JPH10246724A - Underground elastic wave detector - Google Patents

Underground elastic wave detector

Info

Publication number
JPH10246724A
JPH10246724A JP9047552A JP4755297A JPH10246724A JP H10246724 A JPH10246724 A JP H10246724A JP 9047552 A JP9047552 A JP 9047552A JP 4755297 A JP4755297 A JP 4755297A JP H10246724 A JPH10246724 A JP H10246724A
Authority
JP
Japan
Prior art keywords
elastic wave
cylindrical body
long cylindrical
sensors
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9047552A
Other languages
Japanese (ja)
Other versions
JP3439941B2 (en
Inventor
Tomomoto Shiotani
智基 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP04755297A priority Critical patent/JP3439941B2/en
Publication of JPH10246724A publication Critical patent/JPH10246724A/en
Application granted granted Critical
Publication of JP3439941B2 publication Critical patent/JP3439941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detector for acquiring much satisfactory detailed measured data as compared with prior art by simplifying an operation while largely reducing a cost in an underground elastic wave detector for detecting an elastic wave (AE wave) generated under the ground. SOLUTION: The underground elastic wave detector comprises a long cylinder 10 made of vinyl chloride inserted into an excavated hole, a plurality of elastic wave sensors 12 disposed at a suitable interval in the cylinder 10, a coupler 14 for coupling the sensors 12. In this case, the cylinder 10 is fully filled with liquid 16, and the wave generated under the ground is detected by the sensor 12 via a wall of the cylinder 10 and liquid 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地中で発生した弾
性波(AE波)を検出する地中弾性波検出装置に関する
ものである。この種の装置は構造物の基礎や斜面の損
傷,破壊などを調査したり監視するために利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underground elastic wave detecting device for detecting an elastic wave (AE wave) generated underground. This type of device is used for investigating and monitoring damage and destruction of foundations and slopes of structures.

【0002】[0002]

【従来の技術】所定長さの中実棒または中空棒を用意
し、その棒体(導波棒)の外側面または内部に弾性波セ
ンサ(AEセンサ)を設ける。導波体は掘削孔に埋め込
まれ(中実棒)あるいは地中に打ち込まれ(中空棒)、
AEセンサは導波体の長手方向に適宜間隔で配置され
る。
2. Description of the Related Art A solid rod or hollow rod of a predetermined length is prepared, and an elastic wave sensor (AE sensor) is provided on the outer surface or inside of the rod (waveguide rod). The waveguide is embedded in a borehole (solid bar) or driven into the ground (hollow bar)
The AE sensors are arranged at appropriate intervals in the longitudinal direction of the waveguide.

【0003】そして構造物の基礎における損傷,破損の
部分や地盤斜面地中内の破壊面,不連続面で発生した摩
擦音や破壊音は導波棒まで到達し、各センサで検出され
る。これらセンサの検出信号は地上に取り出されてコン
ピュータ処理され、その結果、音源の位置や大きさ(構
造物基礎のコンクリート杭の場合は損傷,破損部分の位
置や程度/斜面の場合は破壊面や不連続面の摩擦,破壊
が発生した位置や規模)が特定される。
[0003] Frictional noise and destructive sound generated on a damaged or damaged portion of the foundation of the structure, a destructive surface or a discontinuous surface in the ground slope, reach the waveguide rod, and are detected by each sensor. The signals detected by these sensors are taken out to the ground and processed by a computer. As a result, the position and size of the sound source (damage in the case of a concrete pile on the foundation of a structure, the position and degree of a damaged portion / destruction in the case of a slope, The position and scale at which the friction and breakage of the discontinuous surface occur) are specified.

【0004】センサが外側面に設けられた導波棒(中実
棒)は埋め殺しされてそのまま放置され、内部に設けら
れた導波棒(中空棒)は引き抜かれて再使用される場合
もある。
A waveguide rod (solid rod) provided with a sensor on the outer surface is buried and left as it is, and a waveguide rod (hollow rod) provided inside is pulled out and reused. is there.

