JPH10246550A - Device for control of compressor of refrigerator and method therefor - Google Patents

Device for control of compressor of refrigerator and method therefor

Info

Publication number
JPH10246550A
JPH10246550A JP10001777A JP177798A JPH10246550A JP H10246550 A JPH10246550 A JP H10246550A JP 10001777 A JP10001777 A JP 10001777A JP 177798 A JP177798 A JP 177798A JP H10246550 A JPH10246550 A JP H10246550A
Authority
JP
Japan
Prior art keywords
compressor
compressor motor
voltage
zero
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10001777A
Other languages
Japanese (ja)
Inventor
Hae-Jin Park
海辰 朴
Seiko Cho
聲鎬 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH10246550A publication Critical patent/JPH10246550A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Motor And Converter Starters (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable reduction of a rush current, which flows instantaneously upon starting a compressor motor for a refrigerator, by a method wherein an AC voltage is supplied intermittently to the compressor motor after a predetermined delay time has elapsed from the zero intersecting time point of the AC voltage. SOLUTION: An AC voltage, impressed on a compressor motor 20 for the driving thereof, is inspected whether the AC voltage is a first wave form or not and when the same is the first wave form, a SSR 16 is operated at a time when a delay time has elapsed from an AC voltage zero intersecting time, detected by a zero intersection detecting unit 10, to impress a power supply on the compressor motor 20. In the second wave form, third wave form and fourth wave form, the compressor motor 20 is driven at a time when a predetermined delay time has elapsed respectively after the zero intersecting time in the same manner. Then, the compressor motor is driven at the zero intersecting time after the fourth wave form. In this case, the delay time is decreased gradually for every half cycles of the AC voltage and, at last, the compressor motor 20 is driven at the zero intersecting point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷蔵庫の圧縮機制御
装置及び方法に係り、特に圧縮機モータの起動時に発生
する突入電流を減らせる圧縮機制御装置及び方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for controlling a compressor of a refrigerator, and more particularly to an apparatus and method for controlling an inrush current generated when a compressor motor is started.

【0002】[0002]

【従来の技術】一般に、冷蔵庫は図7に示した通り、冷
蔵庫の外形を形成する本体1と、本体1内に形成される
冷凍室2及び冷蔵室4と、冷凍室及び冷蔵室2・4を開
閉するドア6、8を備えており、冷凍室2には冷凍室2
の温度感知のためのFセンサ12が設けられている。冷
蔵室4の背面には蒸発機からの気体状の冷媒を圧縮して
高圧の冷媒気体にして吐き出す圧縮機(図示せず)が設
けられており、この圧縮機は気体状の冷媒を吸入し圧縮
し排出するシリンダ装置と、このシリンダ装置を駆動す
るための圧縮機モータを備えている。
2. Description of the Related Art Generally, as shown in FIG. 7, a refrigerator has a main body 1 forming an outer shape of the refrigerator, a freezing room 2 and a refrigerating room 4 formed in the main body 1, a freezing room and a refrigerating room 2.4. Doors 6 and 8 for opening and closing the freezer 2
Is provided with an F sensor 12 for temperature sensing. A compressor (not shown) for compressing the gaseous refrigerant from the evaporator and discharging it to a high-pressure refrigerant gas is provided on the rear surface of the refrigerating chamber 4, and the compressor sucks the gaseous refrigerant. It has a cylinder device for compressing and discharging, and a compressor motor for driving the cylinder device.

【0003】圧縮機は冷凍室及び冷蔵室2・4が所定温
度以下に保たれるよう動作と停止を繰り返し、よって圧
縮機モータも駆動と停止状態を繰り返す。ところが、圧
縮機モータの起動時は、図6に示した通り、瞬間的に突
入電流60が発生される。この突入電流60は圧縮機モ
ータの起動時短時間の間割合に大きい値の電流が圧縮機
モータに流れ込む現象であって、略0.1秒の間8Aほ
どの電流が流れる。しかし、従来の冷蔵庫においては、
この突入電流60を減らす制御装置を備えていなかっ
た。したがって、突入電流60が流れる場合に備えて必
要以上の大きい値を有するヒューズを設けなければなら
なく、圧縮機モータの起動時毎に突入電流60が発生し
て大電流が流れるので、全体的な冷蔵庫消費電流が増え
るという問題点があった。
[0003] The compressor repeatedly operates and stops so that the freezing compartments and the refrigerating compartments 2 and 4 are maintained at a predetermined temperature or less, and thus the compressor motor repeats the driving and stopping states. However, when the compressor motor is started, an inrush current 60 is instantaneously generated as shown in FIG. The inrush current 60 is a phenomenon in which a relatively large current flows into the compressor motor for a short time when the compressor motor is started, and a current of about 8 A flows for approximately 0.1 seconds. However, in conventional refrigerators,
No control device for reducing the inrush current 60 was provided. Therefore, a fuse having an unnecessarily large value must be provided in preparation for the case where the inrush current 60 flows, and the inrush current 60 is generated every time the compressor motor is started, and a large current flows. There is a problem that the current consumption of the refrigerator increases.

