, food industry, agriculture and fisheries field, polymer field and organic intermediate raw material manufacturing field, utilizing the excellent properties of enzymes, bioactive substances such as esters and peptides, Industrial production methods for synthesizing various compounds such as optically active organic intermediate raw materials have been studied. In these studies, the use of organic solvents has recently been actively studied from the viewpoint of the solubility of substrates and products of enzyme reactions.

【0003】有機溶媒中での酵素反応には、酵素を有機
溶媒に懸濁して反応させる不均一系の反応と、酵素を有
機溶媒に完全に溶解して反応させる均一系の反応とがあ
る。不均一系の反応では通常、粗酵素が用いられるが、
酵素が有機溶媒に懸濁しているため基質の酵素内部への
拡散が低く反応性が低い。均一系の反応の例としては、
酵素をポリエチレングリコールで修飾し、有機溶媒に可
溶化する方法(Y.Inada et al.,Biochem.Biophys.Res.Co
mmun.,vol.122,845,(1984))があるが、調製方法が煩雑
であり酵素活性も低い。また、酵素と脂質の複合体を形
成させ、有機溶媒に可溶化する方法(特開昭64-80282
号)があるが、複合体中に含まれる酵素量が低い等の問
題点がある。
The enzyme reaction in an organic solvent includes a heterogeneous reaction in which an enzyme is suspended in an organic solvent for reaction, and a homogeneous reaction in which the enzyme is completely dissolved in an organic solvent and reacted. Crude enzymes are usually used in heterogeneous reactions,
Since the enzyme is suspended in the organic solvent, the diffusion of the substrate into the enzyme is low and the reactivity is low. Examples of homogeneous reactions include:
A method in which an enzyme is modified with polyethylene glycol and solubilized in an organic solvent (Y. Inada et al., Biochem. Biophys. Res.
mmun., vol. 122, 845, (1984)), but the preparation method is complicated and the enzyme activity is low. Further, a method of forming a complex of an enzyme and a lipid and solubilizing the same in an organic solvent (JP-A-64-80282)
), But there is a problem that the amount of enzyme contained in the complex is low.

【0004】以上のように、有機溶媒を使用する方法に
ついては種々検討されてきたが、反応速度が遅く工業的
生産には適さなかった。また、有機溶媒の生成物中への
残留等の品質面での問題及び環境面での問題があり地球
環境保全型プロセスとは言い難い側面を持っている。
[0004] As described above, various methods using an organic solvent have been studied, but the reaction rate is low and the method is not suitable for industrial production. In addition, there are problems in quality, such as the residual organic solvent in the product, and problems in the environment, and it is difficult to say that it is a global environmental conservation type process.

【0005】一方、超臨界流体中での有機触媒反応が、
省エネルギーかつ高生産性の効率的プロセス、及び地球
環境保全型プロセスとして注目され盛んに研究されてい
る。超臨界流体とは、気体、液体および固相の3状態の
ほかに臨界点以上で圧力をかけても凝縮しない流体相を
いう。圧力を変えることにより、気体に近い状態から液
体に近い状態まで密度を連続的に変化させることがで
き、流体物質の粘度、拡散係数や極性などの諸物性を変
えることができるため、触媒反応の選択性を制御できる
ことが期待されている。また、気相に近い状態で反応を
行うことができるので、超臨界流体のもつ低粘度性かつ
高拡散性のため反応速度の向上も期待されている。さら
に、反応終了後に圧力を常圧にすることにより媒体は気
体となり、生成物が反応器内に残るため、超臨界流体中
で反応を行えばその後の精製プロセスを簡略化できる。
On the other hand, an organic catalytic reaction in a supercritical fluid
It has been attracting attention and being actively studied as an efficient process of energy saving and high productivity, and a process for preserving the global environment. The supercritical fluid refers to a fluid phase that does not condense even when pressure is applied at a critical point or higher, in addition to the three states of gas, liquid, and solid phase. By changing the pressure, the density can be continuously changed from a state close to a gas to a state close to a liquid, and various physical properties such as viscosity, diffusion coefficient and polarity of the fluid substance can be changed. It is expected that selectivity can be controlled. In addition, since the reaction can be performed in a state close to the gas phase, an improvement in the reaction rate is also expected due to the low viscosity and high diffusivity of the supercritical fluid. In addition, when the pressure is adjusted to normal pressure after the completion of the reaction, the medium becomes a gas, and the product remains in the reactor. Therefore, if the reaction is performed in a supercritical fluid, the subsequent purification process can be simplified.

