JPH10244158A - Amorphous alloy catalyst for conversion of carbon dioxide into methane - Google Patents

Amorphous alloy catalyst for conversion of carbon dioxide into methane

Info

Publication number
JPH10244158A
JPH10244158A JP9051598A JP5159897A JPH10244158A JP H10244158 A JPH10244158 A JP H10244158A JP 9051598 A JP9051598 A JP 9051598A JP 5159897 A JP5159897 A JP 5159897A JP H10244158 A JPH10244158 A JP H10244158A
Authority
JP
Japan
Prior art keywords
amorphous alloy
atomic
carbon dioxide
rare earth
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9051598A
Other languages
Japanese (ja)
Other versions
JP3819516B2 (en
Inventor
Koji Hashimoto
功二 橋本
Mitsuru Komori
充 小森
Kazuo Shimamura
和郎 嶋村
Takeshi Yoshida
健 吉田
Hiroki Habasaki
浩樹 幅崎
Eiji Akiyama
英二 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP05159897A priority Critical patent/JP3819516B2/en
Publication of JPH10244158A publication Critical patent/JPH10244158A/en
Application granted granted Critical
Publication of JP3819516B2 publication Critical patent/JP3819516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Abstract

PROBLEM TO BE SOLVED: To accelerate the conversion of CO2 into methane by reaction with H2 by subjecting a precursor made of an amorphous alloy contg. of <= specified at.% in total amt. of >= specified at.% Zr and specified at.% a rare earth element to oxidant-reduction treatment. SOLUTION: A precursor made of an amorphous alloy consisting of <=80at.%, in total, of >=20at.% Zr and >5 to <=15at.% one or more kinds of rare earth elements selected from among Y, La, Ce, Nd, Sm, Gd, Tb and Dy and the balance essentially Co and/or Ni is subjected to oxidation-reduction treatment to obtain the objective amorphous alloy catalyst. When this catalyst is used, the conversion of CO2 into methane by reaction with H2 under atmospheric pressure can be accelerated and a large amt. of CO2 can be converted into methane at a high rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二酸化炭素のメタン
化用アモルファス合金触媒に係り、特に、二酸化炭素を
効率的にメタンに変換し得る高活性アモルファス合金触
媒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous alloy catalyst for methanation of carbon dioxide, and more particularly to a highly active amorphous alloy catalyst capable of efficiently converting carbon dioxide to methane.

【0002】[0002]

【従来の技術及び先行技術】現在、世界中で大量に放出
される二酸化炭素による地球の温暖化が社会問題となっ
ている。しかし、現在の産業活動や市民生活の水準を維
持しながら二酸化炭素の放出量を減らすことは困難であ
る。従って、生成した二酸化炭素を大気に放出せずに回
収し、メタン等の有効物質に変換して再利用するための
技術の開発が要望されている。
2. Description of the Related Art At present, global warming caused by carbon dioxide emitted in large quantities worldwide has become a social problem. However, it is difficult to reduce carbon dioxide emissions while maintaining the current standards of industrial activity and civil life. Therefore, there is a demand for the development of a technology for collecting the generated carbon dioxide without releasing it to the atmosphere, converting it into an effective substance such as methane, and reusing it.

【0003】従来、二酸化炭素の処理法としては、触媒
の存在下、二酸化炭素を数十気圧の圧力で水素と反応さ
せてメタノールに変換する研究が行われている。
Conventionally, as a method for treating carbon dioxide, research has been conducted to convert carbon dioxide into methanol by reacting it with hydrogen at a pressure of several tens of atmospheres in the presence of a catalyst.

【0004】一方、本出願人らは、アモルファス合金に
酸化還元処理を施したものの中に、二酸化炭素と水素と
の反応で大気圧でも高速でメタンを生成させる触媒とし
て機能するものとして、従来、鉄族金属とZr,Ti,
Nb,Taなどのバルブメタルからなるアモルファス合
金に酸化還元処理を施した二酸化炭素のメタン化用アモ
ルファス合金触媒を開発した。
[0004] On the other hand, the present applicants have proposed that, among those obtained by subjecting an amorphous alloy to oxidation-reduction treatment, a catalyst which functions as a catalyst for producing methane at a high speed even at atmospheric pressure by a reaction between carbon dioxide and hydrogen, Iron group metals and Zr, Ti,
We have developed an amorphous alloy catalyst for methanation of carbon dioxide by subjecting an amorphous alloy composed of valve metals such as Nb and Ta to redox treatment.

