JPH10245202A - Purification of hydrogen gas - Google Patents

Purification of hydrogen gas

Info

Publication number
JPH10245202A
JPH10245202A JP6383097A JP6383097A JPH10245202A JP H10245202 A JPH10245202 A JP H10245202A JP 6383097 A JP6383097 A JP 6383097A JP 6383097 A JP6383097 A JP 6383097A JP H10245202 A JPH10245202 A JP H10245202A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
pressure
storage alloy
recovery container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6383097A
Other languages
Japanese (ja)
Other versions
JP3897854B2 (en
Inventor
Masakazu Sato
将一 佐藤
Harunobu Takeda
晴信 竹田
Yukio Sato
幸雄 佐藤
Yuichi Wakizaka
裕一 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP06383097A priority Critical patent/JP3897854B2/en
Publication of JPH10245202A publication Critical patent/JPH10245202A/en
Application granted granted Critical
Publication of JP3897854B2 publication Critical patent/JP3897854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems of a batch process for the purification of hydrogen gas comprising the increase in the initial discharging amount, the lowering of the recovery of hydrogen and the unstable purging amount and the problems of flow process comprising the increase in the hydrogen content of the purge gas caused by the constant purging in the absorbing step to deteriorate the hydrogen recovery. SOLUTION: This hydrogen purification process comprises the absorption operation to introduce hydrogen gas containing impurity gases into a hydrogen recovery vessel 4 to cause the occlusion of the hydrogen gas in a cooled hydrogen-occlusion alloy M, the releasing operation to stop the introduction of hydrogen gas and release the hydrogen gas rich in the impurity gas from the hydrogen recovery vessel to the outer atmosphere while keeping the pressure in the hydrogen recovery vessel 4 to a level exceeding the dissociation equilibrium pressure of hydrogen gas, the repetition of the absorption operation plural times interposing the releasing operation therebetween, the purging operation to release the occluded hydrogen by heating the hydrogen- occlusion alloy M and discharge the hydrogen gas rich in impurity gas from the hydrogen recovery vessel 4 and the recovering operation to stop the purge and recover the high-purity hydrogen gas released from the heated hydrogen-occlusion alloy M.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不純ガスを含む水
素ガスから不純ガスを除去して高純度水素ガスを得るた
めの水素ガス精製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying hydrogen gas for obtaining high-purity hydrogen gas by removing impure gas from hydrogen gas containing impure gas.

【0002】[0002]

【従来の技術及びその課題】従来の水素ガス精製方法と
して、バッチ式とフロー式とが知られている。この種の
従来のバッチ式としては、例えば特開平7−26760
7号公報に記載されるものが知られている。この水素ガ
ス精製方法は、水素源からの水素を水素回収容器に導
き、水素回収容器内の冷却した水素吸蔵合金に吸蔵させ
る。この水素吸蔵合金に水素を吸蔵させる吸収工程で
は、不純ガスは、濃縮されながら水素吸蔵合金の周囲に
次第に溜まる。水素吸蔵合金に十分な水素が吸収された
なら、水素源からの供給を停止した後、水素回収容器内
の水素吸蔵合金を加熱し、水素吸蔵合金から水素を放出
させる。この水素放出の初期に、水素吸蔵合金から水素
が放出される圧力を利用して容器内の不純ガスをパージ
している。
2. Description of the Related Art As a conventional hydrogen gas purifying method, a batch type and a flow type are known. A conventional batch type of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-26760.
No. 7 is known. In this hydrogen gas purification method, hydrogen from a hydrogen source is guided to a hydrogen recovery container and stored in a cooled hydrogen storage alloy in the hydrogen recovery container. In the absorption step of storing hydrogen in the hydrogen storage alloy, the impurity gas gradually accumulates around the hydrogen storage alloy while being concentrated. When sufficient hydrogen has been absorbed by the hydrogen storage alloy, supply from the hydrogen source is stopped, and then the hydrogen storage alloy in the hydrogen recovery container is heated to release hydrogen from the hydrogen storage alloy. At the beginning of the hydrogen release, the impurity gas in the container is purged using the pressure at which hydrogen is released from the hydrogen storage alloy.

【0003】しかしながら、このような従来のバッチ式
の水素ガス精製方法にあつては、水素吸蔵合金を必ず加
熱しながら不純ガスをパージするため、初期放出量が多
くなり、水素回収率が低下する傾向にある。また、加熱
時の水素放出量は、水素吸蔵合金の能力の如何によつて
異なるため、パージ量が不安定であるという技術的課題
があつた。加えて、水素吸蔵合金には、水素を吸蔵させ
る吸収工程において、水素吸蔵合金の周囲に不純ガスが
次第に溜まつて周囲の水素純度が低くなつた場合、水素
吸蔵量が低下するという性質がある。これにより、水素
吸蔵合金の水素吸収能力が十分に活かされない状態とな
り、その結果、早期に水素吸蔵合金の冷却状態から加熱
状態への切り換えが必要になり、熱効率に劣るのみなら
ず、水素ガスの精製に長時間を要することになつてい
る。
However, in such a conventional batch-type hydrogen gas purification method, since the impurity gas is purged while heating the hydrogen storage alloy without fail, the initial release amount increases and the hydrogen recovery rate decreases. There is a tendency. In addition, the amount of hydrogen released during heating varies depending on the capacity of the hydrogen storage alloy, and there is a technical problem that the amount of purge is unstable. In addition, the hydrogen storage alloy has a property that, in the absorption step of storing hydrogen, when the impurity gas gradually accumulates around the hydrogen storage alloy and the purity of the surrounding hydrogen decreases, the amount of hydrogen storage decreases. . As a result, the hydrogen absorption capacity of the hydrogen storage alloy is not fully utilized, and as a result, it is necessary to switch the hydrogen storage alloy from the cooling state to the heating state at an early stage. The purification takes a long time.