【0004】[0004]

【発明が解決しようとする課題】したがって、本発明は
前述した問題点を解決するために案出されたもので、そ
の目的は冷蔵庫の圧縮機モータの起動時に瞬間的に流れ
る突入電流を減らせる圧縮機制御装置及び方法を提供す
ることである。
SUMMARY OF THE INVENTION Accordingly, the present invention has been devised to solve the above-mentioned problems, and its object is to reduce an inrush current that flows instantaneously when a compressor motor of a refrigerator is started. It is to provide a compressor control device and method.

【0005】[0005]

【課題を解決するための手段】前述した目的は、本発明
の、圧縮機モータを備えた圧縮機を有する冷蔵庫の圧縮
機制御装置において、前記圧縮機モータの駆動のための
交流電圧のゼロ交差時点を検出するためのゼロ交差検出
部と、前記圧縮機モータの起動時、前記交流電圧の複数
の半サイクル毎において前記ゼロ交差検出部で検出され
た前記交流電圧のゼロ交差時点から所定の遅延時間経過
後に前記交流電圧が前記圧縮機モータに供給されるよう
断続する制御部を含むことを特徴とする冷蔵庫の圧縮機
制御装置により達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a compressor control device for a refrigerator having a compressor having a compressor motor according to the present invention, wherein a zero crossing of an AC voltage for driving the compressor motor is provided. A zero-crossing detecting unit for detecting a time point, and a predetermined delay from a zero-crossing time point of the AC voltage detected by the zero-crossing detecting unit at a plurality of half cycles of the AC voltage when the compressor motor is started. This is achieved by a compressor control device for a refrigerator, including a control unit that intermittently supplies the AC voltage to the compressor motor after a lapse of time.

【0006】ここで、前記遅延時間は毎半サイクルが進
む間次第に縮まることが望ましく、前記制御部はマイコ
ンと、前記交流電圧を断続し前記マイコンの制御により
動作するSSRを含むように構成するのが望ましい。そ
して、冷却室の温度感知のための温度感知センサをさら
に含み、前記制御部は前記温度感知センサの感知結果、
前記冷却室の温度が所定温度以上となる場合は前記圧縮
機モータを起動させるのが望ましい。
Here, it is preferable that the delay time is gradually reduced during each half cycle, and the control unit includes a microcomputer and an SSR that operates under the control of the microcomputer by interrupting the AC voltage. Is desirable. The control unit may further include a temperature sensing sensor for sensing a temperature of the cooling chamber, wherein the control unit detects a result of the temperature sensing sensor,
When the temperature of the cooling chamber is equal to or higher than a predetermined temperature, it is desirable to start the compressor motor.

【0007】また、本発明によれば、圧縮機モータを有
する圧縮機を備えた冷蔵庫の圧縮機制御方法において、
前記圧縮機モータの駆動のための交流電圧のゼロ交差時
点を検出する段階と、前記圧縮機モータの起動時、前記
検出段階の検出結果に応じて、複数の毎半サイクルの間
前記検出段階の検出結果に応じて前記交流電圧のゼロ交
差時点から所定の遅延時間経過後に前記交流電圧が前記
圧縮機モータに供給されるよう断続する段階を含むこと
を特徴とする圧縮機制御方法が提供される。ここで、冷
却室の温度を感知する段階と、前記温度感知段階の感知
結果、前記冷却室の温度が所定温度以上となる場合、前
記圧縮機モータを起動する段階をさらに含むことが望ま
しい。
Further, according to the present invention, in a compressor control method for a refrigerator provided with a compressor having a compressor motor,
Detecting a zero-crossing point of the AC voltage for driving the compressor motor; and, when starting up the compressor motor, according to a detection result of the detection step, a plurality of half cycles of the detection step. A compressor control method is provided that includes a step of intermittently supplying the AC voltage to the compressor motor after a predetermined delay time has elapsed from the zero crossing point of the AC voltage according to a detection result. . The method may further include detecting a temperature of the cooling chamber, and activating the compressor motor when a temperature of the cooling chamber is equal to or higher than a predetermined temperature as a result of the detecting the temperature.

