JPH10248218A - Maglev motor - Google Patents

Maglev motor

Info

Publication number
JPH10248218A
JPH10248218A JP9059934A JP5993497A JPH10248218A JP H10248218 A JPH10248218 A JP H10248218A JP 9059934 A JP9059934 A JP 9059934A JP 5993497 A JP5993497 A JP 5993497A JP H10248218 A JPH10248218 A JP H10248218A
Authority
JP
Japan
Prior art keywords
magnetic field
pole
rotating
rotor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9059934A
Other languages
Japanese (ja)
Inventor
Tadashi Sato
忠 佐藤
Satoshi Mori
敏 森
Susumu Osawa
将 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP9059934A priority Critical patent/JPH10248218A/en
Publication of JPH10248218A publication Critical patent/JPH10248218A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Abstract

PROBLEM TO BE SOLVED: To provide a maglev motor, which can be controlled stably for its floating position by eliminating the influence of an induced current generated in a secondary conductor by n-pole pairs of position control magnetic fields without hindering the generation of a driving current by m-pole pairs of rotating magnetic fields, and which at the same time can be manufactured easily at a low cost. SOLUTION: In an induction motor type maglev motor which magnetically levitates a rotating magnetic pole by giving a rotational force to a rotating magnetic field, by superimposing n-pole pairs of control magnetic fields upon a driving magnetic field composed of rotating m-pole pairs in synchronism with the driving magnetic field and, at the same time, increasing/decreasing the control magnetic field from the displacement of the rotating magnetic pole detected by means of a displacement detecting means which detects the displacement of the rotating magnetic pole, the rotating magnetic pole is a cage rotor composed of a plurality of conductor bars 11 and conductor end rings 12 fixing both ends of the bars 11, and the skew angle of the conductor bars 11 are roughly set at 2π/n rad (where, n>=2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転子の半径方向
位置を制御する磁気軸受作用と、回転子を回転駆動する
作用を兼ね備えた磁気浮上電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation motor having both a magnetic bearing function for controlling a position of a rotor in a radial direction and a function for rotationally driving a rotor.

【0002】[0002]

【従来の技術】従来、円筒型固定子内に円筒型回転子を
組み込み、固定子に励磁回路を配置して極数の異なる2
種類の回転磁界を形成し、ここで回転子に回転力を与え
ると同時に所定位置に磁気浮上保持して位置制御力を作
用させる各種の磁気浮上電動機が考案されている。これ
は、固定子に回転駆動用の巻線と制御用の巻線を備え、
それぞれに三相交流電流を流すことにより、所定の関係
の極数の異なる回転磁界を形成し、円筒型回転子の回転
軸垂直面に半径方向の磁気的吸引力を偏配するものであ
る。
2. Description of the Related Art Conventionally, a cylindrical rotor is incorporated in a cylindrical stator, and an excitation circuit is arranged on the stator to form two stators having different numbers of poles.
Various types of magnetic levitation motors have been devised in which various types of rotating magnetic fields are formed, where a rotating force is applied to a rotor and magnetically levitated and held at a predetermined position to exert a position control force. This is equipped with a winding for rotation drive and a winding for control on the stator,
By passing a three-phase alternating current through each of them, a rotating magnetic field having a different number of poles in a predetermined relationship is formed, and the magnetic attraction in the radial direction is deviated on the plane perpendicular to the rotation axis of the cylindrical rotor.

【0003】係る磁気浮上電動機において、固定子の巻
線に電流を流すことによりm極対の回転磁界とn極対の
回転磁界が生成される。以後、m極対の回転磁界を駆動
磁界、n極対の回転磁界を位置制御磁界と呼ぶ。駆動磁
界は通常の電動機のように回転子に回転駆動力を与える
ために使用し、位置制御磁界は駆動磁界に重畳されるこ
とにより、回転子に半径方向力を与えることが可能とな
るため、回転子の半径方向位置を自在に浮上位置制御で
きる。mとnは n=m±1 の関係を有することにより、上記浮上位置制御が可能と
なる。
In such a magnetic levitation motor, a rotating magnetic field of an m-pole pair and a rotating magnetic field of an n-pole pair are generated by passing a current through a winding of a stator. Hereinafter, the rotating magnetic field of the m-pole pair is referred to as a driving magnetic field, and the rotating magnetic field of the n-pole pair is referred to as a position control magnetic field. The driving magnetic field is used to apply a rotational driving force to the rotor like a normal electric motor, and the position control magnetic field is superimposed on the driving magnetic field, so that a radial force can be applied to the rotor. The floating position of the rotor in the radial direction can be freely controlled. Since m and n have a relationship of n = m ± 1, the above flying position control becomes possible.