【0005】[0005]

【発明が解決しようとする課題】センサが高価なことか
ら、センサ及び導波棒が埋め殺しされて放置される導波
棒(中実棒)の場合、構造物の基礎や斜面の損傷,破壊
などを調査したり監視する費用が多大となる。また再使
用可能な導波棒(中空棒)の場合、例えば地中に打ち込
んでその後引き抜くために打ち込み先端へ向かい絞り込
まれる形状に棒体を加工することが必要で、棒体が高価
となる。さらに再使用の回数も限られる。したがって、
費用の削減には限度がある。
In the case of a waveguide rod (solid rod) in which the sensor and the waveguide rod are buried and left alone because the sensor is expensive, damage or destruction of the foundation or slope of the structure is made. The costs of investigating and monitoring such things are high. In the case of a reusable waveguide rod (hollow rod), for example, it is necessary to process the rod into a shape that is drawn down to the tip of the driving in order to be driven into the ground and then pulled out, and the rod is expensive. Furthermore, the number of reuses is limited. Therefore,
There are limits to cost savings.

【0006】本発明は上記の事情に鑑みてなされたもの
であり、その目的は、構造物の基礎や斜面の損傷,破壊
などの調査,監視に要する費用を大幅に削減することが
可能となる地中弾性波検出装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to significantly reduce the cost required for investigating and monitoring damage or destruction of a foundation or a slope of a structure. An object of the present invention is to provide an underground elastic wave detection device.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

・第1発明(図1参照) 掘削孔へ挿入される塩化ビニール製の長筒体10と、長
筒体10内に適宜間隔で配設される複数の弾性波センサ
12と、各弾性波センサ12を連結する連結具14と、
を有し、長筒体10は液体16で満たされ、地中で発生
した弾性波が長筒体10の壁及び液体16を介し弾性波
センサ12で検出される、ことを特徴としている。 ・第2発明(図1参照) 掘削孔へ挿入される塩化ビニール製で薄肉有底の長筒体
10と、長筒体10内に適宜間隔で配設される複数の弾
性波センサ12と、各弾性波センサ12を連結する紐体
14と、紐体14の巻き上げと巻き戻しを行う巻き上げ
機18と、を有し、長筒体10は水16で満たされ、各
弾性波センサ12は長筒体10内に吊り下げられ、地中
で発生した弾性波が長筒体10の壁及び水16を介し弾
性波センサ12で検出される、ことを特徴としている。
1st invention (refer to FIG. 1) A long tubular body 10 made of vinyl chloride inserted into a borehole, a plurality of elastic wave sensors 12 disposed at appropriate intervals in the long tubular body 10, and each elastic wave sensor A connecting tool 14 for connecting the two;
The long cylindrical body 10 is filled with the liquid 16, and an elastic wave generated in the ground is detected by the elastic wave sensor 12 through the wall of the long cylindrical body 10 and the liquid 16. A second invention (see FIG. 1); a thin-walled long cylindrical body 10 made of vinyl chloride to be inserted into a drilling hole; and a plurality of elastic wave sensors 12 arranged at appropriate intervals in the long cylindrical body 10; It has a string body 14 for connecting the elastic wave sensors 12 and a winding machine 18 for winding and unwinding the string body 14. The long cylindrical body 10 is filled with water 16, and each elastic wave sensor 12 has a long length. An elastic wave suspended in the cylindrical body 10 and generated in the ground is detected by the elastic wave sensor 12 through the wall of the long cylindrical body 10 and the water 16.

【0008】[0008]

【発明の実施の形態】図1には地中弾性波検出装置の一
例が示されている。その装置は長筒体10,複数の弾性
波センサ12,連結具14を有しており、長筒体10は
水16で満たされている。この例では長筒体10に薄肉
の塩化ビニール管が使用されており、その塩化ビニール
管はキャップを取り付けることで有底化されている。
FIG. 1 shows an example of an underground elastic wave detecting apparatus. The apparatus has a long cylinder 10, a plurality of elastic wave sensors 12, and a connector 14, and the long cylinder 10 is filled with water 16. In this example, a thin-walled vinyl chloride pipe is used for the long cylindrical body 10, and the vinyl chloride pipe is bottomed by attaching a cap.