【0008】[0008]

【発明の実施の形態】以下、添付した図面に基づき本発
明を詳述する。本圧縮機制御装置及び方法が用いられる
冷蔵庫は、従来の技術と関わり説明した図7に示した通
り、冷蔵庫の外形を形成する本体1と、本体1内に形成
される冷凍室2及び冷蔵室4と、冷凍室及び冷蔵室2・
4を開閉するドア6、8を備えており、冷凍室2には冷
凍室2の温度感知のためのFセンサ(温度感知センサ)
12が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the attached drawings. As shown in FIG. 7, which relates to the related art, a refrigerator in which the present compressor control device and method are used includes a main body 1 forming an outer shape of the refrigerator, a freezing room 2 and a refrigerator room formed in the main body 1. 4 and freezer and refrigerator 2
4 is provided with doors 6 and 8 for opening and closing, and an F sensor (temperature sensing sensor) for sensing the temperature of the freezing room 2 in the freezing room 2
12 are provided.

【0009】図1は、かかる冷蔵庫において本発明によ
る圧縮機制御装置のブロック図である。ブロック図に
は、交流電圧が瞬時値が0となる瞬間であるゼロ交差時
点を検出するためのゼロ交差検出部10と、冷凍室2の
温度感知のためのFセンサ12と、これより信号を受け
て処理するマイコン14がある。マイコン14は、制御
信号を出力してSSR(solid state relay)16及びリ
レー18を制御し、SSR16は圧縮機モータ20の駆
動のために印加される交流電源を断続し、リレー18は
冷気供給のための循環ファン22に印加される交流電源
を断続する。この際、ゼロ交差検出部10とSSR16
及びリレー18には同一な交流電源が印加される。
FIG. 1 is a block diagram of a compressor control device according to the present invention in such a refrigerator. The block diagram includes a zero-crossing detection unit 10 for detecting a zero-crossing time point at which the instantaneous value of the AC voltage becomes 0, an F sensor 12 for sensing the temperature of the freezing compartment 2, and a signal from the F sensor 12. There is a microcomputer 14 for receiving and processing. The microcomputer 14 outputs a control signal to control the SSR (solid state relay) 16 and the relay 18, the SSR 16 interrupts an AC power supply applied for driving the compressor motor 20, and the relay 18 supplies a cold air supply. AC power applied to the circulation fan 22 is interrupted. At this time, the zero-crossing detector 10 and the SSR 16
The same AC power is applied to the relay 18 and the relay 18.

【0010】かかる構成による圧縮機制御装置の動作
は、図2に示した流れ図のように、まず、マイコン14
はFセンサ12を通して冷凍室2の温度を測定し、測定
された冷凍室2の温度を初期に設定された設定温度と比
較する(S30)。比較結果、冷凍室2の温度が設定温
度より低い場合は冷気供給が不要なので、SSR16と
リレー18を制御して圧縮機モータ20及び循環ファン
22に電源供給を遮断してオフ状態を保たせ(S3
2)、引き続き冷凍室2の温度を設定温度と比較する
(S30)。
[0010] The operation of the compressor control device having such a configuration is as follows, as shown in the flow chart of FIG.
Measures the temperature of the freezer compartment 2 through the F sensor 12, and compares the measured temperature of the freezer compartment 2 with the initially set temperature (S30). As a result of the comparison, when the temperature of the freezing compartment 2 is lower than the set temperature, the supply of the cool air is unnecessary, so that the SSR 16 and the relay 18 are controlled to shut off the power supply to the compressor motor 20 and the circulation fan 22 to keep the off state ( S3
2) Subsequently, the temperature of the freezing room 2 is compared with the set temperature (S30).