【0006】上記の超臨界流体中での酵素反応に関して
は、低毒性の二酸化炭素を媒体とした加水分解、エステ
ル化、及び酸化反応が検討されている(O.Aaltonen et
al.,CHEMTECH,vol.21,p.240,(1991))。また、固定化リ
パーゼを用いる超臨界流体中での反応についても報告が
ある(特開昭61-21098号、特開平8-256783号)。しか
し、これらの場合には酵素の失活が生じたり、生成物と
の分離を主眼とした固定化を行っているために、いずれ
の場合にも超臨界流体中での反応効率は悪かった。
As for the enzymatic reaction in the supercritical fluid, hydrolysis, esterification and oxidation using low-toxicity carbon dioxide as a medium have been studied (O. Aaltonen et al.).
al., CHEMTECH, vol. 21, p. 240, (1991)). There is also a report on a reaction in a supercritical fluid using immobilized lipase (JP-A-61-21098, JP-A-8-256783). However, in these cases, the reaction efficiency in a supercritical fluid was poor in any case because the enzyme was deactivated or the immobilization was performed with a primary focus on separation from the product.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、脂質単分子膜で酵素表面を被覆してなる脂
質修飾酵素を用いて超臨界流体中で反応させることによ
り、反応を高速、高収率、高選択率で行うことを可能と
し、さらに、簡単な精製法が可能な環境に優しい工業的
プロセスを提供することである。
The problem to be solved by the present invention is that a reaction is carried out in a supercritical fluid using a lipid-modifying enzyme in which the surface of the enzyme is coated with a lipid monolayer, whereby the reaction can be performed at a high speed. It is an object of the present invention to provide an environmentally friendly industrial process which can be carried out with a high yield and a high selectivity, and can be subjected to a simple purification method.

【0008】[0008]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、脂質単分子膜で酵素表面を被覆してなる脂質修
飾酵素を用い超臨界流体中で反応させることにより、単
なる有機溶媒中での反応に比べ、酵素が失活することな
く反応を高速、高収率、高選択率で行うことができるこ
とを見いだし本発明を完成した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a reaction is carried out in a supercritical fluid using a lipid-modifying enzyme in which the surface of an enzyme is coated with a lipid monolayer, so that a simple organic solvent can be obtained. As a result, the present inventors have found that the reaction can be performed at a higher speed, a higher yield, and a higher selectivity without deactivating the enzyme as compared with the reaction in the above, and completed the present invention.

【0009】即ち、本発明は脂質単分子膜で酵素表面を
被覆してなる脂質修飾酵素を用いることを特徴とする超
臨界流体中での酵素反応方法である。
[0009] That is, the present invention is a method for enzymatic reaction in a supercritical fluid, which comprises using a lipid-modifying enzyme obtained by coating an enzyme surface with a lipid monolayer.

【0010】[0010]

【発明の実施の形態】本発明に使用できる酵素は、酵素
の分類上における特定のものに限定されるものではな
く、加水分解酵素、転移酵素、酸化還元酵素、付加酵素
及、異性化酵素、合成酵素を挙げることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The enzymes that can be used in the present invention are not limited to specific ones in the class of enzymes, and include hydrolases, transferases, oxidoreductases, addition enzymes, isomerases, and the like. Synthetic enzymes can be mentioned.

【0011】具体的に述べると、まず加水分解酵素につ
いては、エステルを加水分解するエステラーゼとしてリ
パーゼを挙げることができる。リパーゼは微生物により
生産されたものでもよいし、動物の臓器や植物の種子等
から得られたものでもよい。
[0011] Specifically, first, as for the hydrolase, lipase can be mentioned as an esterase that hydrolyzes the ester. The lipase may be produced by a microorganism, or may be obtained from animal organs, plant seeds, or the like.

【0012】ペプチド結合を加水分解するプロテアーゼ
やペプチダーゼとして、ペプシン、キモトリプシン、カ
ルボキシペプチダーゼ、アミノペプチダーゼ、ジペプチ
ダーゼ、パパイン、プロメリン、ズブチリシン、サーモ
リシン等が挙げられる。
Examples of proteases and peptidases that hydrolyze peptide bonds include pepsin, chymotrypsin, carboxypeptidase, aminopeptidase, dipeptidase, papain, promerin, subtilisin, and thermolysin.