【0004】これにより、回転子を磁気的に吸引して、
回転子に回転力を付与する電動機として機能すると共
に、その浮上位置と姿勢を制御して、固定子に対して非
接触浮上支持が可能な磁気軸受として機能させることが
できる。このため、従来必要とされていた磁気軸受に相
当する電磁石ヨーク部分及び巻線が不要となり、回転機
械の軸長を短縮して、軸振動からの高速回転の制限を少
なくすることができる。また回転機械を小型軽量化する
ことができる。また、制御巻線の電流と駆動巻線の電流
とにより生じる磁界の相乗効果的な機能により、磁気軸
受に相当する動作を行えるので、従来の磁気軸受と比較
してはるかに小さな電流で制御力が生じ、大幅な省エネ
ルギー化が可能である。
Accordingly, the rotor is magnetically attracted,
In addition to functioning as an electric motor for applying a rotating force to the rotor, the floating position and posture of the rotor can be controlled to function as a magnetic bearing capable of supporting the stator in a non-contact floating manner. For this reason, an electromagnet yoke portion and a winding corresponding to a magnetic bearing, which have been conventionally required, are not required, and the shaft length of the rotating machine can be shortened, and the limitation of high-speed rotation from shaft vibration can be reduced. Further, the size and weight of the rotating machine can be reduced. In addition, the operation equivalent to a magnetic bearing can be performed by a synergistic effect of a magnetic field generated by the current of the control winding and the current of the drive winding, so that the control force can be reduced with a much smaller current than a conventional magnetic bearing. , And significant energy savings are possible.

【0005】固定子で生成される回転磁界により、回転
子の二次導体に誘導電流を生成して回転駆動力を付与す
る方式の一つが誘導型回転子である。誘導型回転子にも
種々の方式があるが、その代表的なものにカゴ形回転子
がある。これは回転子に低抵抗の金属導体バー(二次導
体)を電流路として回転軸に略平行に多数配置し、その
両端において各金属導体バーを低抵抗の金属導体環(エ
ンドリング)に固着したものである。固定子の巻線が形
成する回転磁界により、この回転子二次導体の磁束鎖交
数が変動し、電磁誘導現象により、回転子の二次導体に
誘導電圧が生じて誘導電流が流れる。回転子が鎖交する
磁束と回転子上の誘導電流の相互作用によりローレンツ
力が発生して、誘導型回転子には回転駆動力が発生す
る。
[0005] An induction rotor is one of the systems in which an induced current is generated in a secondary conductor of the rotor by a rotating magnetic field generated by the stator to apply a rotational driving force. There are various types of induction rotors, and a typical example is a cage rotor. In this method, a number of low-resistance metal conductor bars (secondary conductors) are arranged on the rotor as current paths substantially parallel to the rotation axis, and each metal conductor bar is fixed to a low-resistance metal conductor ring (end ring) at both ends. It was done. The number of magnetic flux linkages in the rotor secondary conductor fluctuates due to the rotating magnetic field formed by the stator winding, and an induced voltage is generated in the rotor secondary conductor due to the electromagnetic induction phenomenon, so that an induced current flows. The Lorentz force is generated by the interaction between the magnetic flux interlinked by the rotor and the induced current on the rotor, and a rotational driving force is generated in the induction rotor.

【0006】[0006]

【発明が解決しようとする課題】磁気浮上電動機におい
ては、m極対回転駆動磁界とn極対位置制御磁界が混在
するため、通常のカゴ形の誘導型回転子を用いた場合に
は、回転子電流路(導体バー)には双方の磁界によって
誘導された電流が流れる。m極対分布の回転磁界は回転
子に回転駆動力を付与するために、原理上、誘導電流が
流れなくては誘導型電動機として成立しない。一方、n
極対の位置制御磁界による誘導電流が回転子電流路に流
れた場合、固定子巻線が生成する磁界の他に、外乱とし
て回転子電流が生成する磁界が発生するため、位置制御
磁界は固定子の巻線電流が形成するm極対とn極対の磁
界だけでは決まらず、半径方向力が不安定となり、安定
な回転子の浮上位置制御ができない。
In a magnetic levitation motor, since an m-pole pair rotation driving magnetic field and an n-pole pair position control magnetic field coexist, when an ordinary cage-type induction rotor is used, the rotation of the motor becomes impossible. The currents induced by both magnetic fields flow through the sub-current paths (conductor bars). The rotating magnetic field having the distribution of m pole pairs applies a rotational driving force to the rotor. Therefore, in principle, an induction motor cannot be realized unless an induced current flows. On the other hand, n
When an induced current due to the pole pair position control magnetic field flows through the rotor current path, a magnetic field generated by the rotor current as a disturbance occurs in addition to the magnetic field generated by the stator winding, so the position control magnetic field is fixed. It is not determined only by the magnetic field of the m-pole pair and the n-pole pair formed by the winding current of the rotor, the radial force becomes unstable, and stable floating position control of the rotor cannot be performed.

【0007】本発明は上述した事情に鑑みて為されたも
ので、m極対の回転磁界による駆動電流の生成を妨げる
ことなく、n極対位置制御磁界による二次導体に生じる
誘導電流の影響を無くして、安定した浮上位置制御が行
えると共に、低コストで容易に製造可能な磁気浮上電動
機を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and does not hinder the generation of a drive current due to a rotating magnetic field of an m-pole pair, and the effect of an induced current generated in a secondary conductor due to an n-pole pair position control magnetic field. It is therefore an object of the present invention to provide a magnetic levitation motor that can perform stable levitation position control and that can be easily manufactured at low cost.