【0011】冷凍室2の温度が設定温度より高まると、
冷気供給のために圧縮機モータ20と循環ファン22の
駆動が必要になる。この場合は、まず圧縮機モータ20
の駆動のために印加される交流電圧が一番目の波形であ
るかを検査し(S34)、図3に示した通り、一番目の
波形の場合は、ゼロ交差検出部10で検出された交流電
圧ゼロ交差時間から遅延時間TA 経過した時間にSSR
16を動作させ圧縮機モータ20に電源を印加させる
(S36)。
When the temperature of the freezer 2 becomes higher than the set temperature,
In order to supply cold air, it is necessary to drive the compressor motor 20 and the circulation fan 22. In this case, first, the compressor motor 20
It is checked whether the AC voltage applied for driving the first waveform is the first waveform (S34). If the AC voltage is the first waveform, as shown in FIG. SSR at time when delay time TA has elapsed from voltage zero crossing time
16 is operated to apply power to the compressor motor 20 (S36).

【0012】同様な方式で、二番目の波形の場合は、ゼ
ロ交差時間から遅延時間TB 経過された時間に圧縮機モ
ータ20を駆動し(S38、S40)、三番目の波形の
場合は、ゼロ交差時間から遅延時間TC 経過された時間
に圧縮機モータ20を駆動し(S42、S44)、四番
目の波形ではゼロ交差時間から遅延時間TD 経過された
時間に圧縮機モータ20を駆動する(S46、S4
8)。そして、四番目の波形以降にはゼロ交差時間で圧
縮機モータを駆動する(S50)。ここで、遅延時間で
あるTA 、TB 、TC 、TD は交流電圧の半サイクル毎
に次第に減少させ、遂にゼロ交差点で圧縮機モータ20
を駆動させるが、これにより圧縮機モータ20に供給さ
れる交流電圧の大きさが徐々に増加される。
In the same manner, in the case of the second waveform, the compressor motor 20 is driven at the time when the delay time TB has elapsed from the zero crossing time (S38, S40). The compressor motor 20 is driven at the time when the delay time TC has elapsed from the crossing time (S42, S44), and in the fourth waveform, the compressor motor 20 is driven at the time when the delay time TD has elapsed from the zero crossing time (S46). , S4
8). Then, after the fourth waveform, the compressor motor is driven at the zero crossing time (S50). Here, the delay times TA, TB, TC, and TD gradually decrease every half cycle of the AC voltage, and finally the compressor motor 20 at the zero crossing point.
Is driven, whereby the magnitude of the AC voltage supplied to the compressor motor 20 is gradually increased.

【0013】図4(A)、(B)はこの過程を通して圧
縮機モータ20を駆動する場合、圧縮機モータ20に印
加される交流電圧の波形を示す。ここで、(A)は圧縮
機モータがオン状態の時間を示し、(B)はこの時間中
圧縮機モータ20の駆動のために印加される交流電圧の
波形を示す。(B)からわかるように、圧縮機モータ2
0に印加される交流電圧は最初から一定大きさを有する
交流電圧の代わりに小さい値から次第にその大きさが増
加する交流電圧が印加されることがわかる。
FIGS. 4A and 4B show waveforms of an AC voltage applied to the compressor motor 20 when the compressor motor 20 is driven through this process. Here, (A) shows the time when the compressor motor is in the ON state, and (B) shows the waveform of the AC voltage applied for driving the compressor motor 20 during this time. As can be seen from (B), the compressor motor 2
It can be seen that the AC voltage applied to 0 is applied from the beginning instead of the AC voltage having a constant magnitude, the AC voltage whose magnitude gradually increases from a small value.

【0014】図5は前述した方式に従って圧縮機モータ
20を駆動させた場合、圧縮機モ−タに流れる電流波形
を示したグラフである。圧縮機モータ20に印加される
電圧が図4のような波形となるにつれ、圧縮機モータ2
0に印加される電流の波形は緩やかな形状で変わり、よ
って突入電流50は減る。
FIG. 5 is a graph showing a waveform of a current flowing through the compressor motor when the compressor motor 20 is driven according to the above-described method. As the voltage applied to the compressor motor 20 has a waveform as shown in FIG.
The waveform of the current applied to 0 changes in a gradual shape, thus reducing the inrush current 50.

【0015】[0015]

【発明の効果】以上述べたように、本発明の方式は、交
流電圧の瞬時値が0となる近傍で所定時間経過後に交流
電源の供給をオンーオフして圧縮機モータ20を駆動す
る方式であって、一種のゼロクロスシステムである。こ
のような圧縮機制御装置及び方法を使用することによ
り、圧縮機モータの起動時に発生する突入電流が減らせ
るのみならず、過度の電圧及びスイッチングノイズを抑
制できる。
As described above, the method of the present invention drives the compressor motor 20 by turning on / off the supply of AC power after a predetermined time has elapsed near the instantaneous value of the AC voltage becoming zero. It is a kind of zero cross system. By using such a compressor control device and method, not only can the inrush current generated at the time of starting the compressor motor be reduced, but also excessive voltage and switching noise can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の圧縮機制御装置のブロック図であ
る。
FIG. 1 is a block diagram of a compressor control device of the present invention.