【0004】また、従来のフロー式としては、特公平6
−49561号公報に記載されるものが知られている。
この水素ガス精製方法は、水素吸蔵合金に水素を吸蔵さ
せる吸収工程において、水素源からの不純ガスを含む水
素を水素回収容器に注入しながら、同容器の排出口から
細孔を通して連続的に不純ガスを含む水素を放出させ、
その後、水素ガスを脱着させることを特徴としている。
[0004] As a conventional flow method, Japanese Patent Publication No.
What is described in -49561 is known.
In this hydrogen gas purification method, in the absorption step of storing hydrogen in the hydrogen storage alloy, while introducing hydrogen containing an impure gas from the hydrogen source into the hydrogen recovery container, the impurity is continuously passed through the pores from the outlet of the container. Release hydrogen containing gas,
Thereafter, hydrogen gas is desorbed.

【0005】しかしながら、このような従来のフロー式
の水素ガス精製方法にあつては、水素吸蔵合金を冷却す
る吸収工程において、常時、不純ガスをパージするた
め、パージガス中の水素含有量が多くなる傾向を呈して
水素回収率に劣るのみならず、細孔を形成するための絞
り配管等が必要となつて構造が複雑になる。
However, in such a conventional flow-type hydrogen gas purification method, in the absorption step of cooling the hydrogen storage alloy, the impurity gas is always purged, so that the hydrogen content in the purge gas increases. In addition to the tendency, the hydrogen recovery rate is inferior, and the structure becomes complicated due to the necessity of a throttle pipe or the like for forming pores.

【0006】[0006]

【課題を解決するための手段】本発明は、このような従
来の技術的課題に鑑みてなされたものであり、その構成
は次の通りである。請求項1の発明は、不純ガスを含む
水素ガスを不純水素ガスライン10から水素回収容器4
に導き、該水素回収容器4内の冷却させた水素吸蔵合金
Mに水素を吸蔵させる吸収操作を行い、次いで、不純水
素ガスライン10からの水素ガスの導入を止めると共
に、該水素回収容器4内を水素ガス解離平衡圧を超える
圧力のままとして、水素回収容器4内の不純ガスを多く
含む水素ガスをパージガスライン12から外部に放出さ
せる放出操作を行い、該吸収操作を放出操作を挟んで少
なくとも複数回行つた後、該水素回収容器4内の水素吸
蔵合金Mを加熱させ、該水素吸蔵合金Mに吸蔵させた水
素を放出させ、水素回収容器4内の不純ガスを多く含む
水素ガスをパージガスライン12から外部に放出させる
パージ工程を行い、その後、パージガスライン12から
の放出を止めると共に、加熱状態の水素吸蔵合金Mから
放出される高純度の水素ガスを精製ガスライン11から
放出回収させることを特徴とする水素ガス精製方法であ
る。請求項2は、水素回収容器4内の圧力を検出する圧
力検出手段7を設け、放出操作を、水素回収容器4内の
圧力が所定の設定値に達した後に開始し、所定時間が経
過するまで続けることを特徴とする請求項1の水素ガス
精製方法である。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional technical problems, and has the following configuration. According to the first aspect of the present invention, the hydrogen recovery container 4 is configured to supply hydrogen gas containing impurity gas from the impurity hydrogen gas line 10.
Then, an absorption operation for storing hydrogen in the cooled hydrogen storage alloy M in the hydrogen recovery container 4 is performed, and then the introduction of hydrogen gas from the impure hydrogen gas line 10 is stopped. Is maintained at a pressure exceeding the hydrogen gas dissociation equilibrium pressure, a discharge operation of discharging hydrogen gas containing a large amount of impurity gas in the hydrogen recovery container 4 from the purge gas line 12 to the outside is performed, and the absorption operation is performed at least with the discharge operation interposed therebetween. After the plurality of passes, the hydrogen storage alloy M in the hydrogen recovery container 4 is heated to release the hydrogen stored in the hydrogen storage alloy M, and the hydrogen gas containing a large amount of the impurity gas in the hydrogen recovery container 4 is purged. A purge step of releasing the gas from the line 12 to the outside is performed. Thereafter, the release from the purge gas line 12 is stopped, and the high purity hydrogen released from the hydrogen storage alloy M in the heated state is removed. It is hydrogen gas purification method, characterized in that to release recovered hydrogen gas from the purified gas line 11. Claim 2 is provided with a pressure detecting means 7 for detecting the pressure in the hydrogen recovery container 4, and starts the discharge operation after the pressure in the hydrogen recovery container 4 reaches a predetermined set value, and a predetermined time elapses. The method for purifying hydrogen gas according to claim 1, wherein the method is continued.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は、本発明の1実施の
形態に係る水素ガス精製装置を示す。図中において符号
1は水素源である水素利用装置であり、高純度の水素ガ
スを使用し、使用後に精製すべき不純水素ガスを排出す
る。水素利用装置1から排出される不純水素ガスには不
純ガス、例えば窒素、二酸化炭素、酸素、メタン等が含
まれている。この水素利用装置1の水素出口1aには、
開閉機能を有する第1バルブAV1を備える不純水素ガ
スライン10により、MH容器からなる水素回収容器4
が接続される。また、水素利用装置1の水素入口1b
は、開閉機能を有する第2バルブAV2を備える精製ガ
スライン11により、水素回収容器4の水素出口に接続
されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a hydrogen gas purifying apparatus according to one embodiment of the present invention. In the figure, reference numeral 1 denotes a hydrogen utilization device as a hydrogen source, which uses high-purity hydrogen gas and discharges impure hydrogen gas to be purified after use. The impure hydrogen gas discharged from the hydrogen utilization device 1 contains an impure gas, for example, nitrogen, carbon dioxide, oxygen, methane, and the like. The hydrogen outlet 1a of the hydrogen utilization device 1 has:
An impure hydrogen gas line 10 having a first valve AV1 having an opening / closing function allows a hydrogen recovery container 4 composed of an MH container
Is connected. The hydrogen inlet 1b of the hydrogen utilization device 1
Is connected to a hydrogen outlet of the hydrogen recovery container 4 by a purified gas line 11 having a second valve AV2 having an opening / closing function.