【0013】糖のグリコシド結合に作用するグリコシダ
ーゼでは、α−及びβ−グルコシダーゼ、α−及びβ−
ガラクトシダーゼ、α−及びβ−マンノシダーゼ、β−
フルクトシダーゼ等のオリゴサッカラーゼ、さらには各
種のアミラーゼ類、セルラーゼ、イヌリナーゼ等のポリ
サッカラーゼ等が挙げられる。
Among glycosidases acting on glycosidic bonds of sugar, α- and β-glucosidase, α- and β-
Galactosidase, α- and β-mannosidase, β-
Examples include oligosaccharases such as fructosidase and various amylases, polysaccharases such as cellulase and inulinase.

【0014】リン酸結合の加水分解に関与するホスファ
ターゼでは、ホスホモノエステラーゼ、ホスホジエステ
ラーゼ、ピロホスファターゼ等が挙げられる。
The phosphatases involved in the hydrolysis of the phosphate bond include phosphomonoesterase, phosphodiesterase, pyrophosphatase and the like.

【0015】加水分解酵素以外の酵素の例としては、ホ
スホトランスフェラーゼ、グリコシルトランスフェラー
ゼ、ペプチジルトランスフェラーゼ、アミノトランスフ
ェラーゼ、トランスグルタミナーゼ等の転移酵素、アル
コールデヒドロゲナーゼ、アミンオキシダーゼ、モノフ
ェノールモノオキシゲナーゼ等の酸化還元酵素、アルド
ラーゼ、アコニターゼ、エノラーゼ、アスパルターゼ等
の付加酵素、ラセマーゼ、ムターゼ、シス−トランスイ
ソメラーゼ等の異性化酵素等が挙げられる。
Examples of enzymes other than hydrolases include transferases such as phosphotransferase, glycosyltransferase, peptidyltransferase, aminotransferase, and transglutaminase; oxidoreductases such as alcohol dehydrogenase, amine oxidase, and monophenol monooxygenase; and aldolase. , Aconitase, enolase, aspartase and the like; and isomerases such as racemase, mutase and cis-trans isomerase.

【0016】上記のいずれの酵素を用いる場合にも酵素
は必ずしも精製されたものである必要はなく、粗酵素、
あるいは当該酵素を多量に含有する生物の臓器や細胞の
抽出物であっても構わない。
When any of the above enzymes is used, the enzyme does not necessarily need to be purified, but may be a crude enzyme,
Alternatively, it may be an extract of an organ or a cell of an organism containing a large amount of the enzyme.

【0017】本発明に用いることのできる脂質は、例え
ば、天然に存在するものとして、中性脂質ではモノガラ
クトシルジグリセリド、ガラクトシルグルコシルジグリ
セリド等のグリセロ糖脂質、モノグリコシルセラミド、
セラミドヘキソシド、ガングリオシド等のスフィンゴ糖
脂質、ステロール配糖体、カルデノリド配糖体、サポニ
ン等のステロイド配糖体、ジアシルトレハロース、トリ
アシルグルコース等の脂肪酸配糖体等を挙げることがで
きる。また、アニオン性脂質では、ホスファチジルイノ
シトール、ホスファチジルグリセロール、ホスファチジ
ン酸等のリン脂質、そして両性脂質では、ホスファチジ
ルコリン、ホスファチジルエタノールアミン、ホスファ
チジルセリン等のリン酸脂質等を挙げることができる。
The lipids usable in the present invention include, for example, naturally occurring lipids such as neutral lipids such as glyceroglycolipids such as monogalactosyl diglyceride and galactosyl glucosyl diglyceride, monoglycosylceramide, and the like.
Glycosphingolipids such as ceramide hexoside and ganglioside, sterol glycosides, cardenolide glycosides, steroid glycosides such as saponin, and fatty acid glycosides such as diacyltrehalose and triacylglucose can be exemplified. Examples of the anionic lipid include phospholipids such as phosphatidylinositol, phosphatidylglycerol, and phosphatidic acid, and examples of the amphoteric lipid include phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine.

