JPH10245651A - Magnetic cold storage alloy, and its manufacture - Google Patents

Magnetic cold storage alloy, and its manufacture

Info

Publication number
JPH10245651A
JPH10245651A JP9047668A JP4766897A JPH10245651A JP H10245651 A JPH10245651 A JP H10245651A JP 9047668 A JP9047668 A JP 9047668A JP 4766897 A JP4766897 A JP 4766897A JP H10245651 A JPH10245651 A JP H10245651A
Authority
JP
Japan
Prior art keywords
alloy
specific heat
oxygen
fluorine
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9047668A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hanaue
康宏 花上
Masaharu Ishiwatari
正治 石渡
Masashi Nagao
政志 長尾
Koki Naka
興起 仲
Takashi Inaguchi
隆 稲口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Electric Corp
Priority to JP9047668A priority Critical patent/JPH10245651A/en
Publication of JPH10245651A publication Critical patent/JPH10245651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide alloy useful as a lamination type cold storage material in which a sharp specific heat peak is not lost even when powdered and granulized by limiting the content of the impurities fluorine and the content of oxygen in the alloy to the prescribed values, and increasing the specific heat peak due to the phase transfer to the antiferromagnetism at the prescribed low temperature. SOLUTION: Rare earth metals such as Er3 Ru, Er5 Ru2 , and ErHg are alloyed, and melted together with the flux mainly consisting of CaF2 or CaCl2 in which Ca is saturated, and the specific heat peak due to the phase transfer to the antiferromagnetism at the low temperature range of 3-15K is increased to >=0.5J/K.cm<3> by reducing the content of impurity fluorine to be <=0.05wt.%, and the content of oxygen to be <=0.15wt.%. The alloy is granular or powdery with grain size of <=0.6mm. In the melting together with the flux, oxygen contained in the alloy is absorbed in the flux as the rare earth metal oxide. The fluoride is reacted with Ca in the flux, and absorbed and turned into the slag, and removed outside the system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性蓄冷材合金と
その製造方法に関する。より詳しくは、本発明は10K
以下(Kは絶対温度単位)の極低温において高い比熱ピー
クを有し、しかも粒状ないし粉状にしても高い比熱ピー
クを維持する磁性蓄冷材合金とその製造方法に関する。
[0001] The present invention relates to a magnetic regenerator material alloy and a method for producing the same. More specifically, the present invention relates to 10K
The present invention relates to a magnetic regenerator material alloy that has a high specific heat peak at an extremely low temperature (K is an absolute temperature unit) and maintains a high specific heat peak even in a granular or powder form, and a method for producing the same.

【0002】[0002]

【従来技術】GM(キ゛フォート゛・マクマホン) 冷凍機、スターリン
グ冷凍機、パルス管冷凍機等のガスサイクル冷凍機は、
20K以下、特に冷媒であるヘリウム(He)の比熱が大き
くなる10K以下の極低温領域では、その冷凍性能が蓄
冷器の性能によって大きく左右される。そこで、近年、
極低温領域でも大きな比熱を有する磁性蓄冷材が開発さ
れ、極低温冷凍機用の蓄冷器に使用されている。
2. Description of the Related Art Gas cycle refrigerators such as a GM (Keyfort McMahon) refrigerator, a Stirling refrigerator, a pulse tube refrigerator, etc.
In the extremely low temperature range of 20K or less, particularly 10K or less where the specific heat of helium (He) as the refrigerant increases, the refrigerating performance is greatly affected by the performance of the regenerator. So, in recent years,
A magnetic regenerator material having a large specific heat even in a cryogenic region has been developed and used for a regenerator for a cryogenic refrigerator.

【0003】磁性蓄冷材の比熱は(1)格子比熱、(2)磁気
相転移に伴なう比熱、および(3)ショットキー比熱の3
種類から構成されている。このうち、格子比熱は一般的
な非磁性蓄冷材と同様なものであり、磁気相転移比熱お
よびショットキー比熱が磁性に起因するものである。当
初、蓄冷材には広い温度範囲にわたって比較的大きな比
熱を示すことが要求されていたため、広い温度範囲にわ
たって効果の現われるショットキー比熱を主体とする材
料が用いられた。しかし、最近では、この極低温での冷
凍能力の向上を図るために、比熱ピーク温度の異なる複
数の磁性蓄冷材を積層した構造の蓄冷器が用いられるよ
うになってきている。このような積層型の蓄冷器では、
比熱ピークの広がりよりもピーク頂点付近での比熱の大
きさが性能上重要である。このため、極低温域に従来よ
り鋭い比熱ピークを有する磁性蓄冷材が求められてい
る。
[0003] The specific heat of the magnetic regenerator material is one of (1) lattice specific heat, (2) specific heat accompanying magnetic phase transition, and (3) Schottky specific heat.
It is composed of types. Among them, the lattice specific heat is similar to that of a general nonmagnetic regenerator, and the magnetic phase transition specific heat and the Schottky specific heat are caused by magnetism. Initially, the regenerator material was required to exhibit a relatively large specific heat over a wide temperature range, and therefore, a material mainly composed of a Schottky specific heat which exhibited an effect over a wide temperature range was used. However, recently, in order to improve the refrigeration capacity at extremely low temperatures, a regenerator having a structure in which a plurality of magnetic regenerator materials having different specific heat peak temperatures are stacked has been used. In such a laminated regenerator,
The magnitude of the specific heat near the peak apex is more important for performance than the spread of the specific heat peak. For this reason, a magnetic regenerator material having a sharper specific heat peak in the cryogenic temperature range than before has been required.