【0008】更に、水素回収容器4の水素出口には、開
閉機能を有する第3バルブAV3を備えるパージガスラ
イン12が接続されている。このパージガスライン12
の先端は、大気に開放されているが、他の容器に接続し
て不純ガスを回収することも可能である。
Further, a purge gas line 12 having a third valve AV3 having an opening / closing function is connected to a hydrogen outlet of the hydrogen recovery container 4. This purge gas line 12
Is open to the atmosphere, but can be connected to another container to collect the impure gas.

【0009】水素吸蔵合金Mを利用する水素回収容器4
は、内部に水素吸蔵合金M(金属水素化物)を収容し、
水素吸蔵合金Mを加熱する加熱装置5及び冷却する冷却
装置6をそれぞれ備える。7は圧力検出手段(圧力計)
であり、水素回収容器4内の圧力を検出することができ
る。圧力検出手段7により、水素回収容器4内の圧力が
設定値にまで上昇したことを検出する。この設定値は、
通常、水素吸蔵合金Mの水素吸蔵がほぼ飽和に達し、水
素回収容器4内が水素利用装置1内の圧力とほぼ一致し
た圧力とする。加熱装置5は、通常、熱媒体通路に温水
を導入して構成され、冷却装置6は、通常、熱媒体通路
に冷水を導入して構成される。水素吸蔵合金Mは、水素
ガスと反応し、可逆的に水素ガスを吸収又は放出する
が、この反応はプラトー領域における水素平衡圧力−温
度特性(P−T特性)に基づいて行われ、水素解離平衡
圧力における温度条件から、冷却装置6によつて低温度
に冷却すれば水素ガスを吸蔵し、加熱装置5によつて高
温度に加熱すれば水素ガスを放出する。一方、温度が一
定の場合には、水素解離平衡圧(プラトー圧)よりも低
い圧力下で水素ガスが放出される。
Hydrogen recovery container 4 using hydrogen storage alloy M
Contains hydrogen storage alloy M (metal hydride) inside,
A heating device 5 for heating the hydrogen storage alloy M and a cooling device 6 for cooling are provided. 7 is a pressure detecting means (pressure gauge)
Thus, the pressure in the hydrogen recovery container 4 can be detected. The pressure detecting means 7 detects that the pressure in the hydrogen recovery container 4 has risen to a set value. This setting is
Normally, the hydrogen absorption of the hydrogen storage alloy M substantially reaches saturation, and the pressure in the hydrogen recovery container 4 is set to substantially match the pressure in the hydrogen utilization device 1. The heating device 5 is generally configured by introducing hot water into the heat medium passage, and the cooling device 6 is generally configured by introducing cold water into the heat medium passage. The hydrogen storage alloy M reacts with hydrogen gas and reversibly absorbs or releases hydrogen gas. This reaction is performed based on a hydrogen equilibrium pressure-temperature characteristic (PT characteristic) in a plateau region, and hydrogen dissociation occurs. From the temperature condition at the equilibrium pressure, hydrogen gas is occluded when cooled to a low temperature by the cooling device 6, and hydrogen gas is released when heated to a high temperature by the heating device 5. On the other hand, when the temperature is constant, hydrogen gas is released under a pressure lower than the hydrogen dissociation equilibrium pressure (plateau pressure).

【0010】次に、水素ガス精製方法について説明す
る。水素利用装置1内の水素に不純水素ガスが生じるた
め、定期的に吸収工程を行う。吸収工程は、吸収操作と
放出操作とからなる。吸収操作では、第1バルブAV1
を開き、他の第2,第3バルブAV2,AV3を閉じ
る。これにより、水素利用装置1内の不純水素ガスが不
純水素ガスライン10及び第1バルブAV1を通つて水
素回収容器4に流入する。このとき、冷却装置6を作動
させて水素吸蔵合金Mを冷却することにより、水素が水
素吸蔵合金Mに吸蔵され、不純ガスが水素吸蔵合金Mの
周囲の空隙部に次第に溜まる。
Next, a method for purifying hydrogen gas will be described. Since impure hydrogen gas is generated in the hydrogen in the hydrogen utilization device 1, the absorption process is performed periodically. The absorption step consists of an absorption operation and a release operation. In the absorption operation, the first valve AV1
Is opened, and the other second and third valves AV2 and AV3 are closed. Thereby, the impure hydrogen gas in the hydrogen utilization device 1 flows into the hydrogen recovery container 4 through the impure hydrogen gas line 10 and the first valve AV1. At this time, by operating the cooling device 6 to cool the hydrogen storage alloy M, hydrogen is stored in the hydrogen storage alloy M, and the impurity gas gradually accumulates in the voids around the hydrogen storage alloy M.