【0008】[0008]

【課題を解決するための手段】本発明の磁気浮上電動機
は、回転するm極対でなる駆動磁界に同期してn極対の
制御磁界を駆動磁界に重畳し、回転磁極に回転力を与え
ると同時に、該回転磁極の変位検出手段によって検出し
た該回転磁極の変位から該制御磁界を増減して該回転磁
極を磁気浮上する誘導電動機形の磁気浮上電動機におい
て、該回転磁極は複数の導体バーとその両端を固着した
導体エンドリングとからなるカゴ形回転子であり、前記
導体バーのスキュー角度が概ね2π/n(ラジアン:但
し、n=2以上)である事を特徴とする磁気浮上電動機
とする。
A magnetic levitation motor according to the present invention superimposes a control magnetic field of an n-pole pair on a driving magnetic field in synchronization with a driving magnetic field of a rotating m-pole pair to apply a rotating force to the rotating magnetic pole. At the same time, in an induction motor type magnetic levitation motor in which the control magnetic field is increased or decreased from the displacement of the rotating magnetic pole detected by the displacement detecting means of the rotating magnetic pole to magnetically levitate the rotating magnetic pole, the rotating magnetic pole has a plurality of conductor bars. A magnetic levitation motor comprising: a cage-shaped rotor comprising: a conductor end ring having both ends fixed to each other; and a skew angle of the conductor bar is approximately 2π / n (radian: n = 2 or more). And

【0009】また、2台の回転子が連接され、それぞれ
のスキュー角度は大きさが等しく、方向が反対となるよ
うに配置された事を特徴とする請求項1記載の磁気浮上
電動機とする。
The magnetic levitation motor according to claim 1, wherein the two rotors are connected and arranged so that their skew angles are equal in magnitude and opposite in direction.

【0010】また、軸方向力を発生する回転機械に、該
軸方向力と対抗するように前記回転子の導体バーに前記
スキュー角度を設けた事を特徴とする請求項1記載の磁
気浮上電動機とする。
2. The magnetic levitation motor according to claim 1, wherein the rotating machine that generates the axial force is provided with the skew angle on the conductor bar of the rotor so as to oppose the axial force. And

【0011】上述した本発明の構成によれば、カゴ形誘
導回転子の導体バーのスキュー角度を概ね、 2π/n(ラジアン:但しn=2以上) とすることで、m極対の回転駆動磁界によりm極の誘導
電圧が生じるが、n極対の位置制御磁界に対しては1本
の導体バー内で誘導電圧が打消し合い、ほとんどゼロと
することができる。従って、回転子の電流路には駆動磁
界による駆動電流のみが流れるので、このローレンツカ
により通常のカゴ形回転子と同様なトルクが発生し、回
転子は回転駆動される。一方で位置制御磁界による誘導
電流が導体バーに流れないので、固定子が生成するm極
対の回転駆動磁界とn極対の位置制御磁界とは、回転子
電流に影響されず、回転子を浮上支持する制御磁界を形
成することができる。これにより、誘導型回転子を備え
た磁気浮上電動機においても、安定な浮上位置制御を行
うことができる。
According to the configuration of the present invention described above, the skew angle of the conductor bar of the cage induction rotor is set to approximately 2π / n (radian: n = 2 or more), thereby driving the m pole pairs in rotation. The magnetic field generates an m-pole induced voltage, but the n-pole position control magnetic field cancels out the induced voltage within one conductor bar and can be almost zero. Therefore, since only the drive current by the drive magnetic field flows through the current path of the rotor, a torque similar to that of a normal cage rotor is generated by this Lorentzka, and the rotor is rotationally driven. On the other hand, since the induced current due to the position control magnetic field does not flow through the conductor bar, the rotation drive magnetic field of the m-pole pair and the position control magnetic field of the n-pole pair generated by the stator are not affected by the rotor current, and the rotor is not affected. A control magnetic field for supporting the levitation can be formed. As a result, stable levitation position control can be performed even in a magnetic levitation motor including an induction rotor.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1(B)は、通常のスキュー角の幅Wの
カゴ形の回転子を示す。カゴ形の回転子は、硅素鋼板の
薄板を積層した円柱状の回転子の外周に多数の金属導体
バー10を回転軸と略平行に配置し、その両端を同様に
金属導体であるエンドリング12で固定したものであ
る。上記図示は、a−a’、b−b’、c−c’、d−
d’の4本の導体バー11を代表的に示している。
FIG. 1B shows a cage rotor having a width W of a normal skew angle. The cage-shaped rotor has a large number of metal conductor bars 10 arranged substantially parallel to the rotation axis on the outer periphery of a columnar rotor formed by laminating thin silicon steel plates, and both ends of which are also end rings 12 which are also metal conductors. It is fixed with. The above illustration shows aa ', bb', cc ', d-
The four conductor bars 11 of d 'are representatively shown.