【0018】一方、合成脂質としては、合成2分子膜形
成化合物を挙げることができる。すなわち、炭素数6〜
30の2本の炭化水素鎖を疎水部分とし、糖等のポリヒ
ドロキシ基、リン酸基、スルホン酸基、アンモニウム塩
等の官能基を親水部分として有する化合物、またはビフ
ェニル基などの分子間相互作用を有する官能基を炭化水
素鎖中に含む1本鎖の化合物である。具体的には、ジア
ルキルホスフェート、ジアルキル型ポリエチレングリコ
ール、ジアルキルスルホコハク酸、ジアルキル型糖脂
質、ジアルキルアンモニウム塩等を挙げることができ
る。
On the other hand, examples of the synthetic lipid include synthetic bimolecular film-forming compounds. That is, carbon number 6 ~
Compounds having 30 hydrocarbon chains as hydrophobic parts and functional groups such as polyhydroxy groups such as sugars, phosphate groups, sulfonic acid groups and ammonium salts as hydrophilic parts, or intermolecular interactions such as biphenyl groups Is a single-chain compound containing a functional group having the following formula in the hydrocarbon chain. Specific examples thereof include dialkyl phosphate, dialkyl type polyethylene glycol, dialkyl sulfosuccinic acid, dialkyl type glycolipid, and dialkyl ammonium salt.

【0019】本発明の脂質修飾酵素とは、酵素表面を脂
質単分子膜で被覆したものであって、化学的に見れば酵
素の表面と脂質の親水基が水素結合により結合している
ものをさす。この特徴を有する脂質修飾酵素は、特開昭
64-80282号に記載の方法にて、簡単に得ることができ
る。すなわち、酵素をpH5.0〜9.0の緩衝液に溶
解させておく。脂質を少量のメタノール、エタノール、
プロパノール、アセトン、メチルエチルケトン、その他
の親水性有機溶媒に溶解し、緩衝液に混ぜ脂質の溶解し
た懸濁液を調製し、先に調製した酵素含有緩衝液に冷却
下に滴下し、脂質修飾酵素を析出させる。この析出物を
遠心分離または濾過等により分離した後、緩衝液、つい
で蒸留水で洗浄し、そのまま凍結乾燥や流動層乾燥し、
または、少量の蒸留水に分散させた後にスプレー乾燥す
ることにより、粉末状の脂質修飾酵素を得ることができ
る。さらに、脂質修飾酵素内の酵素含有量を向上させる
ためには、特開平3-280880号に記載の方法に従い界面活
性剤等の分散剤を第3成分として添加することもでき
る。この場合、酵素−界面活性剤−脂質の複合体を反応
に用いることになる。また、有効に無駄なく酵素及び脂
質を利用するため、酵素含有緩衝液と脂質含有緩衝液の
混合後、単に減圧下に水を留去することにより残った脂
質修飾酵素、酵素及び脂質を含んだ残存物をそのまま酵
素反応に使用することも可能である。
The lipid-modifying enzyme of the present invention refers to an enzyme whose surface is coated with a lipid monomolecular film, and which is chemically bonded to the surface of the enzyme and a hydrophilic group of lipid by a hydrogen bond. As expected. A lipid-modifying enzyme having this feature is disclosed in
It can be easily obtained by the method described in 64-80282. That is, the enzyme is dissolved in a buffer having a pH of 5.0 to 9.0. Lipids in small amounts of methanol, ethanol,
Dissolve in propanol, acetone, methyl ethyl ketone and other hydrophilic organic solvents, mix in a buffer to prepare a dissolved suspension of lipids, add dropwise to the previously prepared enzyme-containing buffer under cooling, and add the lipid-modifying enzyme. Precipitate. After separating the precipitate by centrifugation or filtration, the precipitate is washed with a buffer solution, then with distilled water, and then freeze-dried or fluidized-bed dried as it is,
Alternatively, a powdery lipid-modifying enzyme can be obtained by spray-drying after dispersing in a small amount of distilled water. Further, in order to improve the enzyme content in the lipid-modifying enzyme, a dispersant such as a surfactant can be added as a third component according to the method described in JP-A-3-280880. In this case, an enzyme-surfactant-lipid complex is used for the reaction. In addition, in order to effectively utilize enzymes and lipids without waste, after mixing the enzyme-containing buffer and the lipid-containing buffer, the lipid-modified enzymes, enzymes and lipids remaining by simply distilling water under reduced pressure were included. The residue can be used as it is in the enzyme reaction.