【0005】また、鉄族金属とZr,Ti,Nb,Ta
などのバルブメタルからなるアモルファス合金に、更に
酸素との親和力が高い希土類元素を加えたアモルファス
合金を作製し、これに酸化還元処理を施すと従来の鉄族
金属−バルブメタルアモルファス合金に酸化還元処理を
施したものより二酸化炭素と水素との反応によるメタン
生成に対してより一層高い活性を備えた触媒が得られる
ことを見出し、先に、特願平8−204543号(以下
「先願」という。)として出願した。
Further, iron group metals and Zr, Ti, Nb, Ta
Amorphous alloys made by adding a rare earth element with a higher affinity for oxygen to amorphous alloys made of valve metals such as, etc. It has been found that a catalyst having higher activity for methane generation by the reaction between carbon dioxide and hydrogen can be obtained than that obtained by applying the method described in Japanese Patent Application No. 8-204543 (hereinafter referred to as "the prior application"). )).

【0006】先願は以下の2つの請求項からなる。The earlier application consists of the following two claims.

【0007】請求項1: アモルファス合金よりなる前
駆体に酸化還元処理を施してなる二酸化炭素のメタン化
用アモルファス合金触媒であって、該アモルファス合金
が、Zrと、Y,La,Ce,Nd,Sm,Gd,Tb
及びDyよりなる群から選ばれる1種又は2種以上の希
土類元素とを含み、残部が実質的にCo及び/又はNi
よりなり、Zrの含有量が8原子%以上、希土類元素の
含有量が5原子%以下で、Zrと希土類元素との合計の
含有量が80原子%以下であることを特徴とする二酸化
炭素のメタン化用アモルファス合金触媒。
Amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy is composed of Zr, Y, La, Ce, Nd, Sm, Gd, Tb
And one or more rare earth elements selected from the group consisting of Dy and Dy, and the balance is substantially Co and / or Ni
Wherein the content of Zr is 8 atomic% or more, the content of rare earth element is 5 atomic% or less, and the total content of Zr and the rare earth element is 80 atomic% or less. Amorphous alloy catalyst for methanation.

【0008】請求項2: アモルファス合金よりなる前
駆体に酸化還元処理を施してなる二酸化炭素のメタン化
用アモルファス合金触媒であって、該アモルファス合金
が、Ti,Nb及びTaよりなる群から選ばれる1種又
は2種以上と、Zrと、Y,La,Ce,Nd,Sm,
Gd,Tb及びDyよりなる群から選ばれる1種又は2
種以上の希土類元素とを含み、残部が実質的にCo及び
/又はNiよりなり、Zrの含有量が8原子%以上、希
土類元素の含有量が5原子%以下で、Ti,Nb及びT
aよりなる群から選ばれる1種又は2種以上とZrと希
土類元素との合計の含有量が80原子%以下であること
を特徴とする二酸化炭素のメタン化用アモルファス合金
触媒。
[0008] A second aspect of the present invention is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to an oxidation-reduction treatment, wherein the amorphous alloy is selected from the group consisting of Ti, Nb and Ta. One or more kinds, Zr, Y, La, Ce, Nd, Sm,
One or two selected from the group consisting of Gd, Tb and Dy
A rare earth element of at least one species, the balance being substantially composed of Co and / or Ni, a content of Zr of 8 atomic% or more, a content of rare earth element of 5 atomic% or less, Ti, Nb and T
An amorphous alloy catalyst for carbon dioxide methanation, characterized in that the total content of one or more selected from the group consisting of a and Zr and a rare earth element is 80 atomic% or less.

【0009】[0009]

【発明が解決しようとする課題】大量に発生する二酸化
炭素を効率的に処理するためには、大量の二酸化炭素を
迅速にメタン等に変換することができるより高活性な触
媒の出現が望まれる。
In order to efficiently treat a large amount of carbon dioxide generated, it is desired to have a more active catalyst capable of rapidly converting a large amount of carbon dioxide into methane or the like. .

【0010】先願に係るアモルファス合金触媒であれ
ば、従来のアモルファス合金触媒に比べて高い活性を示
すが、先願のアモルファス合金触媒では、触媒活性を向
上させる希土類元素の含有量を増加させると、触媒前駆
体合金の作製が困難になるため、希土類元素の含有量に
制限があった。
The amorphous alloy catalyst according to the prior application shows higher activity than the conventional amorphous alloy catalyst. However, in the amorphous alloy catalyst according to the prior application, when the content of the rare earth element for improving the catalytic activity is increased, In addition, since it is difficult to prepare a catalyst precursor alloy, the content of the rare earth element is limited.