【0014】係る従来のカゴ形の回転子においては、導
体バーの配置を回転軸方向と完全に平行でなく、僅かに
ずらすスキューが行われていた。このスキュー角は回転
子外周に配置された導体の1ピッチ分程度の僅かなもの
である。しかしながら、これにより導体バーに鎖交する
磁束の急激な変化が防止され、誘導機の起動特性の改
善、高調波の抑制等の効果がある。
In such a conventional cage-shaped rotor, a skew has been performed in which the arrangement of the conductor bars is not completely parallel to the rotation axis direction but is slightly shifted. This skew angle is as small as about one pitch of conductors arranged on the outer periphery of the rotor. However, this prevents an abrupt change in the magnetic flux linked to the conductor bar, and has the effects of improving the starting characteristics of the induction machine and suppressing harmonics.

【0015】図1(A)は、本発明の一実施形態の2極
駆動誘導電動機のカゴ形の回転子を示す。2極駆動のカ
ゴ形の回転子の導体バー11は、図中下部の展開図に示
すように、π(ラジアン)のスキューが施されている。
換言すれば、導体バーは円筒状回転子の幅Wにおいて、
その外表面に沿って正面から裏面に斜めに配置されてい
る。尚、図示の導体バー11は、実際には多数配置され
ている導体バーの内、4本のみを代表例として記載した
ものである。
FIG. 1A shows a cage rotor of a two-pole drive induction motor according to one embodiment of the present invention. The conductor bar 11 of the two-pole driven cage rotor has a skew of π (radian) as shown in a developed view at the bottom of the figure.
In other words, the conductor bar has a width W of the cylindrical rotor,
It is arranged diagonally from the front to the back along the outer surface. The illustrated conductor bar 11 is a representative example in which only four of the conductor bars 11 are actually arranged.

【0016】即ち、図1(A)に示すように、導体バー
a−a’、b−b’、c−c’、d−d’は、それぞれ
回転子の外周面に沿って、π(ラジアン)だけスキュー
角が施されている。
That is, as shown in FIG. 1A, the conductor bars aa ′, bb ′, cc ′, and dd ′ are respectively formed along the outer peripheral surface of the rotor by π ( Radian).

【0017】図2は、回転子に対して4極制御磁界と2
極駆動磁界を発生する固定子の巻線の配置状態を示す。
同図の固定子には2相4極制御磁界を発生するコイルn
a、nbと2相2極駆動磁界を発生するコイルnα、n
βがそれぞれ巻回されている。回転子に180度のスキ
ュー角を設け、円周上に固設した導体バーの位置の回転
子の回転中心に対する半径をRとする。また回転子と固
定子の隙間に発生する4極制御磁界と2極駆動磁界の磁
束と磁束密度をそれぞれΦ4、Φ2、B4、B2とする。い
ま、固定子が静止した状態で同期した4極制御磁界、2
極駆動磁界が角速度ωで回転する状態を考える(n=
2、m=1)。
FIG. 2 shows a quadrupole control magnetic field and 2
4 shows an arrangement state of stator windings that generate a pole driving magnetic field.
The stator shown in the figure has a coil n for generating a two-phase four-pole control magnetic field.
a, nb and coils nα, n for generating a two-phase two-pole driving magnetic field
β is wound respectively. A skew angle of 180 degrees is provided on the rotor, and the radius of the conductor bar fixed on the circumference with respect to the rotation center of the rotor is R. Further, the magnetic flux and the magnetic flux density of the four-pole control magnetic field and the two-pole drive magnetic field generated in the gap between the rotor and the stator are Φ 4 , Φ 2 , B 4 , and B 2 , respectively. Now, a four-pole control magnetic field synchronized with the stator stationary, 2
Consider a state in which the pole driving magnetic field rotates at an angular velocity ω (n =
2, m = 1).

【0018】図3は、ωt=0の時の4極制御磁界と2
極駆動磁界により回転子に鎖交する磁束密度及び導体バ
ーa−a’、b−b’、c−c’、dーd’の周方向
(θ方向)の位置関係を示す。4極制御磁界の磁束密度
分布は振幅B4とした時 B4cos(2θ+ωt) 2極駆動磁界の磁束密度分布は B2cos(θ+ωt) である。また発生する誘導起電圧は導体に鎖交する磁束
変化分であるため、それぞれの微分を同図に示してい
る。
FIG. 3 shows a quadrupole control magnetic field when ωt = 0 and 2
The magnetic flux density linked to the rotor by the pole driving magnetic field and the positional relationship in the circumferential direction (θ direction) of the conductor bars aa ′, bb ′, cc ′, and dd ′ are shown. The magnetic flux density distribution of the quadrupole control magnetic field is B 4 cos (2θ + ωt) when the amplitude is B 4. The magnetic flux density distribution of the quadrupole driving magnetic field is B 2 cos (θ + ωt). Further, the induced electromotive voltage generated is a change in magnetic flux linked to the conductor, and the respective derivatives are shown in FIG.