【0011】この吸収操作を行い、窒素、二酸化炭素等
の不純ガス分が水素吸蔵合金Mの周囲に次第に溜まり、
水素吸収量が減ることにより、水素回収容器4内の圧力
が上昇する。この圧力上昇を圧力検出手段7によつて検
出し、水素回収容器4内の圧力が所定の設定圧力に達し
たなら、第1バルブAV1を閉じると共に、第3バルブ
AV3を所定時間だけ開き、水素回収容器4内の不純ガ
スを多く含む水素ガスをパージガスライン12から外部
に放出させる放出操作を行う。その際、冷却装置6は、
作動を継続させて水素吸蔵合金Mを冷却し続け、圧力低
下に伴つて水素吸蔵合金Mから水素ガスが放出されるこ
とを確実に防止することが望ましいが、冷却装置6を一
時的に停止させることは可能である。一方、加熱装置5
は、作動を停止させたままとする。要するに、水素吸蔵
合金Mを水素解離平衡圧(プラトー圧)を超える圧力の
状態のままとして、水素吸蔵合金Mからの水素の放出を
抑制しておく。
By performing this absorption operation, impurity gases such as nitrogen and carbon dioxide gradually accumulate around the hydrogen storage alloy M,
As the hydrogen absorption amount decreases, the pressure in the hydrogen recovery container 4 increases. This pressure increase is detected by the pressure detecting means 7, and when the pressure in the hydrogen recovery container 4 reaches a predetermined set pressure, the first valve AV1 is closed, and the third valve AV3 is opened for a predetermined time, so that hydrogen is removed. A discharge operation of discharging hydrogen gas containing a large amount of impurity gas in the recovery container 4 from the purge gas line 12 to the outside is performed. At that time, the cooling device 6
It is desirable to continue the operation to continue cooling the hydrogen storage alloy M and to reliably prevent the hydrogen gas from being released from the hydrogen storage alloy M as the pressure is reduced. However, the cooling device 6 is temporarily stopped. It is possible. On the other hand, the heating device 5
Shall remain inactive. In short, the release of hydrogen from the hydrogen storage alloy M is suppressed while the hydrogen storage alloy M is kept at a pressure exceeding the hydrogen dissociation equilibrium pressure (plateau pressure).

【0012】これにより、水素吸蔵合金Mの周囲に溜ま
つた比較的高圧の不純ガスが、パージガスライン12か
ら外部(大気)に放出され、水素回収容器4内の圧力が
ガスパージ量により低下する。パージガスライン12か
らの不純ガスを大気に放出させる場合には、設定圧力に
達した水素回収容器4内圧力と大気圧の一定差圧の状態
から所定時間だけ不純ガスをパージさせることになるた
め、パージガスの流出量が安定化する。水素ガス精製の
ためのパージガス量が安定化する理由は、水素回収容器
4内の設定圧力と大気圧との一定差圧が、水素吸蔵合金
Mの水素処理能力に影響されないところにある。
As a result, the relatively high-pressure impurity gas collected around the hydrogen storage alloy M is discharged from the purge gas line 12 to the outside (atmosphere), and the pressure in the hydrogen recovery container 4 is reduced by the gas purge amount. When discharging the impure gas from the purge gas line 12 to the atmosphere, the impure gas is purged for a predetermined time from a state where the pressure inside the hydrogen recovery container 4 reaches the set pressure and a constant differential pressure between the atmospheric pressure and the pressure. The outflow of the purge gas is stabilized. The reason why the purge gas amount for purifying the hydrogen gas is stabilized is that the constant differential pressure between the set pressure in the hydrogen recovery container 4 and the atmospheric pressure is not affected by the hydrogen processing ability of the hydrogen storage alloy M.

【0013】第3バルブAV3を開いて所定時間が経過
し、水素回収容器4内の圧力が低下したなら、第3バル
ブAV3を閉じて放出操作を終えると共に、第1バルブ
AV1を再度開く。冷却装置6は、作動を継続させる。
これにより、水素吸蔵合金Mの周囲の不純ガスが減少し
た状態で、再度の吸収操作が実行される。吸収操作の継
続により、水素回収容器4内の圧力が再度設定圧力にま
で上昇したなら、必要に応じて上述した水素回収容器4
内の不純ガスの放出操作を行つた後、水素吸蔵合金Mへ
の水素吸蔵、つまり吸収操作を行わせる。しかして、不
純ガスの放出操作により、水素吸蔵合金Mの水素吸蔵能
力が周囲の不純ガスの影響で次第に低下することが良好
に防止され、水素吸蔵合金Mによる安定的な水素吸蔵作
用が確保され、水素回収容器4の性能低下をもたらし難
い。このようにして水素吸蔵合金Mに十分な水素が吸蔵
されたなら、冷却装置6を停止すると共に、第1バルブ
AV1を閉じて吸収工程を終了し、パージ工程に移行す
る。水素吸蔵合金Mに十分な水素が吸蔵されたことも、
水素回収容器4内の圧力が設定圧力にまで上昇したこと
から知ることができる。
When a predetermined time has elapsed since the third valve AV3 was opened and the pressure in the hydrogen recovery container 4 decreased, the third valve AV3 was closed to finish the discharge operation, and the first valve AV1 was opened again. The cooling device 6 continues to operate.
Thereby, the absorption operation is performed again in a state where the impurity gas around the hydrogen storage alloy M is reduced. If the pressure in the hydrogen recovery container 4 increases to the set pressure again by the continuation of the absorption operation, the above-described hydrogen recovery container 4
After performing the operation of releasing the impurity gas in the inside, the hydrogen storage alloy M is caused to perform the hydrogen storage, that is, the absorption operation. Thus, the operation of discharging the impure gas prevents the hydrogen storage capacity of the hydrogen storage alloy M from gradually decreasing due to the influence of the surrounding impurity gas, thereby ensuring a stable hydrogen storage function of the hydrogen storage alloy M. In addition, the performance of the hydrogen recovery container 4 is hardly reduced. When sufficient hydrogen has been occluded in the hydrogen storage alloy M in this way, the cooling device 6 is stopped, the first valve AV1 is closed, the absorption process is completed, and the process proceeds to the purge process. The fact that sufficient hydrogen was stored in the hydrogen storage alloy M
It can be known from the fact that the pressure in the hydrogen recovery container 4 has risen to the set pressure.