【0011】先願のアモルファス合金触媒の合金系にお
いて、希土類元素の含有量を増大させることは、触媒活
性のより一層の向上のみならず、有効な触媒の組成範囲
を拡大することにつながるため、その実現が待たれてい
るのが現状である。
In the alloy system of the amorphous alloy catalyst of the prior application, increasing the content of the rare earth element not only further enhances the catalytic activity but also expands the effective catalyst composition range. At present, the realization is awaited.

【0012】本発明は上記従来の実情に鑑みてなされた
ものであって、先願のアモルファス合金触媒の合金系の
組成範囲を拡大して、二酸化炭素を大気圧下における水
素との反応でメタンに変換する反応の促進作用に優れ、
大量の二酸化炭素を高速でメタンに変換することができ
る著しく高活性な触媒を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and expands the composition range of the alloy system of the amorphous alloy catalyst of the prior application to convert carbon dioxide with hydrogen at atmospheric pressure to produce methane. Excellent in promoting the reaction of converting to
It is an object of the present invention to provide a remarkably highly active catalyst capable of converting a large amount of carbon dioxide into methane at a high speed.

【0013】[0013]

【課題を解決するための手段】請求項1の二酸化炭素の
メタン化用アモルファス合金触媒は、アモルファス合金
よりなる前駆体に酸化還元処理を施してなる二酸化炭素
のメタン化用アモルファス合金触媒であって、該アモル
ファス合金が、Zrと、Y,La,Ce,Nd,Sm,
Gd,Tb及びDyよりなる群から選ばれる1種又は2
種以上の希土類元素とを含み、残部が実質的にCo及び
/又はNiよりなり、Zrの含有量が20原子%以上、
希土類元素の含有量が5原子%を超え15原子%以下
で、Zrと希土類元素との合計の含有量が80原子%以
下であることを特徴とする。
The amorphous alloy catalyst for methanation of carbon dioxide according to claim 1 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor comprising an amorphous alloy to a redox treatment. The amorphous alloy is composed of Zr, Y, La, Ce, Nd, Sm,
One or two selected from the group consisting of Gd, Tb and Dy
A rare earth element of at least one kind, the balance substantially consisting of Co and / or Ni, and the content of Zr is at least 20 atomic%;
The rare earth element content is more than 5 atomic% and 15 atomic% or less, and the total content of Zr and the rare earth element is 80 atomic% or less.

【0014】請求項2の二酸化炭素のメタン化用アモル
ファス合金触媒は、アモルファス合金よりなる前駆体に
酸化還元処理を施してなる二酸化炭素のメタン化用アモ
ルファス合金触媒であって、該アモルファス合金が、T
i,Nb及びTaよりなる群から選ばれる1種又は2種
以上と、Zrと、Y,La,Ce,Nd,Sm,Gd,
Tb及びDyよりなる群から選ばれる1種又は2種以上
の希土類元素とを含み、残部が実質的にCo及び/又は
Niよりなり、Zrの含有量が10原子%以上、Ti,
Nb及びTaよりなる群から選ばれる1種又は2種以上
とZrとの合計の含有量が20原子%以上、希土類元素
の含有量が5原子%を超え15原子%以下で、Ti,N
b及びTaよりなる群から選ばれる1種又は2種以上と
Zrと希土類元素との合計の含有量が80原子%以下で
あることを特徴とする。
An amorphous alloy catalyst for methanation of carbon dioxide according to claim 2 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy comprises: T
one or more selected from the group consisting of i, Nb and Ta, Zr, Y, La, Ce, Nd, Sm, Gd,
One or two or more rare earth elements selected from the group consisting of Tb and Dy, the balance substantially consisting of Co and / or Ni, a Zr content of 10 atomic% or more, Ti,
When the total content of one or more selected from the group consisting of Nb and Ta and Zr is 20 at% or more, the content of the rare earth element is more than 5 at% and 15 at% or less, and Ti, N
The total content of one or more selected from the group consisting of b and Ta, Zr and a rare earth element is 80 atomic% or less.