【0009】薄肉の塩化ビニール管は”エンビ管”と称
されるほど広く流通しており、経済性に優れる。また軽
量なことから運搬や取扱に便利で、キャップ付け,切断
などの加工も容易に行える。しかも、塩化ビニールの音
響インピーダンスが土にきわめて近い。このため、地中
で発生したAE波の入射効率が高く、そのAE波は良好
な感度で本装置に取り込まれる。
[0009] Thin-walled vinyl chloride pipes are widely distributed so as to be called "environmental pipes", and are excellent in economy. In addition, since it is lightweight, it is convenient for transportation and handling, and processing such as capping and cutting can be easily performed. Moreover, the acoustic impedance of vinyl chloride is very close to that of soil. For this reason, the incidence efficiency of the AE wave generated in the ground is high, and the AE wave is taken into the apparatus with good sensitivity.

【0010】水はAE波を損失なく伝達する性質を有し
ており(有機性の液体であっても良い)、長筒体10内
が水16で満たされていることから、地中で発生したA
E波は長筒体10及び水16を介してほとんど減衰する
ことなく各センサ12へ十分なレベルで到達する。な
お、長筒体10が有底化されているので水16は漏出し
ない。水16の漏出が起こりにくい土質の地盤や水16
の漏出量が僅かな土質の地盤の場合、あるいは地下水が
高い地盤の場合、長筒体10は有底化しなくとも良い
(必要に応じて補充することもできる)。
Water has the property of transmitting AE waves without loss (it may be an organic liquid). Since the inside of the long cylindrical body 10 is filled with water 16, it is generated underground. A
The E wave reaches each sensor 12 at a sufficient level with little attenuation via the long cylinder 10 and the water 16. The water 16 does not leak because the long cylindrical body 10 has a bottom. Soil ground and water 16 where leakage of water 16 is unlikely
In the case of soil with a small amount of soil leakage or ground with high groundwater, the long cylindrical body 10 does not need to be bottomed (it can be replenished as necessary).

【0011】尚、破壊箇所の近傍位置あるいは破壊箇所
自体の場合、長筒体10は金属製部材で形成しても構わ
ない。各センサ12は連結具14で連結されており、こ
の例では連結具14にロープ(紐体)が使用されてい
る。センサ12は適宜間隔でロープ14に取り付けられ
て吊り下げられており、各センサ12の信号線はロープ
14に沿って地上へ引き出される。
Incidentally, in the case of a position near the break point or the break point itself, the long cylindrical body 10 may be formed of a metal member. Each of the sensors 12 is connected by a connecting member 14, and in this example, a rope (string) is used for the connecting member 14. The sensors 12 are attached to the ropes 14 at appropriate intervals and suspended, and the signal lines of the sensors 12 are drawn out along the ropes 14 to the ground.

【0012】直上の地上には巻き上げ機18が設けられ
ており、巻き上げ機18はロープ14の巻き上げと巻き
戻しを行い、その動作により各センサ12の位置が調整
される。巻き上げ機18は長筒体10がかなり長尺な場
合に用意される。長尺でない場合は必要とされない。
A hoist 18 is provided directly above the ground. The hoist 18 winds and rewinds the rope 14, and the operation adjusts the position of each sensor 12. The hoisting machine 18 is provided when the long cylindrical body 10 is considerably long. Not required if not long.

【0013】図2では斜面の崩壊監視が行われるときの
作用が、図3ではコンクリート杭の診断が行われるとき
の作用が、各々説明されており、斜面の破壊面,不連続
面やコンクリート杭の損傷部,破損部で発生したAE波
は地中を伝播して本装置まで到達する。そして減衰する
ことなく長筒体10の薄壁及び水16内を通過し、各セ
ンサ12はこれを高感度に検出する。
FIG. 2 illustrates the operation when the slope is monitored for collapse, and FIG. 3 illustrates the operation when the diagnosis of the concrete pile is performed. The AE wave generated at the damaged or damaged part of the device propagates through the ground and reaches the apparatus. Then, the light passes through the thin wall of the long cylindrical body 10 and the water 16 without being attenuated, and each sensor 12 detects this with high sensitivity.