【0014】パージ工程では、加熱装置5を作動させる
と共に、第3バルブAV3を開き、水素吸蔵合金Mから
の水素放出を図りながら、水素吸蔵合金Mの周囲に吸収
されずに溜まつていた不純ガスをパージガスライン12
から外部(大気)に放出させる。加熱装置5の作動によ
つて水素吸蔵合金Mから水素が放出されながら、水素吸
蔵合金Mの周囲の不純ガスが水素回収容器4から押し出
される。このようにして水素回収容器4内の不純ガスが
十分に放出されたなら、第3バルブAV3を閉じると共
に、放出工程に移行する。
In the purging step, the heating device 5 is operated, and the third valve AV3 is opened to release hydrogen from the hydrogen storage alloy M, and the impurities accumulated around the hydrogen storage alloy M without being absorbed are collected. Purging gas line 12
From the outside (atmosphere). The impurity gas around the hydrogen storage alloy M is pushed out from the hydrogen recovery container 4 while the hydrogen is released from the hydrogen storage alloy M by the operation of the heating device 5. When the impurity gas in the hydrogen recovery container 4 has been sufficiently released in this way, the third valve AV3 is closed, and the process proceeds to the discharging step.

【0015】放出工程では、加熱装置5を作動させたま
まで、第2バルブAV2を開き、加熱された水素吸蔵合
金Mから放出される純粋な水素を精製ガスライン11に
導き、水素入口1bから水素利用装置1に流入させる。
このようにして水素吸蔵合金Mから純粋な水素が十分に
放出されたなら、加熱装置5を停止させると共に、第2
バルブAV2を閉じ、放出工程を終了する。水素吸蔵合
金Mから水素が十分に放出されたことは、水素回収容器
4内の圧力が低下することで知ることができる。
In the discharging step, while the heating device 5 is operated, the second valve AV2 is opened, and pure hydrogen released from the heated hydrogen storage alloy M is led to the purified gas line 11, and hydrogen is supplied from the hydrogen inlet 1b to the hydrogen inlet 1b. It flows into the use device 1.
When the pure hydrogen is sufficiently released from the hydrogen storage alloy M in this way, the heating device 5 is stopped and the second
The valve AV2 is closed, and the discharging step ends. The fact that the hydrogen has been sufficiently released from the hydrogen storage alloy M can be known from a decrease in the pressure in the hydrogen recovery container 4.

【0016】このように、水素利用装置1から排出され
た水素ガスを精製後に元の水素利用装置1に還流させる
ことができることは勿論、別の水素利用装置1に還流さ
せることもできる。また、不純ガスを有する水素ガス
は、水素利用装置1に代えてその他の水素源から導くこ
とも可能である。
As described above, the hydrogen gas discharged from the hydrogen utilization device 1 can be returned to the original hydrogen utilization device 1 after purification, and of course can be returned to another hydrogen utilization device 1 after purification. Further, the hydrogen gas having the impure gas can be introduced from another hydrogen source instead of the hydrogen utilization device 1.

【0017】表1には、各バルブAV1,バルブAV
2,バルブAV3の開閉操作、圧力検出手段7、加熱装
置5及び冷却装置6の作動を示す。黒塗り部分は、各バ
ルブAV1,AV2,AV3が開状態、水素回収容器4
内が設定圧力並びに加熱装置5又は冷却装置6が作動状
態を示し、白塗り部分は、各バルブAV1,AV2,A
V3が閉状態、水素回収容器4内が設定圧力未満並びに
加熱装置5又は冷却装置6が非作動状態を示す。同表か
ら分かるように、吸収工程では、冷却装置6を作動させ
て水素吸蔵合金Mを冷却しながら第1バルブAV1のみ
を開いた吸収操作(表1にで示す)を行う。これによ
り、水素利用装置1内の不純水素ガスが不純水素ガスラ
イン10及び第1バルブAV1を通つて水素回収容器4
に流入し、冷却された水素吸蔵合金Mに吸収されると共
に、水素吸蔵合金Mの周囲に不純ガスが次第に溜まる。
Table 1 shows that each valve AV1 and valve AV
2, the opening / closing operation of the valve AV3 and the operation of the pressure detecting means 7, the heating device 5 and the cooling device 6 are shown. The black painted portion indicates that the valves AV1, AV2, and AV3 are open and the hydrogen recovery container 4
The inside indicates the set pressure and the operating state of the heating device 5 or the cooling device 6, and the white portions indicate the valves AV 1, AV 2, A
V3 indicates a closed state, the inside of the hydrogen recovery container 4 indicates a pressure lower than a set pressure, and the heating device 5 or the cooling device 6 indicates a non-operating state. As can be seen from the table, in the absorption step, an absorption operation (shown in Table 1) is performed by opening only the first valve AV1 while operating the cooling device 6 to cool the hydrogen storage alloy M. Thereby, the impure hydrogen gas in the hydrogen utilization device 1 passes through the impure hydrogen gas line 10 and the first valve AV1,
And is absorbed by the cooled hydrogen storage alloy M, and the impurity gas gradually accumulates around the hydrogen storage alloy M.

【0018】[0018]

【表1】 [Table 1]

【0019】水素吸蔵合金Mの周囲に不純ガスが溜ま
り、圧力検出手段7によつて設定圧に達したことが検出
されたなら、放出操作(表1にで示す)を行う。すな
わち、冷却装置6を作動させたままで、第1バルブAV
1を閉じ、第3バルブAV3を開く。この放出操作を
予め設定した所定時間行うことにより、水素回収容器4
内の圧力が低下したなら、再度、吸収操作を行う。表
1の例では、吸収操作を3回行い、放出操作を2回
行つているが、吸収操作は、放出操作を挟んで少な
くとも複数回行えばよい。なお、放出操作を所定時間
行うことに代えて、圧力検出手段7によつて設定圧の下
限に達したことが検出された際、放出操作を終了する
ことも可能である。その場合、放出操作の開始は、圧
力検出手段7によつて設定圧の上限に達したことが検出
されたときに行えばよい。
When the impurity gas accumulates around the hydrogen storage alloy M and the pressure detecting means 7 detects that the set pressure has been reached, a discharging operation (shown in Table 1) is performed. That is, while the cooling device 6 is operated, the first valve AV
1 is closed and the third valve AV3 is opened. By performing this release operation for a predetermined period of time, the hydrogen recovery container 4
If the internal pressure decreases, perform the absorption operation again. In the example of Table 1, the absorbing operation is performed three times and the discharging operation is performed twice, but the absorbing operation may be performed at least a plurality of times with the discharging operation interposed therebetween. Instead of performing the discharging operation for a predetermined time, the discharging operation can be terminated when the pressure detecting means 7 detects that the set pressure has reached the lower limit. In this case, the discharge operation may be started when the pressure detecting means 7 detects that the set pressure has reached the upper limit.