【図2】 本発明の圧縮機制御方法を示した流れ図であ
る。
FIG. 2 is a flowchart illustrating a compressor control method according to the present invention.

【図3】 本発明の圧縮機モータが駆動される時間を説
明するための図である。
FIG. 3 is a diagram for explaining a time during which a compressor motor of the present invention is driven.

【図4】 (A)は本発明の圧縮機モータの駆動状態を
示す図であり、(B)は同圧縮機モータの起動時におけ
る交流電圧の波形を示した図である。
4A is a diagram showing a driving state of the compressor motor of the present invention, and FIG. 4B is a diagram showing a waveform of an AC voltage when the compressor motor is started.

【図5】 本発明の圧縮機モータの起動時における電流
の波形を示した図である。
FIG. 5 is a diagram showing a waveform of a current when the compressor motor of the present invention is started.

【図6】 従来の圧縮機モータの起動時における電流の
波形を示した図である。
FIG. 6 is a diagram showing a current waveform when a conventional compressor motor is started.

【図7】 冷蔵庫の正面図である。FIG. 7 is a front view of the refrigerator.

【符号の説明】[Explanation of symbols]

10 ゼロ交差検出部 12 Fセンサ(温度感知センサ) 14 マイコン 16 SSR(solid state relay) 20 圧縮機モータ TA,TB,TC,TD 遅延時間 Reference Signs List 10 Zero crossing detector 12 F sensor (temperature sensing sensor) 14 Microcomputer 16 SSR (solid state relay) 20 Compressor motor TA, TB, TC, TD delay time

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機モータを備えた圧縮機を有する冷
蔵庫の圧縮機制御装置において、 前記圧縮機モータの駆動のための交流電圧のゼロ交差時
点を検出するためのゼロ交差検出部と、 前記圧縮機モータの起動時、前記交流電圧の複数の半サ
イクル毎において前記ゼロ交差検出部で検出された前記
交流電圧のゼロ交差時点から所定の遅延時間経過後に前
記交流電圧が前記圧縮機モータに供給されるよう断続す
る制御部を含むことを特徴とする冷蔵庫の圧縮機制御装
置。
1. A compressor control device for a refrigerator having a compressor equipped with a compressor motor, comprising: a zero-crossing detecting unit for detecting a zero-crossing point of an AC voltage for driving the compressor motor; At the time of starting the compressor motor, the AC voltage is supplied to the compressor motor after a predetermined delay time has elapsed from the zero-crossing point of the AC voltage detected by the zero-crossing detecting unit in each of a plurality of half cycles of the AC voltage. A compressor control device for a refrigerator, comprising: a control unit for intermittently controlling the operation of the compressor.
【請求項2】 前記遅延時間は毎半サイクルが進む間次
第に縮まることを特徴とする請求項1に記載の圧縮機制
御装置。
2. The compressor control device according to claim 1, wherein the delay time is gradually reduced during each half cycle.
【請求項3】 前記制御部はマイコンと、前記交流電圧
を断続し前記マイコンの制御により動作するSSRを含
むことを特徴とする請求項1に記載の圧縮機制御装置。
3. The compressor control device according to claim 1, wherein the control unit includes a microcomputer and an SSR that operates under the control of the microcomputer by interrupting the AC voltage.
【請求項4】 冷却室の温度感知のための温度感知セン
サをさらに含み、前記制御部は前記温度感知センサの感
知結果、前記冷却室の温度が所定温度以上となる場合は
前記圧縮機モータを起動させることを特徴とする請求項
1に記載の圧縮機制御装置。
4. The apparatus further comprises a temperature sensor for sensing a temperature of the cooling chamber, wherein the control unit controls the compressor motor when the temperature of the cooling chamber is higher than a predetermined temperature as a result of the temperature sensor. The compressor control device according to claim 1, wherein the compressor control device is started.
【請求項5】 圧縮機モータを有する圧縮機を備えた冷
蔵庫の圧縮機制御方法において、 前記圧縮機モータの駆動のための交流電圧のゼロ交差時
点を検出する段階と、 前記圧縮機モータの起動時、前記検出段階の検出結果に
応じて、複数の毎半サイクルの間前記検出段階の検出結
果に応じて前記交流電圧のゼロ交差時点から所定の遅延
時間経過後に前記交流電圧が前記圧縮機モータに供給さ
れるよう断続する段階を含むことを特徴とする圧縮機制
御方法。
5. A method for controlling a compressor of a refrigerator having a compressor having a compressor motor, comprising: detecting a zero-crossing point of an AC voltage for driving the compressor motor; At a time, according to the detection result of the detection step, the AC voltage is changed to the compressor motor after a predetermined delay time has elapsed from the zero crossing point of the AC voltage during a plurality of half cycles according to the detection result of the detection step. A step of intermittently supplying the compressed air to the compressor.
【請求項6】 冷却室の温度を感知する段階と、前記温
度感知段階の感知結果、前記冷却室の温度が所定温度以
上となる場合、前記圧縮機モータを起動する段階をさら
に含むことを特徴とする請求項5に記載の圧縮機制御方
法。
6. The method according to claim 6, further comprising a step of sensing a temperature of the cooling chamber, and a step of activating the compressor motor when the temperature of the cooling chamber is higher than a predetermined temperature as a result of the temperature sensing step. The compressor control method according to claim 5, wherein
JP10001777A 1997-01-08 1998-01-07 Device for control of compressor of refrigerator and method therefor Pending JPH10246550A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997290 1997-01-08
KR1019970000290A KR100208346B1 (en) 1997-01-08 1997-01-08 Refrigerator compressor control device and method thereof