【0020】本発明で用いることができる超臨界流体
は、耐熱性酵素の従来の知見から判断し臨界温度が15
0℃未満のものに限定されると考えられる。具体的には
二酸化炭素が最も一般的であるが、その他にもエタン、
エチレン、プロパン、プロピレン、キセノン、フルオロ
ホルム(フレオン23)、六フッ化硫黄等を挙げること
ができる。必要に応じていずれかの媒体を組み合わせて
用いることも可能である。また、基質の溶解性を考慮
し、これらの媒体に対して重量比で0.1〜400%の
範囲の割合で水を加えた二相系で反応を行うことが好ま
しい場合もある。
The supercritical fluid which can be used in the present invention has a critical temperature of 15 judging from the conventional knowledge of thermostable enzymes.
It is believed that it is limited to those below 0 ° C. Specifically, carbon dioxide is the most common, but ethane,
Examples thereof include ethylene, propane, propylene, xenon, fluoroform (Freon 23), and sulfur hexafluoride. Any media can be used in combination as needed. In addition, in consideration of the solubility of the substrate, it may be preferable to carry out the reaction in a two-phase system in which water is added to these media at a weight ratio of 0.1 to 400%.

【0021】反応の方法は、耐圧性のステンレス、ガラ
ス等の適切な容器に、上記にて調製した脂質修飾酵素と
基質を入れ密閉し、その状態で超臨界流体を徐々に送入
した後、所定圧を保ち、所定温度にて酵素反応を行う。
反応時の圧力は4〜50MPa、好ましくは4〜20M
Pa、反応時の温度は5〜150℃、好ましくは10〜
100℃である。反応終了後には、徐々に系を減圧し常
温、常圧に戻すだけで、媒体を気体として除去すること
ができる。
The method of the reaction is as follows. The lipid-modifying enzyme and the substrate prepared above are placed in a suitable vessel such as a pressure-resistant stainless steel or glass, and the vessel is sealed. The enzyme reaction is performed at a predetermined temperature while maintaining a predetermined pressure.
The pressure during the reaction is 4 to 50 MPa, preferably 4 to 20 M
Pa, the temperature during the reaction is 5 to 150 ° C, preferably 10 to 10 ° C.
100 ° C. After the completion of the reaction, the medium can be removed as a gas simply by gradually reducing the pressure of the system and returning it to normal temperature and normal pressure.

【0022】[0022]

【実施例】以下、実施例により本発明の内容をさらに詳
しく説明するが、本発明はこれらの実施例に限定される
ものではない。 実施例1 (1)脂質修飾酵素の調製Bacillus circulans由来のβ−ガラクトシダーゼ(大和
化成製)50mgを酢酸緩衝液(10mM、pH6.
0)25mlに溶解した酵素溶液を作成し、4℃に冷却
した。ジドデシル−N−D−グルコノ−L−グルタミン
酸エステル(化1)50mgをエタノール0.5mlに
溶解した溶液を上記酵素溶液に滴下し、4℃で1時間撹
拌した。その後、この混合液を4℃で15時間放置して
生じた白色沈殿を遠心分離により回収し、上記の酢酸緩
衝液で2回、蒸留水で1回洗浄した。洗浄後の固形物を
凍結乾燥し、21.0mgの粉末を得た。得られた脂質
修飾酵素はUVスペクトルと元素分析により同定した。
この脂質修飾酵素のタンパク含有量は10.0%であっ
た。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 (1) Preparation of lipid-modifying enzyme 50 mg of Bacillus circulans- derived β-galactosidase (manufactured by Daiwa Kasei) was added to an acetate buffer (10 mM, pH 6.0).
0) An enzyme solution dissolved in 25 ml was prepared and cooled to 4 ° C. A solution prepared by dissolving 50 mg of didodecyl-ND-glucono-L-glutamic acid ester (chemical formula 1) in 0.5 ml of ethanol was added dropwise to the enzyme solution, and the mixture was stirred at 4 ° C for 1 hour. Thereafter, the mixture was left at 4 ° C. for 15 hours, and a white precipitate formed was collected by centrifugation, and washed twice with the above acetate buffer and once with distilled water. The washed solid was freeze-dried to obtain 21.0 mg of a powder. The obtained lipid modifying enzyme was identified by UV spectrum and elemental analysis.
The protein content of this lipid-modifying enzyme was 10.0%.