【0020】表2には、比較例としてフロー式の水素ガ
ス精製装置の運転方法について示す。黒塗り部分は、各
バルブAV1,AV2,AV3が開状態並びに加熱装置
5又は冷却装置6が作動状態を示し、白塗り部分は、各
バルブAV1,AV2,AV3が閉状態並びに加熱装置
5又は冷却装置6が非作動状態を示す。同表から分かる
ように、吸収工程では、冷却装置6を作動させて水素吸
蔵合金Mを冷却しながら第1,第3バルブAV1,AV
3を開き、第2バルブAV2を閉じる。但し、第3バル
ブAV3には、絞りとしての機能を与えてある。これに
より、水素利用装置1内の不純水素ガスが不純水素ガス
ライン10及び第1バルブAV1を通つて水素回収容器
4に流入し、冷却された水素吸蔵合金Mに吸収されると
共に、水素吸蔵合金Mの周囲に溜まる不純ガスがパージ
ガスライン12から外部(大気)に継続的に放出され
る。
Table 2 shows a method of operating a flow type hydrogen gas purifying apparatus as a comparative example. A black portion indicates that each of the valves AV1, AV2, and AV3 is open and the heating device 5 or the cooling device 6 is in an operating state. A white portion indicates that each of the valves AV1, AV2, and AV3 is closed and the heating device 5 or the cooling device. The device 6 indicates an inactive state. As can be seen from the table, in the absorption step, the first and third valves AV1 and AV1 are operated while cooling the hydrogen storage alloy M by operating the cooling device 6.
3 is opened, and the second valve AV2 is closed. However, the third valve AV3 is provided with a function as an aperture. Thereby, the impure hydrogen gas in the hydrogen utilization device 1 flows into the hydrogen recovery container 4 through the impure hydrogen gas line 10 and the first valve AV1, is absorbed by the cooled hydrogen storage alloy M, and Impurity gas accumulated around M is continuously discharged from the purge gas line 12 to the outside (atmosphere).

【0021】[0021]

【表2】 [Table 2]

【0022】引き続いて行われるパージ工程では、冷却
装置6を停止させて加熱装置5を作動させると共に、第
3バルブAV3のみを大きく開いた状態として、水素吸
蔵合金Mの周囲に吸収されずに溜まつていた不純ガスを
パージガスライン12から外部(大気)に放出させる。
これにより、加熱装置5によつて加熱された水素吸蔵合
金Mから水素が放出されながら、水素吸蔵合金Mの周囲
の不純ガスが水素回収容器4から押し出される。このよ
うにして水素回収容器4内の不純ガスが十分に放出され
たなら、第3バルブAV3を閉じると共に、第2バルブ
AV2を開いて放出工程に移行する。放出工程では、加
熱装置5を作動させたままで、加熱された水素吸蔵合金
Mから放出される純粋な水素を精製ガスライン11に導
き、水素利用装置1に水素入口1bから流入させる。水
素吸蔵合金Mから純粋な水素が十分に放出されたなら、
加熱装置5を停止させると共に、第2バルブAV2を閉
じ、放出工程を終了する。
In the subsequent purging step, the cooling device 6 is stopped and the heating device 5 is operated, and only the third valve AV3 is opened to a large extent, so that the pool is not absorbed by the hydrogen storage alloy M but absorbed. The entrained impurity gas is discharged from the purge gas line 12 to the outside (atmosphere).
As a result, the impurity gas around the hydrogen storage alloy M is pushed out from the hydrogen recovery container 4 while the hydrogen is released from the hydrogen storage alloy M heated by the heating device 5. When the impurity gas in the hydrogen recovery container 4 has been sufficiently released in this way, the third valve AV3 is closed, and the second valve AV2 is opened to shift to the discharging step. In the release step, pure hydrogen released from the heated hydrogen storage alloy M is led to the purified gas line 11 while the heating device 5 is operated, and is caused to flow into the hydrogen utilization device 1 from the hydrogen inlet 1b. If pure hydrogen is sufficiently released from the hydrogen storage alloy M,
The heating device 5 is stopped, the second valve AV2 is closed, and the discharging step is completed.

【0023】[0023]

【発明の効果】以上の説明によつて理解されるように、
本発明に係る水素ガス精製方法によれば、次の効果を奏
することができる。 (1)吸収操作及び放出操作を有する1回の吸収工程
で、水素吸蔵合金に従来のバッチ式に比してより多くの
水素ガスを吸収させることができ、水素精製処理能力を
上げることができる。すなわち、水素吸蔵合金に水素を
吸蔵させる吸収操作に伴つて水素吸蔵合金の周囲に溜ま
つた不純ガスが、放出操作を行うことによつて放出され
るので、複数回行う吸収操作に際し、水素吸蔵合金の周
囲に溜まつた不純ガスに起因して水素吸蔵合金の水素吸
蔵能力が低下することが抑制される。これにより、水素
吸蔵合金の水素吸収能力が良好に活かされる状態とな
る。その結果、冷却しながら行う吸収工程に要する時間
を著しく延長することなく、多量の水素を水素吸蔵合金
に吸収させることができる。加えて、水素吸蔵合金を早
期に冷却状態から加熱状態に切り換える必要がなくな
り、熱効率に優れるのみならず、水素ガスの精製に要す
る全体の時間を短くすることが可能になる。
As will be understood from the above description,
According to the hydrogen gas purification method of the present invention, the following effects can be obtained. (1) In a single absorption step having an absorption operation and a release operation, the hydrogen storage alloy can absorb more hydrogen gas than the conventional batch type, and the hydrogen purification processing capacity can be increased. . That is, the impurity gas collected around the hydrogen storage alloy is released by performing the releasing operation in accordance with the absorbing operation of storing the hydrogen in the hydrogen storing alloy. A decrease in the hydrogen storage capacity of the hydrogen storage alloy caused by the impurity gas accumulated around the alloy is suppressed. As a result, a state is obtained in which the hydrogen absorbing ability of the hydrogen storage alloy is effectively utilized. As a result, a large amount of hydrogen can be absorbed by the hydrogen storage alloy without significantly increasing the time required for the absorption step performed while cooling. In addition, it is not necessary to switch the hydrogen storage alloy from the cooling state to the heating state at an early stage, so that not only the thermal efficiency is excellent but also the entire time required for purifying the hydrogen gas can be shortened.