【0015】請求項3の二酸化炭素のメタン化用アモル
ファス合金触媒は、アモルファス合金よりなる前駆体に
酸化還元処理を施してなる二酸化炭素のメタン化用アモ
ルファス合金触媒であって、該アモルファス合金が、Z
rとMgとを含み、残部が実質的にCo及び/又はNi
よりなり、Zrの含有量が20原子%以上、Mgの含有
量が15原子%以下で、ZrとMgとの合計の含有量が
80原子%以下であることを特徴とする。
The amorphous alloy catalyst for methanation of carbon dioxide according to claim 3 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to an oxidation-reduction treatment, wherein the amorphous alloy comprises: Z
r and Mg, the balance being substantially Co and / or Ni
Wherein the content of Zr is 20 at% or more, the content of Mg is 15 at% or less, and the total content of Zr and Mg is 80 at% or less.

【0016】請求項4の二酸化炭素のメタン化用アモル
ファス合金触媒は、アモルファス合金よりなる前駆体に
酸化還元処理を施してなる二酸化炭素のメタン化用アモ
ルファス合金触媒であって、該アモルファス合金が、T
i,Nb及びTaよりなる群から選ばれる1種又は2種
以上と、ZrとMgとを含み、残部が実質的にCo及び
/又はNiよりなり、Zrの含有量が10原子%以上、
Ti,Nb及びTaよりなる群から選ばれる1種又は2
種以上とZrとの合計の含有量が20原子%以上、Mg
の含有量が15原子%以下で、Ti,Nb及びTaより
なる群から選ばれる1種又は2種以上とZrとMgとの
合計の含有量が80原子%以下であることを特徴とす
る。
An amorphous alloy catalyst for methanation of carbon dioxide according to claim 4 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor comprising an amorphous alloy to a redox treatment, wherein the amorphous alloy comprises: T
one or two or more selected from the group consisting of i, Nb and Ta, and Zr and Mg, the balance substantially consisting of Co and / or Ni, and a Zr content of 10 atomic% or more;
One or two selected from the group consisting of Ti, Nb and Ta
The total content of the species and Zr is 20 atomic% or more, and Mg
Is not more than 15 atomic%, and the total content of one or more selected from the group consisting of Ti, Nb and Ta, Zr and Mg is not more than 80 atomic%.

【0017】請求項5の二酸化炭素のメタン化用アモル
ファス合金触媒は、アモルファス合金よりなる前駆体に
酸化還元処理を施してなる二酸化炭素のメタン化用アモ
ルファス合金触媒であって、該アモルファス合金が、Z
rと、Y,La,Ce,Nd,Sm,Gd,Tb及びD
yよりなる群から選ばれる1種又は2種以上の希土類元
素と、Mgとを含み、残部が実質的にCo及び/又はN
iよりなり、Zrの含有量が20原子%以上、希土類元
素とMgとの合計の含有量が15原子%以下で、Zrと
希土類元素とMgとの合計の含有量が80原子%以下で
あることを特徴とする。
An amorphous alloy catalyst for methanation of carbon dioxide according to claim 5 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy comprises: Z
r, Y, La, Ce, Nd, Sm, Gd, Tb and D
one or two or more rare earth elements selected from the group consisting of y and Mg, and the balance is substantially Co and / or N
i, the content of Zr is 20 at% or more, the total content of rare earth elements and Mg is 15 at% or less, and the total content of Zr, rare earth elements and Mg is 80 at% or less. It is characterized by the following.

【0018】請求項6の二酸化炭素のメタン化用アモル
ファス合金触媒は、アモルファス合金よりなる前駆体に
酸化還元処理を施してなる二酸化炭素のメタン化用アモ
ルファス合金触媒であって、該アモルファス合金が、T
i,Nb及びTaよりなる群から選ばれる1種又は2種
以上と、Zrと、Y,La,Ce,Nd,Sm,Gd,
Tb及びDyよりなる群から選ばれる1種又は2種以上
の希土類元素と、Mgとを含み、残部が実質的にCo及
び/又はNiよりなり、Zrの含有量が10原子%以
上、Ti,Nb及びTaよりなる群から選ばれる1種又
は2種以上とZrとの合計の含有量が20原子%以上、
希土類元素とMgとの合計の含有量が15原子%以下
で、Ti,Nb及びTaよりなる群から選ばれる1種又
は2種以上とZrと希土類元素とMgとの合計の含有量
が80原子%以下であることを特徴とする。
The amorphous alloy catalyst for methanation of carbon dioxide according to claim 6 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy comprises: T
one or more selected from the group consisting of i, Nb and Ta, Zr, Y, La, Ce, Nd, Sm, Gd,
It contains one or more rare earth elements selected from the group consisting of Tb and Dy, and Mg, and the balance substantially consists of Co and / or Ni. The content of Zr is 10 atom% or more, Ti, A total content of one or more selected from the group consisting of Nb and Ta and Zr and 20 atomic% or more;
The total content of the rare earth element and Mg is 15 atomic% or less, and the total content of one or more selected from the group consisting of Ti, Nb and Ta, Zr, the rare earth element and Mg is 80 atomic%. % Or less.