【0004】この他に、蓄冷材は熱交換効率を高めるた
めに、通常0.6mm以下の球状粉として製造されること
が多く、粉末化のために蓄冷材合金の融体をHeガス等
の不活性気体中に噴霧して製造される。そのため、蓄冷
材は急冷された微細な金属組織となり、その比熱ピーク
は蓄冷材合金が本来有するものよりもなだらかな形状と
なり、ピークでの比熱は小さくなることが知られてい
る。前述のように、従来はある程度幅広い温度域で比較
的大きな比熱が現われることが要求されていたので、比
熱ピークの大きさがある程度犠牲になっても広い範囲で
比熱ピークが緩やかに変化するものが好ましかったが、
積層型蓄冷器に用いる蓄冷材では比熱ピークの低下は好
ましくなく、狭い範囲でも極力大きな比熱ピークを有す
るものが求められる。
[0004] In addition, the regenerator material is often produced as a spherical powder having a diameter of 0.6 mm or less in order to enhance the heat exchange efficiency. It is manufactured by spraying into an inert gas. Therefore, it is known that the regenerator material has a rapidly cooled fine metal structure, and its specific heat peak has a gentler shape than that originally possessed by the regenerator material alloy, and the specific heat at the peak decreases. As described above, it has been conventionally required that a relatively large specific heat appears in a relatively wide temperature range, so that even when the specific heat peak is sacrificed to some extent, the specific heat peak gradually changes over a wide range. I liked it,
The regenerator material used for the laminated regenerator has a low specific heat peak, which is not preferable, and a regenerator having a maximum specific heat peak in a narrow range is required.

【0005】このような極低温において高い比熱ピーク
を有する磁性蓄冷材合金の一例として、Er3Niにつ
いて不純物の酸素および窒素を除去し、純度を高めるこ
とによって7〜8K付近における比熱ピークを高めるこ
とが報告されている(Advances in Cryogenic Engineeri
ng vol.40 p617-624)。しかし、この報告では不純物の
酸素および窒素の濃度が明かではなく、このためバルク
の試料については0.8J/K・cm3に近い比熱ピークを有す
る例が示されているものの、粉状体についてはいずれも
比熱ピークが0.4J/K・cm3以下である。
As an example of such a magnetic regenerator material having a high specific heat peak at an extremely low temperature, the specific heat peak in the vicinity of 7 to 8 K is enhanced by removing impurities such as oxygen and nitrogen from Er 3 Ni and increasing the purity. (Advances in Cryogenic Engineeri
ng vol.40 p617-624). However, in this report, the concentrations of impurities such as oxygen and nitrogen are not clear. For this reason, although the bulk sample has a specific heat peak close to 0.8 J / K · cm 3 , the powder sample has a specific heat peak. Have a specific heat peak of 0.4 J / K · cm 3 or less.

【0006】[0006]

【発明の解決課題】本発明は、従来の磁性蓄冷材合金に
おける上記問題を解決したものであって、極低温域にお
ける反強磁性への相転移による比熱ピークが従来よりも
高く0.5J/K・cm3以上であって、粉粒化してもこの鋭い
比熱ピークを失わない磁性蓄冷材合金を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has solved the above-mentioned problems in the conventional magnetic regenerator material alloy, and has a higher specific heat peak due to a phase transition to antiferromagnetism in a cryogenic temperature range of 0.5 J / It is an object of the present invention to provide a magnetic regenerator material alloy having a K · cm 3 or more and which does not lose this sharp specific heat peak even when powdered.

【0007】[0007]

【課題解決の手段】すなわち、本発明によれば以下の磁
性蓄冷合金材が提供される。 (1) 不純物フッ素含有量を0.05wt%以下、および
酸素含有量を0.15wt%以下に制限することにより、
3〜15Kの低温域における反強磁性への相転移による
比熱ピークを0.5J/K・cm3以上に高めたことを特徴とす
る磁性蓄冷材合金。 (2) 粒径0.6mm以下の粒状ないし粉状の上記(1)に記
載の磁性蓄冷材合金。 (3) Er3RuまたはEr5Ru2の組成からなり、0.
6J/K・cm3以上の比熱ピークを6〜10Kの間に有する
上記(1)または(2)に記載の磁性蓄冷材合金。
That is, according to the present invention, the following magnetic regenerative alloy material is provided. (1) By limiting the impurity fluorine content to 0.05 wt% or less and the oxygen content to 0.15 wt% or less,
A magnetic regenerator material alloy, wherein the specific heat peak due to the phase transition to antiferromagnetism in a low temperature range of 3 to 15 K is increased to 0.5 J / K · cm 3 or more. (2) The magnetic regenerator material alloy according to (1) above, which is in the form of particles or powder having a particle size of 0.6 mm or less. (3) It is composed of Er 3 Ru or Er 5 Ru 2 ,
The magnetic regenerator alloy according to the above (1) or (2), having a specific heat peak of 6 J / K · cm 3 or more between 6 and 10K.