【0023】[0023]

【化1】 Embedded image

【0024】(2)超臨界流体中での酵素反応 次に、10mlの耐圧ガラス容器(耐圧硝子工業製)の
中にこの脂質修飾酵素1mgと糖供与体としてp−ニト
ロフェニル−β−D−ガラクトピラノシド(1μmo
l)、糖受容体として5−フェニルペンタノール(10
μmol)を入れ、さらに水を5ml入れた後、炭酸ガ
スボンベから5mlの二酸化炭素を−5℃以下に冷却し
つつ送液ポンプで容器に注入した。反応は35℃の温度
で圧力を15MPaに保って行い、生成するp−5−フ
ェニルペンチル−β−D−ガラクトピラノシドの量を高
速液体クロマトグラフィーにより測定し、p−ニトロフ
ェニル−β−D−ガラクトピラノシドからの糖転移率を
求めた。結果を表1(表1)に示した。比較例として未
修飾酵素を用いた場合には目的の生成物が得られず、ま
た、イソプロピルエーテル中での単なる有機溶媒を用い
た反応(常圧、35℃)では反応速度が非常に遅かっ
た。
(2) Enzyme Reaction in Supercritical Fluid Next, 1 mg of this lipid-modifying enzyme and p-nitrophenyl-β-D- as a sugar donor were placed in a 10-ml pressure-resistant glass container (manufactured by Pressure-resistant Glass Industry). Galactopyranoside (1 μmo
l), 5-phenylpentanol (10
μmol) and 5 ml of water, and then 5 ml of carbon dioxide was injected from a carbon dioxide gas cylinder into the container with a liquid sending pump while cooling to -5 ° C or lower. The reaction was carried out at a temperature of 35 ° C. while maintaining the pressure at 15 MPa, the amount of p-5-phenylpentyl-β-D-galactopyranoside produced was measured by high performance liquid chromatography, and p-nitrophenyl-β- The rate of sugar transfer from D-galactopyranoside was determined. The results are shown in Table 1 (Table 1). As a comparative example, when the unmodified enzyme was used, the desired product could not be obtained, and the reaction rate was very slow in the reaction (normal pressure, 35 ° C.) in isopropyl ether using a simple organic solvent. .

【0025】[0025]

【表1】 [Table 1]

【0026】実施例2Rhizopus delemar由来のリパーゼD(生化学工業製)を
用い、実施例1と同様の方法で脂質−酵素複合体を形成
させ、タンパク含有量4.2%の脂質修飾酵素を得た。
Example 2 Using a lipase D derived from Rhizopus delemar (manufactured by Seikagaku Corporation), a lipid-enzyme complex was formed in the same manner as in Example 1 to obtain a lipid-modifying enzyme having a protein content of 4.2%. Obtained.

【0027】実施例1で用いた耐圧ガラス容器にこの脂
質修飾酵素を1mg、モノラウリンを0.5mmol、
ラウリン酸を5mmol入れ、炭酸ガスボンベから10
mlの二酸化炭素を−5℃以下に冷却しつつ送液ポンプ
で容器に注入した。その後、モノラウリンのエステル化
反応を40℃、15MPaの条件で行った。生成したラ
ウリン酸トリグリセリドは液体クロマトグラフィーによ
り定量した。その結果、エステル化反応の初速度は0.
94mmol/min・mg−タンパク質と算出され
た。比較例としてベンゼンを有機溶媒として用い(常
圧、40℃)反応させたところ、初速度は0.16mm
ol/min・mg−タンパク質と算出された。
In the pressure-resistant glass container used in Example 1, 1 mg of this lipid-modifying enzyme, 0.5 mmol of monolaurin,
5 mmol of lauric acid is added, and 10
While cooling the carbon dioxide of ml to -5 ° C or lower, the solution was injected into the container by a liquid sending pump. Thereafter, the esterification reaction of monolaurin was carried out at 40 ° C. and 15 MPa. The produced lauric triglyceride was quantified by liquid chromatography. As a result, the initial rate of the esterification reaction was 0.1.
It was calculated as 94 mmol / min.mg-protein. As a comparative example, when benzene was used as an organic solvent and reacted at normal pressure and 40 ° C., the initial velocity was 0.16 mm.
ol / min · mg-protein.

【0028】実施例3 実施例2の基質のうち0.5mmolのモノラウリンの
代わりに0.5mmolの(R)−または(S)−1−
フェニルエタノールを用い、実施例2と同様の条件下で
ラウリン酸の不斉選択エステル化反応を行った。生成し
たラウリン酸−1−フェニルエチルエステルはガスクロ
マトグラフィーにより定量した。その結果、超臨界二酸
化炭素中での反応において高いR−体選択性(kR/kS
=77)が認められた。
Example 3 In the substrate of Example 2, 0.5 mmol of (R)-or (S) -1- was used instead of 0.5 mmol of monolaurin.
Asymmetric selective esterification of lauric acid was carried out under the same conditions as in Example 2 using phenylethanol. The generated lauric acid-1-phenylethyl ester was quantified by gas chromatography. As a result, high R-isomer selectivity (k R / k S ) in the reaction in supercritical carbon dioxide
= 77) was observed.