【0024】(2)放出操作は、水素吸蔵合金を水素ガ
ス解離平衡圧を超える圧力のままとして、水素回収容器
内の不純ガスを多く含む水素ガスをパージガスラインか
ら外部に放出させて行なわれ、水素吸蔵合金を加熱する
必要がない。従つて、放出操作に伴うパージ量は、水素
回収容器内の圧力と放出させる外部の圧力との差圧によ
つて決定されることになり、水素吸蔵合金の能力の如何
に関係しないので、安定化する。加えて、放出操作に伴
つて加熱する必要がないので、放出操作に伴う水素放出
量の増加が抑制され、水素回収率の低下が防止される。 (3)放出操作によつて不純ガスがパージされるので、
従来のバッチ式に比して、1回の吸収工程完了時の水素
回収容器内の不純物濃度が減少することになる。その結
果、引き続いて行うパージ工程で不純ガスをパージする
のに必要となる水素放出量が減少するのみならず、パー
ジ工程に要する時間が短くなる。
(2) The discharging operation is performed by releasing the hydrogen gas containing a large amount of impurity gas in the hydrogen recovery container from the purge gas line to the outside while keeping the hydrogen storage alloy at a pressure exceeding the hydrogen gas dissociation equilibrium pressure. There is no need to heat the hydrogen storage alloy. Therefore, the amount of purge accompanying the release operation is determined by the pressure difference between the pressure in the hydrogen recovery container and the external pressure to be released, and is not related to the capacity of the hydrogen storage alloy. Become In addition, since there is no need to perform heating during the discharging operation, an increase in the amount of hydrogen released due to the discharging operation is suppressed, and a decrease in the hydrogen recovery rate is prevented. (3) Since the impurity gas is purged by the discharging operation,
As compared with the conventional batch method, the impurity concentration in the hydrogen recovery container at the completion of one absorption step is reduced. As a result, not only the amount of hydrogen release required for purging the impurity gas in the subsequent purging step is reduced, but also the time required for the purging step is shortened.

【0025】(4)吸収工程に際して不純ガスを常時パ
ージする従来のフロー式の水素ガス精製方法と比較し
て、放出操作により、水素吸蔵合金を水素ガス解離平衡
圧を超える圧力のままとするのみならず、放出操作及び
パージ工程により、不純ガスを間欠的にパージすること
になるため、簡素な構造の水素ガス精製装置を使用し
て、パージガス中の水素含有量の増加が抑えられる。そ
の結果、水素回収率に優れる。 (5)請求項2によれば、設定圧力になつた際に所定時
間だけ不純ガスをパージするため、操作性に優れるのみ
ならず、不純ガスのパージ量が更に安定し、その分、水
素ガスの回収効率が向上する。
(4) Compared with the conventional flow-type hydrogen gas purification method in which impurity gas is constantly purged during the absorption step, the hydrogen storage alloy is only kept at a pressure exceeding the hydrogen gas dissociation equilibrium pressure by the release operation. In addition, since the impurity gas is intermittently purged by the discharge operation and the purge step, an increase in the hydrogen content in the purge gas can be suppressed by using a hydrogen gas purifier having a simple structure. As a result, the hydrogen recovery rate is excellent. (5) According to the second aspect, since the impurity gas is purged for a predetermined time when the pressure reaches the set pressure, not only the operability is excellent but also the purge amount of the impurity gas is further stabilized, and the hydrogen gas is accordingly reduced. Recovery efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の1実施の形態に係る水素ガス精製装
置を示す概略図。
FIG. 1 is a schematic diagram showing a hydrogen gas purifying apparatus according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:水素利用装置、4:水素回収容器、5:加熱装置、
6:冷却装置、7:圧力検出手段、10:不純水素ガス
ライン、11:精製ガスライン、12:パージガスライ
ン、AV1:第1バルブ、AV2:第2バルブ、AV
3:第3バルブ、M:水素吸蔵合金。
1: hydrogen utilization device, 4: hydrogen recovery container, 5: heating device,
6: Cooling device, 7: Pressure detecting means, 10: Impure hydrogen gas line, 11: Purified gas line, 12: Purge gas line, AV1: First valve, AV2: Second valve, AV
3: Third valve, M: hydrogen storage alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 脇坂 裕一 北海道室蘭市茶津町4番地 株式会社日本 製鋼所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuichi Wakisaka 4 Chazu-cho, Muroran-shi, Hokkaido Japan Steel Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不純ガスを含む水素ガスを不純水素ガス
ライン(10)から水素回収容器(4)に導き、該水素
回収容器(4)内の冷却させた水素吸蔵合金(M)に水
素を吸蔵させる吸収操作を行い、次いで、不純水素ガス
ライン(10)からの水素ガスの導入を止めると共に、
該水素回収容器(4)内を水素ガス解離平衡圧を超える
圧力のままとして、水素回収容器(4)内の不純ガスを
多く含む水素ガスをパージガスライン(12)から外部
に放出させる放出操作を行い、該吸収操作を放出操作を
挟んで少なくとも複数回行つた後、該水素回収容器
(4)内の水素吸蔵合金(M)を加熱させ、該水素吸蔵
合金(M)に吸蔵させた水素を放出させ、水素回収容器
(4)内の不純ガスを多く含む水素ガスをパージガスラ
イン(12)から外部に放出させるパージ工程を行い、
その後、パージガスライン(12)からの放出を止める
と共に、加熱状態の水素吸蔵合金(M)から放出される
高純度の水素ガスを精製ガスライン(11)から放出回
収させることを特徴とする水素ガス精製方法。
1. A hydrogen gas containing an impure gas is led from an impure hydrogen gas line (10) to a hydrogen recovery container (4), and hydrogen is added to the cooled hydrogen storage alloy (M) in the hydrogen recovery container (4). Perform an absorption operation to occlude, then stop the introduction of hydrogen gas from the impure hydrogen gas line (10),
A discharge operation of releasing hydrogen gas containing a large amount of impurity gas in the hydrogen recovery container (4) from the purge gas line (12) to the outside while keeping the pressure inside the hydrogen recovery container (4) at a pressure exceeding the hydrogen gas dissociation equilibrium pressure is performed. After performing the absorption operation at least a plurality of times with the discharge operation interposed therebetween, the hydrogen storage alloy (M) in the hydrogen recovery container (4) is heated to remove the hydrogen stored in the hydrogen storage alloy (M). Performing a purge step of releasing hydrogen gas containing a large amount of impurity gas in the hydrogen recovery container (4) from the purge gas line (12) to the outside;
After that, the discharge from the purge gas line (12) is stopped, and the high-purity hydrogen gas released from the heated hydrogen storage alloy (M) is released and recovered from the purified gas line (11). Purification method.
【請求項2】 水素回収容器(4)内の圧力を検出する
圧力検出手段(7)を設け、放出操作を、水素回収容器
(4)内の圧力が所定の設定値に達した後に開始し、所
定時間が経過するまで続けることを特徴とする請求項1
の水素ガス精製方法。
2. A pressure detecting means (7) for detecting the pressure in the hydrogen recovery container (4) is provided, and the discharging operation is started after the pressure in the hydrogen recovery container (4) reaches a predetermined set value. 2. The method according to claim 1, wherein the processing is continued until a predetermined time elapses.
Hydrogen gas purification method.
JP06383097A 1997-03-03 1997-03-03 Hydrogen gas purification method Expired - Fee Related JP3897854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06383097A JP3897854B2 (en) 1997-03-03 1997-03-03 Hydrogen gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06383097A JP3897854B2 (en) 1997-03-03 1997-03-03 Hydrogen gas purification method