【0014】これらセンサ12の出力は地上に設置され
たコンピュータ20で受信され、コンピュータ20は受
信したセンサ信号を用いて計測処理を行い、斜面の安定
性を判断し、あるいはコンクリート杭の損傷や破損の状
態を診断する。現場では、最初に本装置の設置位置を決
定する。通常、設置位置は複数とされる。
The outputs of these sensors 12 are received by a computer 20 installed on the ground, and the computer 20 performs a measurement process using the received sensor signals to determine the stability of the slope, or to damage or break the concrete pile. Diagnose the condition of At the site, the installation position of the device is first determined. Usually, there are a plurality of installation positions.

【0015】長筒体10は同時計測分の本数が用意さ
れ、センサ12も必要となる数が用意される。そして全
ての位置に対して削孔工事が行われ、同時計測の縦孔へ
長筒体10が差し込まれる。長筒体10に薄肉の塩化ビ
ニール管が使用されていることから、縦孔へ長筒体10
が手作業で差し込まれる。重機は必要とされない。同作
業は短時間で完了する。
The number of the long cylindrical bodies 10 for simultaneous measurement is prepared, and the required number of sensors 12 is also prepared. Then, drilling work is performed on all positions, and the long cylindrical body 10 is inserted into the vertical hole for simultaneous measurement. Since a thin-walled PVC pipe is used for the long cylindrical body 10, the long cylindrical body 10 is inserted into the vertical hole.
Is inserted manually. No heavy equipment is needed. The work is completed in a short time.

【0016】次いで縦穴と長筒体10との間に削土が埋
め戻され、長筒体10内へ水16が注入される(図2及
び図3参照)。また巻き上げ機18を縦穴の直上に設置
し、センサ12を逐次取り付けながらロープ(14)を
巻き出す。センサ12の数及び取付間隔は対象に応じて
変更され、深さ位置は巻き上げ機18の操作で調整され
る。
Next, earth shavings are buried between the vertical hole and the elongated cylinder 10, and water 16 is injected into the elongated cylinder 10 (see FIGS. 2 and 3). Further, the hoist 18 is installed immediately above the vertical hole, and the rope (14) is unwound while the sensors 12 are sequentially attached. The number and the mounting interval of the sensors 12 are changed according to the object, and the depth position is adjusted by operating the hoist 18.

【0017】さらに全てのセンサ12をコンピュータ2
0と接続し、計測処理をコンピュータ20に開始させ
る。計測が完了した場合はロープ(14)を巻き上げな
がら各センサ12を順に取り外して回収する。他の位置
で計測を行うときにはその位置へ移動して以上の作業を
繰り返し、最後に全ての計測結果を用いてコンピュータ
20に斜面の破壊面,不連続面やコンクリート杭の損傷
部,破損部を算出させ、その位置や程度を特定させる。
Further, all the sensors 12 are connected to the computer 2
0, and causes the computer 20 to start the measurement process. When the measurement is completed, the sensors 12 are sequentially removed and collected while winding up the rope (14). When measuring at another position, move to that position and repeat the above operation. Finally, using all the measurement results, the computer 20 informs the computer 20 of the broken surface of the slope, the discontinuous surface, the damaged portion of the concrete pile, and the damaged portion. Calculate and specify the position and degree.

【0018】なお孔傾斜時には、ロープ(14)に代え
て単尺棒を連結したものや長尺棒を使用する。以上のよ
うに削孔作業以外に重機が必要とされず、長筒体(薄肉
の塩化ビニール管)10及び水16が場所を問わず手軽
かつ安価に入手でき、センサ12を繰り返して使用でき
ることから、費用を大幅に削減することが可能となる。
When the hole is inclined, a single bar or a long bar is used instead of the rope (14). As described above, no heavy equipment is required except for the drilling work, and the long cylindrical body (thin-walled PVC pipe) 10 and the water 16 can be easily and inexpensively obtained at any place, and the sensor 12 can be used repeatedly. , Cost can be greatly reduced.

【0019】しかも、長筒体(薄肉の塩化ビニール管)
10及び水16は人手で容易に取り扱え、したがって作
業時間が大幅に短縮される。その上重量物を持ち運ばな
いので、機動性が大幅に向上し、このため作業をきわめ
て安全に行える。また、センサ12の取付位置や数を自
由に変更できるので、従来に比してはるかに良好で詳細
な計測データを取得することも可能となる。
Moreover, a long cylindrical body (thin-walled PVC pipe)
The 10 and the water 16 can be easily handled manually, thus greatly reducing the working time. In addition, since no heavy objects are carried, the maneuverability is greatly improved, and the work can be performed extremely safely. Further, since the mounting position and number of the sensors 12 can be freely changed, it is possible to acquire much better and detailed measurement data as compared with the related art.