Publications (1)

Publication Number Publication Date
JPH10246550A true JPH10246550A (en) 1998-09-14

Family

ID=19494279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10001777A Pending JPH10246550A (en) 1997-01-08 1998-01-07 Device for control of compressor of refrigerator and method therefor

Country Status (3)

Country Link
JP (1) JPH10246550A (en)
KR (1) KR100208346B1 (en)
CN (1) CN1191960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964925B1 (en) * 2018-10-05 2019-04-03 김용열 Control Method of Evaporation Temperature for High Humidity Storage in Low Temperature Storage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101229341B1 (en) * 2005-12-26 2013-02-05 삼성전자주식회사 Operation apparatus of compressor and control method thereof
US20100236264A1 (en) * 2007-05-15 2010-09-23 Carrier Corporation Compressor motor control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964925B1 (en) * 2018-10-05 2019-04-03 김용열 Control Method of Evaporation Temperature for High Humidity Storage in Low Temperature Storage

Also Published As

Publication number Publication date
KR100208346B1 (en) 1999-07-15
KR19980065360A (en) 1998-10-15
CN1191960A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
JP3238916B2 (en) Inverter refrigerator operating speed variable apparatus and method
JP2001336867A (en) Refrigerator for korean pickles and its control method
JPH10318646A (en) Driving control device of refrigerator and method
JPH07280412A (en) Operation speed controller of compressor for refrigerator and control method thereof
JPH0827122B2 (en) Refrigerator temperature control method
JPH10246550A (en) Device for control of compressor of refrigerator and method therefor
JP2002081816A (en) Method for controlling refrigerator
JPH11201608A (en) Refrigerator
KR20040057156A (en) Defrosting control method for refrigerator
KR20110089532A (en) A refrigerator and a control method the same
JP3429238B2 (en) Inverter refrigerator operation control method
KR100203072B1 (en) Cooling fan starting control device and it's method of refrigerator
JP2827673B2 (en) Refrigerator control device
JPH0989432A (en) Controller for refrigerator
KR100389392B1 (en) Refrigerator noise reduction method
KR940002218B1 (en) Refrigerator
KR20050033978A (en) A defrost control method of refrigerator
KR0128747Y1 (en) Temperature control apparatus of water tank of refrigerator with water dispensor
JP2002228338A (en) Defrost control method of freezing/refrigerating showcase
KR20010017165A (en) A controlling method of a refrigerator
KR0182584B1 (en) A refrigerator control device and its control method
KR19990015496A (en) Compressor Chiller of Refrigerator and Cooling Method
JP2000146001A (en) Control device of electronic expansion valve and control method of electronic expansion valve
JPH07159014A (en) Drive controller for electric refrigerator
JP3297528B2 (en) Vending machine temperature control device