Publications (2)

Publication Number Publication Date
JPH10245202A true JPH10245202A (en) 1998-09-14
JP3897854B2 JP3897854B2 (en) 2007-03-28

Family

ID=13240671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06383097A Expired - Fee Related JP3897854B2 (en) 1997-03-03 1997-03-03 Hydrogen gas purification method

Country Status (1)

Country Link
JP (1) JP3897854B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
US6899855B2 (en) * 2000-03-17 2005-05-31 Honda Giken Kogyo Kabushiki Kaisha Hydrogen-occlusion alloy regenerating apparatus
CN116062684A (en) * 2023-03-16 2023-05-05 浙江大学 Device and method for increasing hydrogenation reaction speed of material in mixed gas containing hydrogen and inert impurity gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016420899B2 (en) 2016-08-23 2022-02-17 JBEC Co., Ltd. Method for recovering hydrogen from biomass pyrolysis gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
US6899855B2 (en) * 2000-03-17 2005-05-31 Honda Giken Kogyo Kabushiki Kaisha Hydrogen-occlusion alloy regenerating apparatus
CN116062684A (en) * 2023-03-16 2023-05-05 浙江大学 Device and method for increasing hydrogenation reaction speed of material in mixed gas containing hydrogen and inert impurity gas
CN116062684B (en) * 2023-03-16 2024-04-26 浙江大学 Device and method for increasing hydrogenation reaction speed of material in mixed gas containing hydrogen and inert impurity gas

Also Published As

Publication number Publication date
JP3897854B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
KR101697793B1 (en) Purifying method and purifying apparatus for argon gas
US5683492A (en) Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide, nitrogen and hydrogen
JPH10245202A (en) Purification of hydrogen gas
KR101720799B1 (en) Purifying method and purifying apparatus for argon gas
JP3403892B2 (en) Method and apparatus for improving hydrogen purity
JPH05321B2 (en)
JP3710520B2 (en) Apparatus for removing impurities from hydrogen gas and method of operating the same
EP0592323A1 (en) Process and apparatus for the production of ultra-pure nitrogen under pressure
JP6987099B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
JP6937087B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
JPS61163106A (en) Process and device for recovering inert gas
JP6987098B2 (en) Gas purification equipment and its control method, and hydrogen production equipment
JP3181686B2 (en) Hydrogen recovery and purification equipment
US4021234A (en) Method for removing impurities in liquid metal
JP3292995B2 (en) Gas purification method and apparatus
JP2012214371A (en) Method for refining high-purity hydrogen
JPH0971402A (en) Improvement in purity of hydrogen and device therefor
JP7129332B2 (en) Hydrogen production equipment
JPS5983907A (en) Method for purifying hydrogen gas using metallic hydride
JP3323322B2 (en) Method and apparatus for improving hydrogen purity
JP3181687B2 (en) Hydrogen recovery / purification apparatus and operation method thereof
JP6882396B2 (en) Hydrogen production equipment and its control method
SU1407522A1 (en) Method of cleaning helium concentrate
JPH0776668B2 (en) Gas introduction device
JPH0692605A (en) Recovery and purification of hydrogen and equipment therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Effective date: 20061220

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110105

LAPS Cancellation because of no payment of annual fees