【0020】なお多くの場合は長筒体10を埋め殺しに
するが、次回の調査が予定されるときには開口部をキャ
ップしてそのまま放置する。これを引き抜いて再利用し
ても良い。
In many cases, the long cylindrical body 10 is buried, but when the next investigation is scheduled, the opening is capped and left as it is. This may be extracted and reused.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、費
用を大幅に削減しながら作業を簡便化し、かつ、従来に
比してはるかに良好で詳細な計測データを取得すること
が可能となる。トンネル口の岩盤崩落,土石流災害,大
地震による建築物の倒壊などに備えて安全を確認する要
望が多いが、本発明にかかるはこれらに応ずる最適なも
のとなる。
As described above, according to the present invention, it is possible to simplify the operation while greatly reducing the cost, and to obtain much better and more detailed measurement data than before. Become. There are many requests to confirm safety in preparation for collapse of rock at the tunnel entrance, debris flow disaster, collapse of buildings due to large earthquakes, etc., but the present invention is the most suitable to meet these requirements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明が適用された装置の構成説明図FIG. 1 is a configuration explanatory view of an apparatus to which the invention is applied.

【図2】斜面崩壊監視時の作用説明図FIG. 2 is an explanatory diagram of an operation when monitoring a slope collapse.

【図3】コンクリート杭診断時の作用説明図FIG. 3 is an explanatory diagram of an operation at the time of a concrete pile diagnosis.

【符号の説明】[Explanation of symbols]

10 長筒体(薄肉塩化ビニール管) 12 弾性波センサ 14 連結具/紐体(ロープ) 16 水 18 巻き上げ機 20 コンピュータ DESCRIPTION OF SYMBOLS 10 Long cylindrical body (thin-walled PVC pipe) 12 Elastic wave sensor 14 Connector / string body (rope) 16 Water 18 Winding machine 20 Computer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 掘削孔へ挿入される長筒体(10)と、
長筒体(10)内に適宜間隔で配設される複数の弾性波
センサ(12)と、各弾性波センサ(12)を連結する
連結具(14)と、を有し、長筒体(10)は液体(1
6)で満たされ、地中で発生した弾性波が長筒体(1
0)の壁及び液体(16)を介し弾性波センサ(12)
で検出される、ことを特徴とした地中弾性波検出装置。
1. A long cylindrical body (10) inserted into a borehole,
The long cylindrical body (10) includes a plurality of elastic wave sensors (12) disposed at appropriate intervals in the long cylindrical body (10), and a connector (14) for connecting the elastic wave sensors (12). 10) is liquid (1)
6), the elastic wave generated in the ground
Acoustic wave sensor (12) through wall (0) and liquid (16)
An underground elastic wave detection device characterized by being detected by:
【請求項2】 掘削孔へ挿入される塩化ビニール製の長
筒体(10)と、長筒体(10)内に適宜間隔で配設さ
れる複数の弾性波センサ(12)と、各弾性波センサ
(12)を連結する連結具(14)と、を有し、長筒体
(10)は液体(16)で満たされ、地中で発生した弾
性波が長筒体(10)の壁及び液体(16)を介し弾性
波センサ(12)で検出される、ことを特徴とした地中
弾性波検出装置。
2. A long pipe body (10) made of vinyl chloride inserted into a borehole, a plurality of elastic wave sensors (12) arranged at appropriate intervals in the long pipe body (10), A connecting member (14) for connecting the wave sensor (12), wherein the long cylindrical body (10) is filled with the liquid (16), and elastic waves generated in the ground are covered with a wall of the long cylindrical body (10). And an underground elastic wave detection device which is detected by an elastic wave sensor (12) via a liquid (16).
【請求項3】 掘削孔へ挿入される塩化ビニール製で薄
肉有底の長筒体(10)と、長筒体(10)内に適宜間
隔で配設される複数の弾性波センサ(12)と、各弾性
波センサ(12)を連結する紐体(14)と、紐体(1
4)の巻き上げと巻き戻しを行う巻き上げ機(18)
と、を有し、長筒体(10)は水(16)で満たされ、
各弾性波センサ(12)は長筒体(10)内に吊り下げ
られ、地中で発生した弾性波が長筒体(10)の壁及び
水(16)を介し弾性波センサ(12)で検出される、
ことを特徴とした地中弾性波検出装置。
3. A long, thin, bottomed, cylindrical body made of vinyl chloride inserted into a borehole, and a plurality of elastic wave sensors (12) arranged at appropriate intervals in the long cylindrical body (10). , A string (14) connecting the elastic wave sensors (12), and a string (1).
Winding machine (18) for winding and rewinding 4)
And the long cylindrical body (10) is filled with water (16);
Each elastic wave sensor (12) is suspended in the long cylindrical body (10), and elastic waves generated in the ground are transmitted through the wall of the long cylindrical body (10) and the water (16) by the elastic wave sensor (12). Detected,
An underground elastic wave detection device, characterized in that:
JP04755297A 1997-03-03 1997-03-03 Underground elastic wave detector Expired - Fee Related JP3439941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04755297A JP3439941B2 (en) 1997-03-03 1997-03-03 Underground elastic wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04755297A JP3439941B2 (en) 1997-03-03 1997-03-03 Underground elastic wave detector