【0008】また本発明によれば上記蓄冷材合金につい
て以下の製造方法が提供される。 (4) 上記(1)〜(3)のいずれかの磁性蓄冷合金を製造す
る方法であって、該合金の融体を、Caを飽和させたC
aF2ないしCaCl2を主成分とするフラックスと溶融
させて不純物の酸素及びフッ素を該フラックスに吸収さ
せることにより該合金の不純物フッ素含有量を0. 05
wt%以下、かつ酸素含有量を0.15wt%以下にするこ
とを特徴とする磁性蓄冷材合金の製造方法。 (5) 合金の融体をCaを飽和させたCaF2ないしCa
Cl2を主成分とするフラックスと溶融させて不純物の
酸素およびフッ素を低減し、更に該合金の融体を不活性
気体中に噴霧して粒径0.6mm以下の粒状または粉状の
磁性蓄冷材合金を製造する上記(4)に記載の製造方法。
Further, according to the present invention, the following manufacturing method is provided for the regenerator material alloy. (4) A method for producing a magnetic regenerative alloy according to any one of the above (1) to (3), wherein a melt of the alloy is made of C saturated with Ca.
By melting a flux containing aF 2 or CaCl 2 as a main component and absorbing oxygen and fluorine as impurities into the flux, the impurity fluorine content of the alloy is reduced to 0.05.
A method for producing a magnetic regenerator material alloy, characterized in that the content of oxygen is not more than 0.15 wt% or less. (5) CaF 2 to Ca saturated with Ca
Flux mainly composed of Cl 2 is melted to reduce impurities such as oxygen and fluorine, and a melt of the alloy is sprayed into an inert gas to form a granular or powder magnetic regenerator having a particle size of 0.6 mm or less. The production method according to the above (4) for producing a material alloy.

【0009】[0009]

【具体的な説明】(I) 合金のフッ素量、酸素量 磁性蓄冷材は、一般に、大きな磁気モーメントを有する
希土類金属を主体とする合金によって形成される。希土
類金属は、一般にフッ化物原料や酸化物あるいは塩化物
原料から得られるが、フッ化物原料の場合、通常の精練
工程では原料中のフッ素が0.1wt%以上残留する。ま
た、酸化物や塩化物原料では本来含まれている酸素の他
に吸湿による水分中の酸素が残留する。
[Detailed Description] (I) Fluorine content and oxygen content of alloy The magnetic regenerator material is generally formed of an alloy mainly composed of a rare earth metal having a large magnetic moment. Rare earth metals are generally obtained from a fluoride raw material, an oxide or a chloride raw material. In the case of a fluoride raw material, 0.1 wt% or more of fluorine in the raw material remains in a usual refining process. Further, in the oxide or chloride raw material, oxygen in moisture due to moisture absorption remains in addition to oxygen originally contained.

【0010】このような希土類合金に含まれる不純物フ
ッ素量および酸素量について、本発明者等は、フッ素量
を0.1wt%未満、および酸素量を0.3wt%未満、好ま
しくは0.1wt%未満に制限することにより、溶湯の流
動性を高めてノズルからの噴霧化を容易にすることを先
に提案した(特開平5-148573号公報および特開平5-14857
4号公報) 。しかし、この場合には比熱ピークの変化に
ついては言及されていない。
With respect to the amount of impurity fluorine and the amount of oxygen contained in such a rare earth alloy, the present inventors have determined that the amount of fluorine is less than 0.1 wt% and the amount of oxygen is less than 0.3 wt%, preferably 0.1 wt%. By limiting to less than, it was previously proposed to increase the fluidity of the molten metal to facilitate atomization from the nozzle (JP-A-5-48573 and JP-A-5-14857).
No. 4). However, in this case, the change in the specific heat peak is not mentioned.

【0011】ところが、本発明の検討過程において、酸
素含有量を0.15wt%未満に保ちながら、更に不純物
フッ素量を0.05wt%まで低減すれば、ショットキー
比熱は殆ど変化しないものの反強磁性への磁気相転移に
伴なう比熱ピークが向上することが見い出された。先の
提案における溶融の流動性とは全く異なったこのような
フッ素量および酸素量に対する比熱ピークの変化は従来
知られていない。
However, in the course of studying the present invention, if the impurity fluorine content is further reduced to 0.05 wt% while keeping the oxygen content at less than 0.15 wt%, the Schottky specific heat hardly changes, but the antiferromagnetic property is reduced. It has been found that the specific heat peak associated with the magnetic phase transition to A is improved. Such a change in the specific heat peak with respect to the amount of fluorine and the amount of oxygen, which is completely different from the fluidity of melting in the above proposal, has not been known so far.

【0012】本発明はかかる知見に基づくものであり、
不純物フッ素含有量を0.05wt%以下、好ましくは0.
01wt%以下、および酸素含有量を0.15wt%以下、
好ましくは0.10wt%以下、に制限することによっ
て、3〜15Kの低温域における反強磁性への相転移に
伴なう比熱ピークを0.5J/K・cm3 以上に高めたもので
ある。
The present invention is based on this finding,
The content of impurity fluorine is 0.05 wt% or less, preferably 0.5 wt%.
01 wt% or less, and oxygen content of 0.15 wt% or less,
Preferably, the specific heat peak accompanying the phase transition to antiferromagnetism in the low temperature range of 3 to 15 K is increased to 0.5 J / K · cm 3 or more by limiting the content to 0.10 wt% or less.

【0013】さらに本発明の磁性蓄冷材合金は、溶融体
をノズルから噴霧して粉粒化した場合にも、急冷による
比熱ピークの低下が小さく、従来よりも高い比熱ピーク
を維持することができる。また本発明の磁性蓄冷材合金
は、比熱ピークが従来よりも鋭いので結晶格子の乱れが
少なく熱伝導性に優れる。ちなみに前述の文献に記載さ
れている強磁性への相転移による比熱ピークを有するE
3Niは、不純物量がほぼ等しくてもバルク状のもの
と粉状のものとでは比熱ピークの高さ(比熱の大きさ)が
大幅に異なり、バルク状では0.8J/K・cm3の比熱であっ
たものが、粉状では約半分の0.4J/K・cm3程度に低下し
ている。
Further, the magnetic regenerator alloy of the present invention has a small specific heat peak due to rapid cooling even when the molten material is sprayed from a nozzle and granulated, and can maintain a higher specific heat peak than before. . Further, the magnetic regenerator material alloy of the present invention has a sharper specific heat peak than conventional ones, so that the crystal lattice is less disordered and has excellent thermal conductivity. Incidentally, E having a specific heat peak due to a phase transition to ferromagnetism described in the above-mentioned document is used.
r 3 Ni has a substantially different specific heat peak height (magnitude of specific heat) between bulk and powder even if the amount of impurities is substantially equal, and 0.8 J / K · cm 3 in bulk. Is about 0.4 J / K · cm 3, which is about half in powder form.

【0014】(II)合金組成 本発明が適用される希土類合金は、3〜15Kの低温域
において反強磁性への相転移に伴なう比熱ピークを有す
るものであり、例えば Er3RuおよびEr5Ru2、E
rAg、HoAg2、HoCu2などが挙げられる。
(II) Alloy Composition The rare earth alloy to which the present invention is applied has a specific heat peak accompanying a phase transition to antiferromagnetism in a low temperature range of 3 to 15 K. For example, Er 3 Ru and Er 5 Ru 2 , E
rAg, HoAg 2 , HoCu 2 and the like.

【0015】(III) 製造方法 希土類金属に含まれる不純物のフッ素および酸素は、希
土類金属を合金化してCaを飽和させたCaF2ないし
CaCl2を主成分とするフラックスと溶融することに
より低減することができる。該フラックスと共に溶融す
ることにより、合金中に含有されていた酸素(酸化物イ
オン)は、希土類酸化物としてフラックスに吸収され
る。また、フッ素(フッ化物イオン)はフラックス中の
カルシウムと反応して吸収されてスラグ化し系外に除去
される。一般に、市販されている希土類金属、とくに蓄
冷材として用いられることの多い中・重希土類(Gd,
Tb,Dy,Ho,Er,Tm,Yb)は極めて活性で
あり、酸素およびフッ素濃度を低減することは難しい。
固相電解などの特殊な方法を用いれば酸素濃度を50pp
m以下まで低減することができるという報告もあるが、
工業的に実用的方法ではない。また、本発明で用いるC
a系フラックスを金属単体の精製に利用しようとして
も、中・重希土類の融点は1300〜1550℃程度と
高いためCaが蒸発し、酸素・フッ素量を0.1%以下
まで低減させることは困難である。本発明では、希土類
金属単体についてではなく、希土類合金についてCa系
フラックス処理をするため、比較的低い温度(1200
℃以下、好ましくは1000℃以下)でCaフラックス
処理ができる。また、かかる処理により、比較的容易に
酸素・フッ素量を0.1%以下まで低減させることを可
能とした。なお、目的組成とは異なる組成で共融点が存
在する場合には、共融点組成の母合金をCa飽和フラッ
クスの共存下に調製し、これに合金元素を添加してアー
ク溶解等によって組成を調整すれば、より効果的にフッ
素および酸素の含有量を低減させた高純度合金を調製す
ることができる。あるいは、合金成分のフッ化物をCa
飽和フラックスの共存下に溶融して目的組成の合金を製
造してもよい。
(III) Manufacturing Method The impurities such as fluorine and oxygen contained in the rare earth metal are reduced by melting with a flux mainly composed of CaF 2 or CaCl 2 in which the rare earth metal is alloyed and Ca is saturated. Can be. By melting together with the flux, oxygen (oxide ions) contained in the alloy is absorbed by the flux as a rare earth oxide. Fluorine (fluoride ion) reacts with calcium in the flux to be absorbed and slag, and is removed from the system. Generally, commercially available rare earth metals, especially medium / heavy rare earths (Gd,
Tb, Dy, Ho, Er, Tm, Yb) are extremely active and it is difficult to reduce the oxygen and fluorine concentrations.
Oxygen concentration can be reduced to 50pp if a special method such as solid phase electrolysis is used.
m, but there are reports that
It is not an industrially practical method. In addition, C used in the present invention
Even if an a-based flux is used for refining a simple metal, it is difficult to reduce the amount of oxygen and fluorine to 0.1% or less because Ca evaporates because the melting point of medium and heavy rare earths is as high as about 1300 to 1550 ° C. It is. In the present invention, since the Ca-based flux treatment is performed not on the rare earth metal alone but on the rare earth alloy, a relatively low temperature (1200
° C or lower, preferably 1000 ° C or lower). Further, by such a treatment, the amount of oxygen and fluorine can be relatively easily reduced to 0.1% or less. If a eutectic point exists in a composition different from the target composition, a master alloy having the eutectic point composition is prepared in the presence of Ca-saturated flux, and an alloy element is added thereto to adjust the composition by arc melting or the like. This makes it possible to more effectively prepare a high-purity alloy with reduced contents of fluorine and oxygen. Alternatively, the fluoride of the alloy component is replaced with Ca
The alloy having the desired composition may be produced by melting in the presence of a saturated flux.

【0016】不純物のフッ素および酸素を低減させた希
土類合金の融体を小口径のノズルから不活性ガス中に噴
霧することにより粒状ないし粉状の蓄冷材を製造するこ
とができる。蓄冷材として用いられるものの粒径は0.
6mm以下が適当であり、0.2〜0.5mmが好ましい。従
来の希土類合金融体は、このような噴霧により急冷され
ると比熱ピークが低くなるが、本発明のフッ素量および
酸素量を低減したものは急冷による比熱ピークの低下は
極めて小さく、比熱特性の良い粒状ないし粉状磁性蓄冷
合金を得ることができる。
A granular or powdered regenerator material can be produced by spraying a rare-earth alloy melt with reduced fluorine and oxygen impurities into an inert gas from a small-diameter nozzle. The particle size of the material used as a cold storage material is 0.1.
6 mm or less is suitable, and 0.2 to 0.5 mm is preferable. Conventional rare earth alloys have a low specific heat peak when quenched by such spraying.However, in the case of the present invention in which the amount of fluorine and oxygen is reduced, the decrease in the specific heat peak due to quenching is extremely small, and the specific heat characteristic is low. A good granular or powder magnetic regenerative alloy can be obtained.

【0017】[0017]

【発明の実施形態】以下、本発明の実施例を示す。な
お、これらは例示であり本発明の範囲を限定するもので
はない。
The embodiments of the present invention will be described below. In addition, these are illustrations and do not limit the scope of the present invention.

【0018】実施例1・比較例1 市販のエルビウム(Er)金属81g およびルテニウム(Ru)
19g をアルゴンアーク溶解して合金化した。得られた
合金のX線回折パターンはEr5Ru2のパターンに一致
した。合金の酸素濃度は0.30wt%であり、フッ素濃
度は0.12wt%であった。この合金の比熱特性を図1
に示した(比較例1:破線)。この合金をCa10gお
よびCaCl230gと共にタンタル製ルツボに入れ、ア
ルゴン雰囲気下1200℃に加熱して溶解し、タングス
テン製の羽根で20分間撹拌した。冷却後、フラックス
を除去した。得られた合金の酸素濃度は0.09wt%で
あり、フッ素濃度は0.01wt%であった。なお、X線
回折パターンは比較例1と同様であった。この合金の比
熱特性を図1に示した(実施例1: 実線)。
Example 1 and Comparative Example 1 81 g of commercially available erbium (Er) metal and ruthenium (Ru)
19 g was alloyed by argon arc melting. The X-ray diffraction pattern of the obtained alloy coincided with the pattern of Er 5 Ru 2 . The alloy had an oxygen concentration of 0.30 wt% and a fluorine concentration of 0.12 wt%. Figure 1 shows the specific heat characteristics of this alloy.
(Comparative Example 1: broken line). This alloy was put in a tantalum crucible together with 10 g of Ca and 30 g of CaCl 2 , heated and melted at 1200 ° C. under an argon atmosphere, and stirred with a tungsten blade for 20 minutes. After cooling, the flux was removed. The resulting alloy had an oxygen concentration of 0.09 wt% and a fluorine concentration of 0.01 wt%. The X-ray diffraction pattern was the same as in Comparative Example 1. The specific heat characteristics of this alloy are shown in FIG. 1 (Example 1: solid line).

【0019】同図に示すように、本実施例の希土類合金
は8K付近に大きな比熱ピークを有する。酸素およびフ
ッ素を除去しない比較例1の比熱ピークは8K付近で
0.5J/K・cm3であるのに対して、本実施例の比熱ピーク
は約0.8J/Kcm3であり、約1.5倍の大きさを有する。
なお、5K以下の部分で比較例の比熱が実施例よりやや
高いのは、X線回析では確認できない程度(10wt %以
下) のEr3Ru2が存在するためと考えられる。また、
上記図から、本発明では、単に比熱ピークを鋭くするの
みならず、比熱ピーク全体の面積を増大させる効果が実
現されていることがわかる。一般に、合金に含まれる不
純物量が数%程度以下である場合、磁気モーメントの大
きさは当該不純物量に応じてほぼ比例的に減少する。希
土類内部の状態に起因するショットキー比熱に関しては
この原則がほぼ妥当する。しかし、本発明が対象とする
極低温域では、磁気相転移に伴う比熱が大きく利いてお
り、この場合、不純物による格子乱れが不純物の周辺に
大きく及ぶため、0.1%程度の不純物量の相違によっ
て比熱ピーク面積における数十%程度の相違が生じるも
のと考えられる。
As shown in the figure, the rare earth alloy of this embodiment has a large specific heat peak near 8K. The specific heat peak of Comparative Example 1 in which oxygen and fluorine were not removed was 0.5 J / K · cm 3 near 8 K, while the specific heat peak of this example was about 0.8 J / Kcm 3 , which was about 1 J / K · cm 3. .5 times the size.
The reason why the specific heat of the comparative example is slightly higher than that of the example in the portion of 5 K or less is considered to be that Er 3 Ru 2 is present to the extent that it cannot be confirmed by X-ray diffraction (10 wt% or less). Also,
From the above figures, it can be seen that, in the present invention, the effect of not only sharpening the specific heat peak but also increasing the area of the entire specific heat peak is realized. Generally, when the amount of impurities contained in the alloy is about several percent or less, the magnitude of the magnetic moment decreases almost proportionally according to the amount of impurities. This principle is almost valid for Schottky specific heat caused by the state inside the rare earth. However, in the cryogenic temperature range targeted by the present invention, the specific heat accompanying the magnetic phase transition is greatly advantageous. In this case, since the lattice disorder due to the impurities greatly extends around the impurities, the impurity amount of about 0.1% is reduced. It is considered that the difference causes a difference of about several tens% in the specific heat peak area.

【0020】実施例1および比較例1の合金(ErRu)をお
のおのアルゴンガス雰囲気下でアーク溶解し、この合金
融体をタングステンノズル(ノス゛ル径:0.1mm) から約1気
圧のヘリウム雰囲気に3気圧のヘリウムガスで噴霧して
平均粒径0.4mmの球状粉を得た。この粉状合金につい
て比熱特性を測定したところ、実施例1の合金は8Kで
0.7J/K・cm3の比熱ピークを有し、粉状体の比熱ピーク
の高さはバルク状の場合と殆ど変わらなかった。一方、
粉粒化した比較例1の合金は8Kで0.45J/K・cm3の比
熱ピークを有しており、バルク状の場合より比熱ピーク
の高さが概ね半減した。
Each of the alloys (ErRu) of Example 1 and Comparative Example 1 was arc-melted in an argon gas atmosphere, and this alloy was introduced from a tungsten nozzle (nozzle diameter: 0.1 mm) into a helium atmosphere of about 1 atm. Was sprayed with helium gas to obtain a spherical powder having an average particle diameter of 0.4 mm. When the specific heat characteristics of this powdery alloy were measured, the alloy of Example 1 had a specific heat peak of 0.7 J / K · cm 3 at 8K. Almost unchanged. on the other hand,
The powdered alloy of Comparative Example 1 had a specific heat peak of 0.45 J / K · cm 3 at 8K, and the height of the specific heat peak was almost halved as compared with the bulk.

【0021】実施例2〜4・比較例2〜4 合金組成を表1のように変えた以外は実施例1と同様に
して、HoCu2、HoAg2、ErAgを調製し、それ
ぞれについて本発明による酸素/フッ素低減処理を行な
った。処理前(比較例2〜4)と処理後(実施例2〜
4)の不純物濃度および比熱特性の変化を表1に併せて
示す。いずれの場合にも不純物の酸素量およびフッ素量
を所定量以下に低減することにより比熱ピークが向上し
ている。また、これらの合金をアルゴン雰囲気下で再溶
融し、噴霧して粒状化した。この粒状合金について比熱
特性を測定した結果を表1に併せて示した。
Examples 2 to 4 and Comparative Examples 2 to 4 HoCu 2 , HoAg 2 , and ErAg were prepared in the same manner as in Example 1 except that the alloy compositions were changed as shown in Table 1. An oxygen / fluorine reduction treatment was performed. Before treatment (Comparative Examples 2 to 4) and after treatment (Examples 2 to 4)
Table 1 also shows changes in the impurity concentration and the specific heat characteristic of 4). In any case, the specific heat peak is improved by reducing the oxygen amount and the fluorine amount of the impurities to a predetermined amount or less. These alloys were re-melted under an argon atmosphere, sprayed and granulated. Table 1 also shows the results of measuring the specific heat characteristics of this granular alloy.

【0022】実施例5 フッ化エルビウム120g、Ru10g、Ca38gおよ
びCaCl270gをタンタル製ルツボに入れ、アルゴン
雰囲気下に1150℃まで加熱して溶解し、タンタル製
の羽根で30分間撹拌した。冷却後、フラックスを剥離
した後にアーク溶解して合金99gを回収した。これに
Ru11.6gを添加して再びアルゴンアーク溶解を行な
った。この合金融体をタングステンノズル(ノス゛ル径:0.1m
m)から約1気圧のヘリウム雰囲気に3気圧のヘリウムガ
スで噴霧して平均粒径0.4mmの球状粉を得た。該合金
粉体の酸素濃度は0.09wt%であり、フッ素濃度は0.
01wt%(分析限界)であった。また粉末X線回折パター
ンはEr5Ru2にほぼ一致した。また、比熱特性は実施
例1の粉粒化前(バルク)と同様のプロファイルを示
し、比熱ピークも8Kで0.8J/K・cm3の極大値を示し、
粉粒化によるピークの低下がほとんど観察されなかっ
た。
Example 5 120 g of erbium fluoride, 10 g of Ru, 38 g of Ca and 70 g of CaCl 2 were placed in a tantalum crucible, heated to 1150 ° C. under an argon atmosphere to dissolve, and stirred with a tantalum blade for 30 minutes. After cooling, the flux was exfoliated and then arc melted to recover 99 g of the alloy. To this was added 11.6 g of Ru, and argon arc melting was performed again. Insert this alloy into a tungsten nozzle (nozzle diameter: 0.1m
m) into a helium atmosphere of about 1 atm with helium gas at 3 atm to obtain a spherical powder having an average particle size of 0.4 mm. The alloy powder has an oxygen concentration of 0.09 wt% and a fluorine concentration of 0.09 wt%.
It was 01 wt% (analysis limit). The powder X-ray diffraction pattern almost coincided with Er 5 Ru 2 . Further, the specific heat characteristic shows the same profile as before the granulation (bulk) of Example 1, and the specific heat peak also shows a maximum value of 0.8 J / K · cm 3 at 8K,
Almost no decrease in peak due to granulation was observed.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明によれば、従来の磁性蓄冷材合金
では実現できなかった、低温域での大きなピーク比熱を
実現することができる。本発明の磁性蓄冷材合金は、ピ
ークが鋭い上に融体噴霧法により微細粉にしても比熱ピ
ークが殆ど低下せず、あるいは比熱ピークの低下が小さ
く、6K以下の極低温域において高い比熱ピークを有す
る。従って積層型蓄冷材として特に有用であり、4Kレ
ベル付近の極低温を実現するためのガスサイクル冷凍機
での使用に適している。
According to the present invention, a large peak specific heat in a low temperature range, which cannot be realized by the conventional magnetic regenerator material alloy, can be realized. The magnetic regenerator material alloy of the present invention has a sharp peak and a specific heat peak hardly decreases even when fine powder is formed by a melt spraying method, or a decrease in the specific heat peak is small, and the specific heat peak is high in an extremely low temperature region of 6 K or less. Having. Therefore, it is particularly useful as a laminated cold storage material, and is suitable for use in a gas cycle refrigerator for realizing an extremely low temperature around 4K level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の酸素/フッ素低減処理を施す前後の
の比熱特性を表わすグラフ。
FIG. 1 is a graph showing specific heat characteristics before and after performing an oxygen / fluorine reduction treatment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長尾 政志 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社先端技術総合研究所内 (72)発明者 仲 興起 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社先端技術総合研究所内 (72)発明者 稲口 隆 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社先端技術総合研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masashi Nagao 8-1-1, Tsukaguchi-Honcho, Amagasaki-shi, Hyogo Sanrio Electric Co., Ltd. Advanced Technology Research Institute (72) Inventor Kooki Naka 8 Tsukaguchi-Honcho, Amagasaki-shi, Hyogo Chome 1-1, Mitsubishi Electric Corp. Advanced Technology Laboratory (72) Inventor Takashi Inaguchi 8-1-1, Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Corporation Advanced Technology R & D Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 不純物フッ素含有量を0.05wt%以
下、および酸素含有量を0.15wt%以下に制限するこ
とにより、3〜15Kの低温域における反強磁性への相
転移による比熱ピークを0.5J/K・cm3以上に高めたこと
を特徴とする磁性蓄冷材合金。
By limiting the content of impurity fluorine to 0.05 wt% or less and the content of oxygen to 0.15 wt% or less, a specific heat peak due to a phase transition to antiferromagnetism in a low temperature range of 3 to 15 K is obtained. A magnetic regenerator alloy characterized by increasing to 0.5 J / K · cm 3 or more.
【請求項2】 粒径0.6mm以下の粒状ないし粉状の請
求項1に記載の磁性蓄冷材合金。
2. The magnetic regenerator material alloy according to claim 1, which is in the form of particles or powder having a particle size of 0.6 mm or less.
【請求項3】 Er3RuまたはEr5Ru2の組成からな
り、0.5J/K・cm3以上の比熱ピークを6〜13Kの間に
有する請求項1または2に記載の磁性蓄冷材合金。
3. The magnetic regenerator material alloy according to claim 1, which is composed of Er 3 Ru or Er 5 Ru 2 and has a specific heat peak of 0.5 J / K · cm 3 or more between 6 and 13K. .
【請求項4】 請求項1〜3のいずれかの磁性蓄冷合金
を製造する方法であって、該合金の融体を、Caを飽和
させたCaF2ないしCaCl2を主成分とするフラック
スと溶融させて不純物の酸素及びフッ素を該フラックス
に吸収させることにより、該合金の不純物フッ素含有量
を0.05wt%以下、かつ酸素含有量を0.15wt%以下
にすることを特徴とする磁性蓄冷材合金の製造方法。
4. The method for producing a magnetic regenerative alloy according to claim 1, wherein a melt of the alloy is melted with a flux containing CaF 2 or CaCl 2 saturated with Ca as a main component. A magnetic regenerator material characterized in that the flux contains oxygen and fluorine as impurities to reduce the fluorine content of the alloy to 0.05 wt% or less and the oxygen content to 0.15 wt% or less. Alloy manufacturing method.
【請求項5】 合金の融体をCaを飽和させたCaF2
ないしCaCl2を主成分とするフラックスと溶融させ
て不純物の酸素およびフッ素を低減し、更に該合金の融
体を不活性気体中に噴霧して粒径0.6mm以下の粒状ま
たは粉状の磁性蓄冷材合金を製造する請求項4に記載の
製造方法。
5. A molten alloy of CaF 2 saturated with Ca.
Or melting a flux containing CaCl 2 as a main component to reduce impurities such as oxygen and fluorine, and further spraying a melt of the alloy into an inert gas to form a granular or powdery magnetic material having a particle size of 0.6 mm or less. The method according to claim 4, wherein the cold storage material alloy is manufactured.
JP9047668A 1997-03-03 1997-03-03 Magnetic cold storage alloy, and its manufacture Pending JPH10245651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9047668A JPH10245651A (en) 1997-03-03 1997-03-03 Magnetic cold storage alloy, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9047668A JPH10245651A (en) 1997-03-03 1997-03-03 Magnetic cold storage alloy, and its manufacture

Publications (1)

Publication Number Publication Date
JPH10245651A true JPH10245651A (en) 1998-09-14

Family

ID=12781651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9047668A Pending JPH10245651A (en) 1997-03-03 1997-03-03 Magnetic cold storage alloy, and its manufacture

Country Status (1)

Country Link
JP (1) JPH10245651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715637A (en) * 2014-09-25 2017-05-24 株式会社东芝 Rare-earth cold storage material particles, refrigerator using same, superconducting magnet, inspection device, and cryopump
WO2018199278A1 (en) * 2017-04-28 2018-11-01 株式会社三徳 Hocu-based cold-storage material, and cold-storage device and refrigerating machine each equipped therewith

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715637A (en) * 2014-09-25 2017-05-24 株式会社东芝 Rare-earth cold storage material particles, refrigerator using same, superconducting magnet, inspection device, and cryopump
WO2018199278A1 (en) * 2017-04-28 2018-11-01 株式会社三徳 Hocu-based cold-storage material, and cold-storage device and refrigerating machine each equipped therewith
JP6495546B1 (en) * 2017-04-28 2019-04-03 株式会社三徳 HoCu-based regenerator material and regenerator and refrigerator equipped with the same
US11370949B2 (en) 2017-04-28 2022-06-28 Santoku Corporation HoCu-based cold-storage material, and cold-storage device and refrigerating machine each equipped therewith

Similar Documents

Publication Publication Date Title
US8211326B2 (en) Magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material
US7833361B2 (en) Alloy and method for producing magnetic refrigeration material particles using same
JP5158485B2 (en) Magnetic alloy and method for producing the same
JP4240380B2 (en) Manufacturing method of magnetic material
JP6465884B2 (en) Magneto-caloric material containing B
JP6480933B2 (en) Magneto-caloric material containing B
JP2016534221A (en) Magneto-caloric material containing B
Zhong et al. Improvement in the magnetocaloric properties of sintered La (Fe, Si) 13 based composites processed by La-Co grain boundary diffusion
JP2005036302A (en) Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
JP4399771B2 (en) Magnetic particle and method for producing the same, and magnetic particle unit
JPH10245651A (en) Magnetic cold storage alloy, and its manufacture
CN103668008B (en) Thulium base metal glass, preparation method and application
CN107498014A (en) One kind contains ZrO2Automobile using TWIP steel covering slag and its application
JP2011162811A (en) Rare earth-iron based alloy powder for magnetic refrigeration
JP2007107056A (en) Method for producing metal powder essentially composed of nb or ta
JPH10183288A (en) Alloy for magnetic cold accumulation material, and its production
JP2003277847A (en) Method for manufacturing hydrogen storage alloy
CN105063450B (en) Big specific heat multiphase magnetic cold-storage material of high intensity and preparation method thereof
JPS63179052A (en) Manufacture of magnetic polycrystalline substance
JPS61183435A (en) Magnetic working substance for magnetic refrigeration
JP2879715B2 (en) Cold storage material
JPH09324957A (en) Cold storage material and cold storage unit
JP2004099940A (en) Method for producing magnesium based alloy
JPH031050A (en) Cold heat storage apparatus
KR100844540B1 (en) Magnetic refrigerant materials for magnetic refrigerator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020910