【0029】[0029]

【発明の効果】本発明の脂質単分子膜で酵素表面を被覆
してなる脂質修飾酵素を用い超臨界流体中で反応させる
ことにより、酵素が失活することなく反応を高速、高収
率、高選択率で行うことができる。
The reaction is carried out in a supercritical fluid using a lipid-modifying enzyme having the enzyme surface coated with the lipid monolayer of the present invention, whereby the reaction can be carried out at high speed and with high yield without deactivating the enzyme. It can be performed with high selectivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脂質単分子膜で酵素表面を被覆してなる
脂質修飾酵素を用いることを特徴とする超臨界流体中で
の酵素反応方法。
1. A method for enzymatic reaction in a supercritical fluid, comprising using a lipid-modifying enzyme obtained by coating an enzyme surface with a lipid monolayer.
【請求項2】 酵素がグリコシダーゼまたはリパーゼで
あることを特徴とする特許請求の範囲第1項記載の酵素
反応方法。
2. The enzyme reaction method according to claim 1, wherein the enzyme is glycosidase or lipase.
JP5656297A 1997-03-11 1997-03-11 Enzymatic reaction in supercritical fluid Pending JPH10248558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5656297A JPH10248558A (en) 1997-03-11 1997-03-11 Enzymatic reaction in supercritical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5656297A JPH10248558A (en) 1997-03-11 1997-03-11 Enzymatic reaction in supercritical fluid

Publications (1)

Publication Number Publication Date
JPH10248558A true JPH10248558A (en) 1998-09-22

Family

ID=13030576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5656297A Pending JPH10248558A (en) 1997-03-11 1997-03-11 Enzymatic reaction in supercritical fluid

Country Status (1)

Country Link
JP (1) JPH10248558A (en)

Similar Documents

Publication Publication Date Title
Okahata et al. Lipid-coated enzymes as efficient catalysts in organic media
Wei et al. Enzymatic synthesis of cephalexin in aqueous two-phase systems
Adlercreutz Biocatalysis in non-conventional media
JPS6192592A (en) Production of branched cyclodextrin
CA2169456A1 (en) Biocatalytic methods for synthesizing and identifying biologically active compounds
De La Casa et al. Modification of the activities of two different lipases from Candida rugosa with dextrans
Ferrer et al. Effect of the immobilization method of lipase from Thermomyces lanuginosus on sucrose acylation
Perez et al. Hydrolases in green solvents
Zoumpanioti et al. Lipase biocatalytic processes in surfactant free microemulsion-like ternary systems and related organogels
Murakami et al. Transesterification of oil by fatty acid-modified lipase
Divakar Enzymatic transformation
JP2009033970A (en) Process for producing fucoxanthinol
JPH10248558A (en) Enzymatic reaction in supercritical fluid
Pérez-Victoria et al. Complementary regioselective esterification of non-reducing oligosaccharides catalyzed by different hydrolases
Balogh et al. Novel reaction systems for the synthesis of O-glucosides by enzymatic reverse hydrolysis
EP0605453B1 (en) Method for the enzymatic production of alpha-glucosides and esters thereof
Goto et al. Novel preparation method for surfactant-coated enzymes using W/O emulsion
JP3218794B2 (en) New surfactant-coated enzyme and its manufacturing method.
Santin et al. Enzymatic synthesis of 2‐β‐d‐galactopyranosyloxy ethyl methacrylate (GalEMA) by the thermophilic archeon Sulfolobus solfataricus
JPH06505148A (en) Enzymatic reverse hydrolysis of hydrophilic substrates - method for producing amphiphilic compounds
JPH07255478A (en) Immobilization of enzyme and immobilized enzyme
Franqueville et al. Studies on the catalytic behaviour of a cholinesterase-like abzyme in an AOT microemulsion system
AU745467B2 (en) Process for producing lysosphingolipids
CN109251944B (en) Supercritical CO2Method for preparing sugar ester by immobilized enzyme catalysis under process
Straathof Biocatalysis in organic media using enzymes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070213