【0019】導体バーの微少部分Δlに生じる誘導電圧
は、 ΔE=ΔΦ/Δt が生じるので、導体バー1本としては、これを全長にわ
たって積分した誘導電圧が生じる。
Since the induced voltage generated in the minute portion Δl of the conductor bar is ΔE = ΔΦ / Δt, an induced voltage obtained by integrating the conductor bar over its entire length is generated.

【0020】従って、同図に示す様に、2極駆動磁界に
よる導体バーb−b’とd−d’には、それぞれΦ2 の
負の半周期分の電圧及びΦ2 の正の半周期分の電圧が生
じる。従って、導体バーb−b′とd−d′には、それ
ぞれ負及び正の誘導電圧が発生する。これは、固定子側
においては、2極の回転駆動磁界が形成されているの
で、b−b′とd−d′とにはそれぞれ逆方向の誘導電
流が流れることを意味する。一方で固定子側において
は、2極の回転駆動磁界が形成されているので、この電
流は回転子の駆動電流となり回転トルクを発生させる。
一方で、導体バーa−a′及びc−c′には、一本の導
体バーに正と負の誘導電圧が生じるので、一本の導体バ
ー全体としては、誘導電圧が相殺されゼロとなる。とこ
ろが、この部分は固定子側が形成する2極回転磁界の磁
束がゼロの部分を中心とした部分に対応するので、駆動
トルクはもともと生じない部分である。従って、π(ラ
ジアン)のスキュー角を施したカゴ形回転子は、2極回
転駆動磁界に対して、通常のカゴ形回転子と同様に動作
する。
Therefore, as shown in the figure, the conductor bars bb 'and dd' due to the two-pole driving magnetic field respectively have a voltage corresponding to the negative half cycle of Φ2 and a voltage corresponding to the positive half cycle of Φ2. A voltage is generated. Therefore, negative and positive induced voltages are generated at the conductor bars bb 'and dd', respectively. This means that, on the stator side, since a two-pole rotating drive magnetic field is formed, induced currents in opposite directions flow through bb 'and dd', respectively. On the other hand, on the stator side, since a two-pole rotating drive magnetic field is formed, this current becomes a rotor drive current and generates a rotating torque.
On the other hand, in the conductor bars aa 'and cc', a positive and negative induced voltage is generated in one conductor bar, so that the induced voltage is canceled out to zero for one conductor bar as a whole. . However, since this portion corresponds to a portion centered on a portion where the magnetic flux of the two-pole rotating magnetic field formed by the stator is zero, a driving torque is not originally generated. Accordingly, a cage rotor having a skew angle of π (radian) operates in the same manner as a normal cage rotor with respect to a bipolar driving magnetic field.

【0021】4極制御磁束Φ4 に対しては、導体バーa
−a′,b−b′,c−c′,d−d′に生じる誘起電
圧は、一本の導体バー内ですべて相殺する。即ち、例え
ば導体バーa−a′には、図示するように1周期分の磁
束Φ4 と鎖交するので、1本の導体バーに生じる微少距
離Δlの積分値である誘導電圧はゼロとなる。この関係
は、他のすべての導体バーb−b′,c−c′,d−
d′についても共通である。即ち、カゴ形回転子の導体
バーにπ(ラジアン)のスキューを施すことにより、各
導体バーが4極位置制御磁束Φ4 と鎖交する磁束の総和
はゼロとなり、各導体バーには誘導電圧が生じない。こ
れにより、カゴ形回転子の各導体バーには、固定子側が
形成する4極位置制御磁界によって、誘導電流が生じな
い。
For the four-pole control magnetic flux Φ4, the conductor bar a
The induced voltages generated at -a ', bb', cc ', and dd' cancel all within one conductor bar. That is, for example, the conductor bar aa 'interlinks with the magnetic flux .PHI.4 for one period as shown in the figure, so that the induced voltage, which is the integral value of the minute distance .DELTA.l generated in one conductor bar, becomes zero. This relationship is true for all other conductor bars bb ', cc', d-
The same applies to d '. That is, by applying a skew of π (radian) to the conductor bars of the cage rotor, the total of the magnetic fluxes in which each conductor bar interlinks with the four-pole position control magnetic flux Φ4 becomes zero, and the induced voltage is applied to each conductor bar. Does not occur. As a result, no induced current is generated in each conductor bar of the cage rotor by the quadrupole position control magnetic field formed by the stator.

【0022】更に、図4を参照して、式を用いて上述し
た関係を詳述する。導体バーb−b’について発生する
4極制御磁界による誘導起電力の総和は、式(1)、
(2)で示すように、相殺され0となる。
Further, with reference to FIG. 4, the above-mentioned relationship will be described in detail using equations. The sum of the induced electromotive forces due to the quadrupole control magnetic field generated for the conductor bar bb ′ is given by the following equation (1).
As shown in (2), the offset is zero.