Publications (2)

Publication Number Publication Date
JPH10246724A true JPH10246724A (en) 1998-09-14
JP3439941B2 JP3439941B2 (en) 2003-08-25

Family

ID=12778339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04755297A Expired - Fee Related JP3439941B2 (en) 1997-03-03 1997-03-03 Underground elastic wave detector

Country Status (1)

Country Link
JP (1) JP3439941B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544481A (en) * 1999-05-11 2002-12-24 リン、フランク Material inspection device
CN105421326A (en) * 2015-12-15 2016-03-23 东南大学 Soil slope stability monitoring instrument characterized by utilization of acoustic emission technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544481A (en) * 1999-05-11 2002-12-24 リン、フランク Material inspection device
CN105421326A (en) * 2015-12-15 2016-03-23 东南大学 Soil slope stability monitoring instrument characterized by utilization of acoustic emission technology

Also Published As

Publication number Publication date
JP3439941B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
US9977008B2 (en) Method and apparatus for analyzing anomalies in concrete structures
US20060102347A1 (en) Method and apparatus for logging a well using fiber optics
US11384634B2 (en) Maintenance device and method for determining the position of a blockage point of a tubular member
CN208309553U (en) Soft base deepwater diking deeply mixing cement-soil pile monitoring device
JPH10311813A (en) Method for detecting damage of foundation pile from ground surface and device used for this method
CN106643589A (en) High-pressure jet grouting pile construction formed-pile diameter real-time monitoring method and monitoring device
CN108643159A (en) Soft base deepwater diking deeply mixing cement-soil pile monitoring device and method
JP3271751B2 (en) Settlement measuring device
JPH03152420A (en) Method and apparatus for measuring movement of ground
CN101334368A (en) Steel tube centrifugal concrete pipe pile integrality endoscopic detection method
JP3439941B2 (en) Underground elastic wave detector
US5372038A (en) Probe to specifically determine the injectivity or productivity of a petroleum well and measuring method implementing said probe
CN107975076B (en) Parallel seismic wave method determines the detection device and its detection method of foundation pile length
KR102116937B1 (en) Underground pipe investigation apparatus
CN117111175A (en) Comprehensive geological forecasting method for TBM tunnel
CN101650242B (en) Method for nondestructive detection of prestressing force under anchor of anchor rope
JP3274341B2 (en) Damage inspection method for structural support piles
CN108825136B (en) Building pile foundation detection device
JP6696934B2 (en) Method and device for extracting pile elements from the ground
CN212337266U (en) Inclinometer
JPH08320228A (en) Attitude measuring device for boring rod
JP3272261B2 (en) Hole bending measurement method during drilling
CN216350197U (en) Soil cement curtain wall permeability check out test set
CN217585692U (en) Drainage pipe integration detection device who adapts to depth of water change
KR102594336B1 (en) Test system for tube well and method having the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees