JPH10245439A - Photooxidation-reactive fiber-reinforced plastic molded product - Google Patents

Photooxidation-reactive fiber-reinforced plastic molded product

Info

Publication number
JPH10245439A
JPH10245439A JP4816397A JP4816397A JPH10245439A JP H10245439 A JPH10245439 A JP H10245439A JP 4816397 A JP4816397 A JP 4816397A JP 4816397 A JP4816397 A JP 4816397A JP H10245439 A JPH10245439 A JP H10245439A
Authority
JP
Japan
Prior art keywords
oxide
frp
composite oxide
molded product
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4816397A
Other languages
Japanese (ja)
Other versions
JP3034815B2 (en
Inventor
Kinpei Yokohama
金平 横濱
Atsushi Ogawa
敦司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9048163A priority Critical patent/JP3034815B2/en
Publication of JPH10245439A publication Critical patent/JPH10245439A/en
Application granted granted Critical
Publication of JP3034815B2 publication Critical patent/JP3034815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an FRP molded product that can remove hazardous substances and bad smell in the surroundings and can be readily disposed. SOLUTION: This FRP molded product is prepared by molding a mixture of 100 pts.wt. of the FRP feedstock with 5-10 pts.wt. of a semiconductor having photocatalytic action to decompose organic substances under irradiation with light. The semiconductor is preferably an activated multiple oxide that is prepared by supporting 1/10,000-5/10,000, based on the semiconductor, of platinum on an oxide mixture of 3-20wt.% of titanium oxide and 97-80wt.% of silicon oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光酸化反応性を有
する繊維強化プラスチック成形品に関する。
[0001] The present invention relates to a fiber-reinforced plastic molded article having photooxidation reactivity.

【0002】[0002]

【従来の技術】繊維強化プラスチック(Fiber Reinforc
ed Plastics,以下FRPと略称する)は、繊維の有す
る力学的特性と合成樹脂の有する化学的性質とを併せ持
ち、高級な金属材料に代わって、航空機、自動車、鉄道
車両、船舶、建築材料、液体容器などに広く用いられて
いる。
[Prior Art] Fiber Reinforc
ed Plastics (hereinafter abbreviated as FRP) combines the mechanical properties of fibers with the chemical properties of synthetic resins and replaces high-grade metal materials with aircraft, automobiles, railway vehicles, ships, building materials, and liquids. Widely used for containers and the like.

【0003】しかしFRPは、成形加工されてから相当
期間、ごく微量ではあるが有害物質が発生し、悪臭が生
じる。またFRP成形品が不要になり、廃棄されるとき
は処理困難な廃棄物となって、環境を汚染する。
[0003] However, FRP generates harmful substances, even in a very small amount, for a considerable period of time after being molded, and produces odor. Further, the FRP molded article becomes unnecessary, and when it is discarded, it becomes a difficult-to-treat waste and pollutes the environment.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、有害
物質や悪臭を除去し、また廃棄処理の容易なFRP成形
品を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an FRP molded article which can remove harmful substances and odors and can be easily disposed of.

【0005】[0005]

【課題を解決するための手段】本発明は、光の照射下で
有機物質の分解を行う光触媒作用を有する半導体を、繊
維強化プラスチック原料100重量部に対し、3〜10
重量部混合し、成形加工することを特徴とする光酸化反
応性を有する繊維強化プラスチック成形品である。本発
明に従えば、TiO2,SiO2,ZnO,SrTi
3,CdS,GaP,InP,GaAs,BaTi
3,K2NbO3,Fe23,Ta25,WO3,SnO
2,Bi23,NiO,Cu2O,SiC,MOS2,I
nPb,RuO2およびCeO2から成るグループの少な
くとも1種に微量のPt,Rh,Nb,CuおよびSn
から成る少なくとも1種を添加した公知の光触媒作用を
有する半導体を、FRP原料に混合して成形加工したF
RP成形品は、光の作用によって酸化性物質を放出し、
FRP成形品から発生する有害物質や悪臭成分を酸化分
解する。また本発明のFRP成形品は、酸化性物質を放
出するので廃棄処理がしやすく、環境に対する影響が少
ない。光触媒作用を有する半導体のFRP原料への混合
量は、FRP成形品の用途によって異なるが、FRP原
料100重量部に対し、3重量部以下では効果がなく、
10重量部以上混合するとFRPとしての性質が劣化す
るおそれがある。
According to the present invention, a semiconductor having a photocatalytic action for decomposing an organic substance under light irradiation is used in an amount of 3 to 10 parts by weight per 100 parts by weight of a fiber-reinforced plastic raw material.
It is a fiber-oxidized plastic molded article having photo-oxidation reactivity characterized by mixing parts by weight and molding. According to the present invention, TiO 2 , SiO 2 , ZnO, SrTi
O 3 , CdS, GaP, InP, GaAs, BaTi
O 3 , K 2 NbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO
2, Bi 2 O 3, NiO , Cu 2 O, SiC, MOS 2, I
At least one of the group consisting of nPb, RuO 2 and CeO 2 contains trace amounts of Pt, Rh, Nb, Cu and Sn
Is formed by mixing a known semiconductor having a photocatalytic action to which at least one kind of
RP molded products release oxidizing substances by the action of light,
It oxidizes and decomposes harmful substances and odorous components generated from FRP molded products. Further, since the FRP molded article of the present invention releases an oxidizing substance, it can be easily disposed of and has little effect on the environment. The mixing amount of the semiconductor having a photocatalytic action into the FRP raw material varies depending on the use of the FRP molded product.
If more than 10 parts by weight are mixed, the properties as FRP may be deteriorated.

【0006】また本発明は、前記半導体が酸化チタン3
〜20重量%と酸化ケイ素97〜80重量%とを含む複
合酸化物に、該複合酸化物の1万分の1〜1万分の5の
白金を担持させた活性複合酸化物であることを特徴とす
る。本発明に従えば、酸化チタンと酸化ケイ素とを含む
複合酸化物に微量の白金を担持させた活性複合酸化物
は、前記半導体中で特に光に対する反応性がよく、FR
Pに使用した場合の作用が著しい。これは光の照射によ
って酸化チタン内の電子が白金上に移り、白金上で還元
反応が起り、酸化チタンに残った正孔で酸化反応が起る
ためと考えられる。この酸化還元反応によってFRP成
形品から発生する有害物質や悪臭成分だけでなく、FR
P近くの有害物質が分解され、さらに抗菌性を発揮す
る。したがって本発明のFRP成形品で囲まれた空間、
たとえば航空機、自動車、鉄道車両、船舶内の空気が浄
化され、本発明のFRP成形品の液体容器、たとえば浄
水タンク内は無菌状態に保持され、浄化槽内の廃液が処
理される。複合酸化物中の酸化チタンと酸化ケイ素との
混合割合は、本発明者らが実験で求めたものである。酸
化チタン100%の単独酸化物でもよいが、このものは
得がたく、少しの不純物(酸化ケイ素)によってもその
作用は低下し、酸化チタン50%付近で最低となり、そ
れ以下の割合の酸化チタンのとき、その作用は上昇す
る。また複合酸化物に担持される白金の量は、微量でよ
いが1万分の1未満では、前記電子移動が起らない。ま
た白金が高価であるので、1万分の5以上の担持は経済
的でない。
Further, according to the present invention, the semiconductor is preferably titanium oxide 3
An active composite oxide comprising a composite oxide containing 2020% by weight and 97-80% by weight of silicon oxide loaded with platinum in an amount of 1 / 10,000 to 5 / 10,000 of the composite oxide. I do. According to the present invention, an active composite oxide in which a trace amount of platinum is supported on a composite oxide containing titanium oxide and silicon oxide has particularly good reactivity to light in the semiconductor, and FR
The effect when used for P is remarkable. This is considered to be because electrons in the titanium oxide are transferred to platinum by light irradiation, a reduction reaction occurs on the platinum, and an oxidation reaction occurs in holes remaining in the titanium oxide. Not only harmful substances and foul odor components generated from the FRP molded product by this redox reaction, but also FR
Harmful substances near P are decomposed, and further exhibit antibacterial properties. Therefore, the space surrounded by the FRP molded product of the present invention,
For example, air in aircraft, automobiles, railway vehicles, and ships is purified, the liquid container of the FRP molded article of the present invention, for example, the inside of a water purification tank is kept in an aseptic state, and the waste liquid in the septic tank is treated. The mixing ratio of titanium oxide and silicon oxide in the composite oxide was determined by the present inventors through experiments. A single oxide of 100% titanium oxide may be used, but this is difficult to obtain, and its effect is reduced by even a small amount of impurities (silicon oxide). When, the effect increases. The amount of platinum supported on the composite oxide may be very small, but if it is less than 1/10000, the electron transfer does not occur. In addition, since platinum is expensive, supporting more than 5 / 10,000 is not economical.

【0007】また本発明は、前記活性複合酸化物の粒径
が500Å〜20μmであることを特徴とする。本発明
に従えば、FRP原料に混合される活性複合酸化物の粒
径は、500Å〜20μm、好ましくは500Å〜1μ
mである。活性複合酸化物の粒径は小さい程よいが、こ
れを500Å未満とするためには粉砕に多くの動力を要
するので好ましくない。またFRP原料と均一に混合す
ることを考えて粒径の上限が決められる。
The present invention is also characterized in that the active composite oxide has a particle size of 500 to 20 μm. According to the present invention, the particle size of the active composite oxide mixed with the FRP raw material is 500Å to 20μ, preferably 500Å to 1μ.
m. The smaller the particle size of the active composite oxide, the better, but it is not preferable to reduce the particle size to less than 500 ° C., since much power is required for pulverization. The upper limit of the particle size is determined in consideration of uniform mixing with the FRP raw material.

【0008】[0008]

【発明の実施の形態】以下、実施の形態によって、本発
明をより詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments.

【0009】(1)複合酸化物の調整 原料として市販の塩化チタンTiCl4とエトキシルケ
イ素(C25O)4Siを所定の組成割合になるように
混合し、希アンモニア水で加水分解を行う。生じた沈殿
(チタンとケイ素との水酸化物)を濾過、水洗、乾燥
し、空気中で約1000℃で焼成して、表1に示すチタ
ン−ケイ素複合酸化物の粉末を得た。これを塩化白金塩
酸溶液に浸漬して、白金を複合酸化物に担持させ、活性
複合酸化物の粉末を得た。この活性複合酸化物の一定量
を一定の径のガラス管に充填し、これにプロピレンと水
蒸気とを1:1のモル比で混合したガスを流して、活性
複合酸化物のチタン原子1モル当りの酸化還元反応率
を、反応後のプロピレンとプロパンの比から求め、これ
を純酸化チタンと比較して、表1に示す。
(1) Preparation of Composite Oxide As a raw material, commercially available titanium chloride TiCl 4 and ethoxyl silicon (C 2 H 5 O) 4 Si are mixed so as to have a predetermined composition ratio, and hydrolysis is performed with dilute aqueous ammonia. Do. The resulting precipitate (hydroxide of titanium and silicon) was filtered, washed with water, dried, and calcined at about 1000 ° C. in air to obtain a titanium-silicon composite oxide powder shown in Table 1. This was immersed in a chloroplatinic-hydrochloric acid solution to cause platinum to be supported on the composite oxide to obtain an active composite oxide powder. A certain amount of the active complex oxide is filled in a glass tube having a fixed diameter, and a gas obtained by mixing propylene and water vapor at a molar ratio of 1: 1 is passed through the glass tube, and the mixture is supplied per 1 mole of titanium atom of the active complex oxide. Is obtained from the ratio of propylene and propane after the reaction, and is compared with pure titanium oxide.

【0010】[0010]

【表1】 [Table 1]

【0011】なお、活性複合酸化物の還元性によって、
プロピレンの一部は、プロパンに還元され、またその酸
化性によってプロピレンの一部は炭酸ガスと水とにな
る。
It should be noted that, due to the reducing property of the active composite oxide,
Part of propylene is reduced to propane, and part of propylene becomes carbon dioxide and water due to its oxidizing property.

【0012】表1から明らかなように酸化チタン単独に
白金を担持させたものは、活性度は高いが、これに少量
の酸化ケイ素が混ざると活性度が著しく低下する。酸化
チタンと酸化ケイ素が1:1の付近で活性度は最も低下
し、酸化ケイ素の比を増すとまた活性が増すことが分か
る。さらに酸化ケイ素の割合が97%を超えると、活性
度は急激に低下し、酸化ケイ素単独では活性度は零とな
る。
As is clear from Table 1, the titanium oxide supported on platinum alone has a high activity, but when a small amount of silicon oxide is mixed with the platinum, the activity is significantly reduced. It can be seen that the activity decreases most when the ratio of titanium oxide to silicon oxide is around 1: 1, and the activity increases again when the ratio of silicon oxide increases. Further, when the proportion of silicon oxide exceeds 97%, the activity sharply decreases, and the activity of silicon oxide alone becomes zero.

【0013】白金が担持されないまたは担持量が1万分
の1未満の複合酸化物も、活性度は表1と大略同じであ
るが、酸化の程度が不完全でCO2まで酸化されずアル
デヒドやケトンを生じる。環境中の有害物が分解除去さ
れる場合に、アルデヒドやケトンを生じることは好まし
くない。
[0013] The activity of platinum-supported composite oxides or those having a supported amount of less than 1 / 10,000 is almost the same as in Table 1, but the degree of oxidation is incomplete and oxidized to CO 2 and aldehydes and ketones are not obtained. Is generated. When harmful substances in the environment are decomposed and removed, it is not preferable to generate aldehydes and ketones.

【0014】前記の結果から複合酸化物中の酸化チタン
と酸化ケイ素との割合は3:97〜20:80であり、
白金が複合酸化物に対し、1万分の1〜5に担持されて
いるものが、本発明の活性複合酸化物として用いられ
る。
From the above results, the ratio of titanium oxide to silicon oxide in the composite oxide is from 3:97 to 20:80,
Platinum supported on composite oxide in a ratio of 1 / 10,000 to 5 is used as the active composite oxide of the present invention.

【0015】なお、複合酸化物の製造方法としては、前
記共沈法の他に化学混合法、混練法などがあり、これら
によって調整されるものであってもよい。また活性複合
酸化物の代わりに、光の照射下で有機物質の分解を行う
光触媒作用を行う前記半導体を用いてもよい。
As a method for producing a composite oxide, there are a chemical mixing method, a kneading method and the like in addition to the above-mentioned coprecipitation method, which may be adjusted by these methods. Further, instead of the active composite oxide, the above-mentioned semiconductor which performs a photocatalytic action of decomposing an organic substance under irradiation of light may be used.

【0016】(2)FRP原料の調整 FRPは、ガラス繊維、炭素繊維、有機繊維などの繊維
をポリエステル樹脂、エポキシ樹脂、フェノール樹脂な
どの熱硬化性合成樹脂に分散させ、これを板状に積層成
形したものである。熱硬化性合成樹脂には、硬化剤、安
定剤、着色剤などの副資材が添加され、加熱によって硬
化成形される。また中空の槽類は、成形品にフランジを
設け、フランジで2つ以上の成形品を組合わせ、接着
剤、ボルトなどで固定する。
(2) Preparation of FRP raw material FRP is obtained by dispersing fibers such as glass fiber, carbon fiber and organic fiber in a thermosetting synthetic resin such as polyester resin, epoxy resin and phenol resin, and laminating them in a plate shape. It is molded. Secondary materials such as a curing agent, a stabilizer, and a coloring agent are added to the thermosetting synthetic resin, and the thermosetting synthetic resin is cured by heating. For hollow tanks, a molded product is provided with a flange, and two or more molded products are combined with the flange and fixed with an adhesive, a bolt, or the like.

【0017】本発明のFRP原料は、前記副資材の一部
として(1)で調整した活性複合酸化物を加える。すな
わちポリエステル樹脂粉末に硬化剤(架橋剤)としてエ
チレンモノマを加えた熱硬化性合成樹脂を準備した。
(1)の方法によって酸化チタン5%と酸化ケイ素95
%との複合酸化物に、その1万分の2の白金を担持さ
せ、粉砕して粒径を500Å〜10μmの範囲の活性複
合酸化物を得た。熱硬化性合成樹脂100重量部に、活
性複合酸化物7重量部を混ぜて熱硬化性合成樹脂原料を
ガラス繊維に含浸させ、FRP原料とした。
The active complex oxide prepared in (1) is added to the FRP raw material of the present invention as a part of the auxiliary material. That is, a thermosetting synthetic resin prepared by adding ethylene monomer as a curing agent (crosslinking agent) to a polyester resin powder was prepared.
According to the method of (1), titanium oxide 5% and silicon oxide 95
% Of the composite oxide was supported on the composite oxide and pulverized to obtain an active composite oxide having a particle size in the range of 500 to 10 μm. 100 parts by weight of the thermosetting synthetic resin was mixed with 7 parts by weight of the active composite oxide to impregnate the thermosetting synthetic resin raw material into glass fibers to obtain an FRP raw material.

【0018】(3)浄化槽の製作 (2)で得たFRP原料を成形し、図1に示す浄化槽上
部1と浄化槽下部2とを得、これをボルトで組立て内容
積約2m3の浄化槽3を製作した。同様の形状の浄化槽
を活性複合酸化物を混合しない従来のFRP原料で製造
した。これらの浄化槽に浄化すべき原水を入れ、一昼夜
放置したときの水の分析結果を表2に示す。
[0018] (3) molding the FRP material obtained in septic tank fabrication (2), to obtain a septic tank upper 1 and septic tank bottom 2 shown in FIG. 1, the septic tank 3 the assembly in a volume of about 2m 3 this with bolts Made. A septic tank having a similar shape was manufactured from a conventional FRP raw material not mixed with an active complex oxide. Table 2 shows the analysis results of the water when the raw water to be purified was put into these septic tanks and left overnight.

【0019】[0019]

【表2】 [Table 2]

【0020】表2から本発明の浄化槽は、従来の浄化槽
に比べてBOD、浮遊物質、大腸菌群数が減少している
ことが判る。特にBODを10mg/l以下にすること
ができ、この量はそのまま河川に放流しても影響の少な
いものである。
From Table 2, it can be seen that the septic tank of the present invention has a smaller number of BOD, suspended solids, and coliform bacteria than the conventional septic tank. In particular, the BOD can be reduced to 10 mg / l or less, and this amount has little effect even if discharged directly into a river.

【0021】(4)浄化空間の製作 (2)で得たFRP原料を成形し、自動車内を想定した
約1m3の空間Aを製造した。また活性複合酸化物を混
合しない従来のFRP原料で同形の空間Bを製造した。
空間A内ではFRP特有の臭いもなく、また空間内でタ
バコ1本分の煙を発生させたが、このタバコ臭は1時間
後にはほとんど感じないくらいになった。これに対し空
間B内では、FRP特有の臭いが約1週間あり、また空
間内で発生したタバコの煙による臭いは、数時間保持さ
れた。
(4) Production of Purification Space The FRP raw material obtained in (2) was molded to produce a space A of about 1 m 3 supposed in an automobile. Further, a space B having the same shape as that of the conventional FRP raw material not mixed with the active complex oxide was produced.
There was no odor peculiar to FRP in the space A, and smoke for one cigarette was generated in the space, but this tobacco odor became almost insignificant after one hour. On the other hand, in the space B, the odor peculiar to FRP was present for about one week, and the odor due to the smoke of tobacco generated in the space was maintained for several hours.

【0022】(5)その他 本発明のFRPで製造した上水タンクでは、その中に貯
留される上水中の微量の有機が分解されるので、消毒用
の塩素と有機物とが化合してできるとされている有害な
トリハロメタンなどがなく、塩素臭のない水が得られ
る。
(5) Others In the drinking water tank manufactured by the FRP of the present invention, a trace amount of organics in the drinking water stored in the tank is decomposed, so that chlorine and organic substances for disinfection are formed. There is no harmful trihalomethane and water without chlorine odor.

【0023】酸化チタンは、医薬品、化粧品、食品添加
物として承認されているもので、上水タンクに用いても
問題はない。酸化ケイ素は、陶磁器として古くから用い
られており、特に問題はない。
Titanium oxide is approved as a pharmaceutical, cosmetic, or food additive, and there is no problem in using it in a water tank. Silicon oxide has been used for a long time as ceramics and has no particular problem.

【0024】[0024]

【発明の効果】以上のように本発明によれば、FRP原
料に光触媒作用を有する半導体、特に活性複合酸化物を
混合してFRP成形品を製造することによって、FRP
特有の臭いをなくすとともに、FRP成形品の近傍にあ
る悪臭物質や細菌を除去することができる。
As described above, according to the present invention, a FRP raw material is mixed with a photocatalytic semiconductor, particularly an active complex oxide, to produce an FRP molded product.
In addition to eliminating a peculiar odor, it can remove malodorous substances and bacteria near the FRP molded product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】光酸化反応性を有するFRPで製造された浄化
槽3の断面図である。
FIG. 1 is a sectional view of a septic tank 3 made of FRP having photooxidation reactivity.

【符号の説明】[Explanation of symbols]

1 浄化槽上部 2 浄化槽下部 3 浄化槽 1 Septic tank upper part 2 Septic tank lower part 3 Septic tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光の照射下で有機物質の分解を行う光触
媒作用を有する半導体を、繊維強化プラスチック原料1
00重量部に対し、3〜10重量部混合し、成形加工す
ることを特徴とする光酸化反応性を有する繊維強化プラ
スチック成形品。
1. A fiber-reinforced plastic raw material 1 comprising a semiconductor having a photocatalytic action for decomposing an organic substance under light irradiation.
A fiber-reinforced plastic molded article having photo-oxidation reactivity, wherein 3 to 10 parts by weight are mixed with respect to 00 parts by weight and molded.
【請求項2】 前記半導体が酸化チタン3〜20重量%
と酸化ケイ素97〜80重量%とを含む複合酸化物に、
該複合酸化物の1万分の1〜1万分の5の白金を担持さ
せた活性複合酸化物であることを特徴とする請求項1記
載の光酸化反応性を有する繊維強化プラスチック成形
品。
2. The method according to claim 1, wherein the semiconductor is 3 to 20% by weight of titanium oxide.
And a composite oxide containing 97 to 80% by weight of silicon oxide,
2. A photo-oxidatively reactive fiber-reinforced plastic molded article according to claim 1, wherein said active oxide is an active composite oxide carrying platinum in an amount of 1 / 10,000 to 5 / 10,000 of said composite oxide.
【請求項3】 前記活性複合酸化物の粒径が500Å〜
20μmであることを特徴とする請求項1記載の光酸化
反応性を有する繊維強化プラスチック成形品。
3. The active composite oxide has a particle size of 500 ° -500 ° C.
The photo-oxidation-reactive fiber-reinforced plastic molded product according to claim 1, wherein the molded product has a thickness of 20 µm.
JP9048163A 1997-03-03 1997-03-03 Fiber reinforced plastic molded product having photo-oxidation reactivity Expired - Lifetime JP3034815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9048163A JP3034815B2 (en) 1997-03-03 1997-03-03 Fiber reinforced plastic molded product having photo-oxidation reactivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9048163A JP3034815B2 (en) 1997-03-03 1997-03-03 Fiber reinforced plastic molded product having photo-oxidation reactivity

Publications (2)

Publication Number Publication Date
JPH10245439A true JPH10245439A (en) 1998-09-14
JP3034815B2 JP3034815B2 (en) 2000-04-17

Family

ID=12795723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9048163A Expired - Lifetime JP3034815B2 (en) 1997-03-03 1997-03-03 Fiber reinforced plastic molded product having photo-oxidation reactivity

Country Status (1)

Country Link
JP (1) JP3034815B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119958A (en) * 1998-10-15 2000-04-25 Toray Ind Inc Functional fiber structure
JP2002167516A (en) * 2000-09-20 2002-06-11 Okura Ind Co Ltd Thermoplastic resin composition and molding thereof
JP2003105209A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom
JP2003105208A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119958A (en) * 1998-10-15 2000-04-25 Toray Ind Inc Functional fiber structure
JP2002167516A (en) * 2000-09-20 2002-06-11 Okura Ind Co Ltd Thermoplastic resin composition and molding thereof
JP2003105209A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom
JP2003105208A (en) * 2001-09-28 2003-04-09 Okura Ind Co Ltd Thermoplastic resin composition and molding therefrom

Also Published As

Publication number Publication date
JP3034815B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
Samsudin et al. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts
Hernández-Alonso et al. Development of alternative photocatalysts to TiO 2: challenges and opportunities
EP0431932B1 (en) Method for treatment of waste water
Feng et al. One‐Dimensional Nanostructured TiO2 for Photocatalytic Degradation of Organic Pollutants in Wastewater
CN110291146B (en) Decomposition of polycondensates
WO2000046153A1 (en) Method for producing anatase type titanium dioxide and titanium dioxide coating material
CN102802787A (en) Carbon catalyst for decomposition of hazardous substance, hazardous-substance-decomposing material, and method for decomposition of hazardous substance
CN110075930B (en) Photocatalytic system with photoresponse switch and self-indicating property as well as preparation method and application
WO2003048048A1 (en) Titanium dioxide photocatalyst and a method of preparation and uses of the same
WO2008038350A1 (en) Resin composition, pulverized matter and method of discarding resin composition
AU2008219491B2 (en) Process for making photocatalytic materials
JP3034815B2 (en) Fiber reinforced plastic molded product having photo-oxidation reactivity
Mahesh et al. Removal of pollutants from wastewater using alumina based nanomaterials: A review
Hamad et al. Cellulose–TiO2 composites for the removal of water pollutants
JPH11290692A (en) Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture
Zhao Research progress of semiconductor photocatalysis applied to environmental governance
CN107537468A (en) A kind of preparation method for the bismuth tungstate based photocatalyst for loading graphite oxide
KR100503233B1 (en) Preparation of photocatalytic thin film and water-treatment apparatus using thereof
JP5660419B2 (en) Composite oxide semiconductor, and yellow pigment and photocatalyst using the same.
CN104023847B (en) The manufacture method of photocatalyst and photocatalyst
KR20070101276A (en) Amorphous-state composite structures for photocatalysis
JP4201910B2 (en) Titanium oxide composite biomass carbide, method for producing the same, and method for decomposing chemical substances thereby
Vadiraj et al. Metal oxide-based nanomaterials for the treatment of industrial dyes and colorants
CN109158102A (en) The nanometer MnO of GO load2Composite catalyst, preparation method and its application
JP3505305B2 (en) Catalyst composition and deodorizing method using the same