【数1】 (Equation 1)

【数2】 (Equation 2)

【0023】一方2極駆動磁界による誘導起電力の総和
は式(3)で示す如く周期性をもって発生する。
On the other hand, the sum of the induced electromotive forces due to the bipolar driving magnetic field is generated with a periodicity as shown by the equation (3).

【数3】 (Equation 3)

【0024】また導体バーd−d’については4極制御
磁界により誘起される誘導起電力の総和は同様に0とな
るが、2極駆動磁界によるそれは方向が反対で同量のも
のとなる。結局、2極駆動磁界による誘導起電力だけが
導体バーに発生し、誘導電流が流れ、誘導機として回転
力を発生する。同時に、4極制御磁界による誘導電流は
カゴ形回転子に発生しないため、制御磁束は意図した如
く制御され、回転子を安定に回転浮上できる。上記の事
項はn=2以上の駆動磁極対数と制御磁極対数の関係に
おいても n=m±1 という関係において成立する。
For the conductor bar dd ', the sum of the induced electromotive forces induced by the quadrupole control magnetic field is also 0, but the sum by the dipole drive magnetic field is the same in the opposite direction. Eventually, only the induced electromotive force generated by the bipolar driving magnetic field is generated in the conductor bar, the induced current flows, and a torque is generated as an induction machine. At the same time, since no induced current due to the quadrupole control magnetic field is generated in the cage rotor, the control magnetic flux is controlled as intended, and the rotor can be stably rotated and levitated. The above-mentioned matter is satisfied in the relationship of n = m ± 1 also in the relationship between the number of drive magnetic pole pairs of n = 2 or more and the number of control magnetic pole pairs.

【0025】図5は、図4の一部をn極対の場合につい
て示した図である。前述の式と同様に、n極対を持つ制
御磁界の回転によってひとつの導体バーa−a’等に発
生する、誘導起電力の総和は式(4)となる。
FIG. 5 is a diagram showing a part of FIG. 4 for an n-pole pair. Similarly to the above equation, the sum of the induced electromotive forces generated in one conductor bar aa ′ or the like by the rotation of the control magnetic field having the n-pole pair is represented by equation (4).

【数4】 (Equation 4)

【0026】式(5)に示すように、式(4)の大かっ
こ([ ])中の値はn極対の制御磁界の場合は常に0
となり、誘導電流は発生しない。
As shown in equation (5), the value in square brackets ([]) in equation (4) is always 0 for a control magnetic field of n pole pairs.
And no induced current is generated.

【数5】 (Equation 5)

【0027】一方、m極対でなる駆動磁界の場合は
(6)式に示すように0とはならず、ωに同期した値と
なり、誘導電流の発生を示し、結果として回転力を発生
する。その大きさはn=2、m=1または3で最大振幅
となる。
On the other hand, in the case of a driving magnetic field composed of m pole pairs, the value does not become 0 as shown in the equation (6) but becomes a value synchronized with ω, indicating the generation of an induced current, and as a result, generating a rotational force. . The magnitude becomes the maximum amplitude when n = 2, m = 1 or 3.

【数6】 (Equation 6)

【0028】本発明のカゴ形回転子は概ね2π/n度の
スキュー角を従来のカゴ形回転子に施すのみである。従
って、従来の製造工程に若干の変更を加えるだけで安定
な磁気浮上電動機の回転子を製造でき、低コストでしか
も高剛性の回転子を製造できる。
The cage rotator of the present invention only applies a skew angle of approximately 2π / n to the conventional cage rotator. Therefore, a rotor of a stable magnetic levitation motor can be manufactured by only slightly changing the conventional manufacturing process, and a low-cost and high-rigidity rotor can be manufactured.

【0029】図6は、本発明の第2実施形態を説明する
図である。上述したように導体バーは大きなスキュー角
を有するので、この回転子20の外周面を斜め方向に流
れる電流により、固定子21が形成する回転磁界により
回転子20にはθ方向の回転トルクと共に軸(Z)方向
力が発生する。即ち、誘導電流が磁界から受ける力F
は、回転トルクFθと軸方向力FZ との両成分を有する
ので、軸方向の推力Fmとバランスさせることができ
る。
FIG. 6 is a diagram for explaining a second embodiment of the present invention. As described above, since the conductor bar has a large skew angle, the current flowing in an oblique direction on the outer peripheral surface of the rotor 20 causes the rotating magnetic field formed by the stator 21 to apply a rotational torque to the rotor 20 together with the rotational torque in the θ direction. (Z) Directional force is generated. That is, the force F that the induced current receives from the magnetic field
Has both a rotational torque Fθ and an axial force FZ, so that it can be balanced with the axial thrust Fm.

【0030】図7は、スキュー角度が等しくスキューの
方向の異なる回転子20,22を連設して固設した回転
軸22を示す。回転子にはトルク(周方向力)Tと同時
に軸方向力Fa、Fa’が発生する。この大きなスキュ
ー角により発生する軸方向力はふたつの装置の運転状態
が同様であれば、それらは方向が逆で大きさの等しい力
である。このため、トルクの発生と同時に回転軸の軸方
向力が相殺され、本発明の第1実施形態による回転子を
用いて軸方向に受動安定に支持される。
FIG. 7 shows a rotating shaft 22 in which rotors 20 and 22 having the same skew angle and different skew directions are connected and fixed. Axial forces Fa and Fa 'are generated in the rotor simultaneously with torque (circumferential force) T. The axial forces generated by this large skew angle are equal in magnitude but opposite in direction if the two devices are operating in a similar manner. For this reason, the axial force of the rotating shaft is canceled simultaneously with the generation of the torque, and the rotor is passively and stably supported in the axial direction by using the rotor according to the first embodiment of the present invention.

【0031】図8は他の軸方向力の相殺の例である。上
記第1実施形態による磁気浮上電動機25を1台、従来
の磁気軸受26を1台用いて、軸方向流体力を発生する
羽23を有する回転軸22を支持する回転機械への適用
例である。羽23が回転する事で軸方向流体力FAが発
生し、一方上記磁気浮上電動機25はトルクと同時に軸
方向力Faを発生する場合を想定する。その大きさはト
ルクに比例するため流体力FAの増加と共に軸方向力Fa
も増加し、軸方向力を相殺または軽減し、軸方向支持を
行う磁気軸受26の負荷容量は小さい物を用いる事が可
能である。このため、回転機械の全体としての小型化、
低価格化を実現できる。
FIG. 8 shows another example of the cancellation of the axial force. This is an example of application to a rotating machine that uses one magnetic levitation motor 25 according to the first embodiment and one conventional magnetic bearing 26 to support a rotating shaft 22 having blades 23 that generate an axial fluid force. . It is assumed that the rotation of the wings 23 generates an axial fluid force FA, while the magnetic levitation motor 25 generates an axial force Fa simultaneously with the torque. Since the magnitude is proportional to the torque, the axial force Fa increases with the increase of the fluid force FA.
The load capacity of the magnetic bearing 26 for offsetting or reducing the axial force and supporting in the axial direction can be reduced. For this reason, miniaturization of the rotating machine as a whole,
The price can be reduced.

【0032】[0032]

【発明の効果】本発明によれば、従来、製造が困難で、
コストがかさみ、軸方向に長くなり高速回転子として不
適当な磁気浮上誘導電動機の回転子を、従来のカゴ形回
転子の製造工程に若干の変更を加えるだけで安定な磁気
浮上電動機の回転子として製造できる。これにより軸方
向長さは一般のカゴ形誘導回転子と同様で、低コストで
しかも高剛性の回転子を製造できる。また本発明による
回転子の組み合わせにより軸方向の受動安定化力を増加
でき、回転機械の全体としての小型コンパクト化を図る
ことが可能である。
According to the present invention, conventionally, it is difficult to manufacture,
The rotor of a magnetic levitation induction motor, which is costly and long in the axial direction and is unsuitable as a high-speed rotor, is a stable magnetic levitation motor rotor with only minor modifications to the conventional cage rotor manufacturing process. Can be manufactured as This makes it possible to manufacture a low-cost and high-rigidity rotor whose axial length is the same as that of a general cage induction rotor. In addition, the passive stabilizing force in the axial direction can be increased by the combination of the rotors according to the present invention, and it is possible to reduce the size and size of the rotating machine as a whole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】カゴ形回転子の斜視図と展開図であり、(A)
は本発明の第1実施形態のπラジアンのスキュー角を施
した例であり、(B)は従来のスキュー角を施した例で
ある。
FIG. 1 is a perspective view and a development view of a cage rotor, and FIG.
FIG. 3B is an example in which a skew angle of π radian is applied according to the first embodiment of the present invention, and FIG. 3B is an example in which a conventional skew angle is applied.

【図2】2極駆動4極制御の磁界を生成する固定子の巻
線と、回転子の導体バーの配置の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a winding of a stator that generates a magnetic field of two-pole drive and four-pole control and an arrangement of conductor bars of a rotor.

【図3】導体バーに生じる2極駆動磁界と4極制御磁界
による誘導起電圧を説明する図である。
FIG. 3 is a diagram illustrating an induced electromotive voltage generated by a two-pole driving magnetic field and a four-pole control magnetic field generated in a conductor bar.

【図4】上記誘導起電圧を計算するための説明図であ
る。
FIG. 4 is an explanatory diagram for calculating the induced electromotive force.

【図5】上記誘導起電圧を計算するための説明図であ
る。
FIG. 5 is an explanatory diagram for calculating the induced electromotive force.

【図6】上記実施形態の回転機械による軸方向力の発生
を説明する図である。
FIG. 6 is a diagram illustrating generation of an axial force by the rotating machine according to the embodiment.

【図7】軸方向力を相殺した本発明の第2実施形態の回
転機械を示す図である。
FIG. 7 is a view showing a rotating machine according to a second embodiment of the present invention in which axial forces are offset.

【図8】軸方向力を相殺した本発明の第3実施形態の回
転機械を示す図である。
FIG. 8 is a view showing a rotating machine according to a third embodiment of the present invention in which axial forces are offset.

【符号の説明】[Explanation of symbols]

11 スキューを施した導体バー 12 エンドリング 20 回転子 21 固定子 22 回転軸 11 Skewed conductor bar 12 End ring 20 Rotor 21 Stator 22 Rotation axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転するm極対でなる駆動磁界に同期し
てn極対の制御磁界を駆動磁界に重畳し、回転磁極に回
転力を与えると同時に、該回転磁極の変位検出手段によ
って検出した該回転磁極の変位から該制御磁界を増減し
て該回転磁極を磁気浮上する誘導電動機形の磁気浮上電
動機において、 該回転磁極は複数の導体バーとその両端を固着した導体
エンドリングとからなるカゴ形回転子であり、前記導体
バーのスキュー角度が概ね2π/n(ラジアン:但し、
n=2以上)である事を特徴とする磁気浮上電動機。
1. A control magnetic field of an n-pole pair is superimposed on a driving magnetic field in synchronization with a driving magnetic field of a rotating m-pole pair to apply a rotating force to the rotating magnetic pole and, at the same time, detected by a displacement detecting means of the rotating magnetic pole. In the induction motor-type magnetic levitation motor in which the control magnetic field is increased or decreased from the displacement of the rotating magnetic pole to magnetically levitate the rotating magnetic pole, the rotating magnetic pole comprises a plurality of conductor bars and a conductor end ring to which both ends thereof are fixed. A cage rotor, wherein the skew angle of the conductor bar is approximately 2π / n (radian:
n = 2 or more).
【請求項2】 2台の回転子が連接され、それぞれのス
キュー角度は大きさが等しく、方向が反対となるように
配置された事を特徴とする請求項1記載の磁気浮上電動
機。
2. The magnetic levitation motor according to claim 1, wherein two rotors are connected and arranged so that their skew angles are equal in magnitude and opposite in direction.
【請求項3】 軸方向力を発生する回転機械に、該軸方
向力と対抗するように前記回転子の導体バーに前記スキ
ュー角度を設けた事を特徴とする請求項1記載の磁気浮
上電動機。
3. The magnetic levitation motor according to claim 1, wherein the skew angle is provided on a conductor bar of the rotor so as to oppose the axial force in a rotating machine that generates an axial force. .
JP9059934A 1997-02-27 1997-02-27 Maglev motor Pending JPH10248218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9059934A JPH10248218A (en) 1997-02-27 1997-02-27 Maglev motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9059934A JPH10248218A (en) 1997-02-27 1997-02-27 Maglev motor

Publications (1)

Publication Number Publication Date
JPH10248218A true JPH10248218A (en) 1998-09-14

Family

ID=13127468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9059934A Pending JPH10248218A (en) 1997-02-27 1997-02-27 Maglev motor

Country Status (1)

Country Link
JP (1) JPH10248218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025342A (en) * 2008-07-21 2010-02-04 Siemens Ag Permanent magnet excitation type magnetic radial bearing and magnetic bearing system having the magnetic radial bearing
CN105864290A (en) * 2015-01-21 2016-08-17 雷虹桥 Electromagnetic speed control high-speed dual-layer nested bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025342A (en) * 2008-07-21 2010-02-04 Siemens Ag Permanent magnet excitation type magnetic radial bearing and magnetic bearing system having the magnetic radial bearing
CN105864290A (en) * 2015-01-21 2016-08-17 雷虹桥 Electromagnetic speed control high-speed dual-layer nested bearing

Similar Documents

Publication Publication Date Title
EP0920109B1 (en) Bearingless rotary machine
KR100352022B1 (en) Motor of magnetic lifting type
US6172438B1 (en) Two-phase permanent-magnet electric rotating machine
JP2670986B2 (en) Electromagnetic rotating machine
JP4723118B2 (en) Rotating electric machine and pulley drive device using the rotating electric machine
KR100403857B1 (en) Motor of magnetic lifting type
WO2013047076A1 (en) Rotating electric machine
JP4189037B2 (en) Magnetic shaft support electric drive
JP2001190043A (en) Magnetically-levitated motor
JP6723349B2 (en) Permanent magnet type motor
EP3118976A1 (en) Electric machine having a radial electrodynamic bearing
JP3762981B2 (en) Permanent magnet rotating electric machine
US7078839B2 (en) Self-bearing step motor and its control method
US6611073B2 (en) Magnetically levitated motor
US6753631B2 (en) Magnetically levitated motor
JP2001012467A (en) Radial magnetic bearing
WO2018221449A1 (en) Electric motor
JPH10248218A (en) Maglev motor
JP3710547B2 (en) Disk type magnetic levitation rotating machine
JPH0775302A (en) Ring-shaped coil type three-phase claw pole type permanent magnet type electric rotary machine
JPH06141512A (en) Magnetic levitation motor
JP6628388B2 (en) Bearingless motor
JPH1080113A (en) Disc-type bearingless motor
Ueno et al. A novel design of a Lorentz-force-type small self-bearing motor
JPH1084661A (en) Magnetic levitation motor