【0019】即ち、本発明のアモルファス合金触媒は、
Co及びNiの少なくとも1種とZrと希土類元素を必
須成分とするアモルファス合金とこのZrの一部をT
a,Nb,Tiで置換したアモルファス合金、また、C
o及びNiの少なくとも1種とZr及びMgを必須成分
とするアモルファス合金とこのZrの一部をTa,N
b,Tiで置換したアモルファス合金、更にMgと共に
希土元素をも必須成分とするアモルファス合金に酸化還
元処理を施して得られるものである。
That is, the amorphous alloy catalyst of the present invention comprises:
An amorphous alloy containing at least one of Co and Ni, Zr and a rare earth element as essential components, and a part of the Zr
a, Nb, an amorphous alloy substituted with Ti, and C
an amorphous alloy containing at least one of o and Ni, and Zr and Mg as essential components;
This is obtained by subjecting an amorphous alloy substituted with b and Ti, and an amorphous alloy containing a rare earth element as an essential component together with Mg to an oxidation-reduction treatment.

【0020】本出願人らは、アモルファス合金の特性に
ついて鋭意研究を重ねた結果、従来の鉄族金属とZr,
Ti,Nb,Taなどのバルブメタルからなるアモルフ
ァス合金に、更に酸素との親和力が高い希土類元素を加
えたアモルファス合金を作製し、これに酸化還元処理を
施すと、従来の鉄族金属−バルブメタルアモルファス合
金に酸化還元処理を施したものより、二酸化炭素と水素
との反応によるメタン生成に対して更に高い活性を備え
た触媒が得られることを見出し、先願の発明に到った。
The present applicants have conducted intensive studies on the characteristics of amorphous alloys, and as a result, have found that conventional iron group metals and Zr,
An amorphous alloy made of a valve metal such as Ti, Nb, Ta or the like added with a rare earth element having a high affinity for oxygen is produced and subjected to oxidation-reduction treatment to obtain a conventional iron group metal-valve metal. It has been found that a catalyst having higher activity against methane generation by the reaction between carbon dioxide and hydrogen can be obtained than the one obtained by subjecting an amorphous alloy to oxidation-reduction treatment, and the invention of the prior application has been achieved.

【0021】先願と同等の性能は、更に希土類元素を添
加しても得られるはずであるが、前述の如く、この場合
には合金の作製が困難になるという難点があった。
The performance equivalent to that of the prior application should be obtained by further adding a rare earth element, but as described above, there was a drawback that in this case, it was difficult to prepare an alloy.

【0022】しかし、更にアモルファス合金に関する研
究を行った結果、本発明の必須元素であるZrは、希土
類元素又はMgと共存する状態で酸化されると、純Zr
を酸化したときには高温でしか安定しない正方晶構造の
ZrO2 が安定化されるため、安定構造の単斜晶構造の
ZrO2 に加えて正方晶構造のZrO2 が大量に生じ、
これにCo及びNiの少なくとも1種が担持されると、
二酸化炭素と水素との反応によるメタン生成に対して特
に高い活性を備えた触媒が得られることを見出した。ま
た、鉄族金属とZr,Ti,Nb,Taなどのバルブメ
タルからなるアモルファス合金に添加するバルブメタル
の下限を高くすることによって、作製可能な希土類元素
含有量を高めることができることを見出した。本発明は
このような知見に基づいて完成されたものである。
However, as a result of further study on an amorphous alloy, Zr, which is an essential element of the present invention, is oxidized in the state of coexisting with a rare earth element or Mg.
When oxidized, ZrO 2 having a tetragonal structure, which is stable only at a high temperature, is stabilized, and a large amount of ZrO 2 having a tetragonal structure is generated in addition to ZrO 2 having a monoclinic structure having a stable structure.
When at least one of Co and Ni is supported on this,
It has been found that a catalyst having a particularly high activity for the production of methane by the reaction between carbon dioxide and hydrogen can be obtained. Further, they have found that the content of a rare earth element that can be produced can be increased by increasing the lower limit of the valve metal added to an amorphous alloy composed of an iron group metal and a valve metal such as Zr, Ti, Nb, and Ta. The present invention has been completed based on such findings.

【0023】特定の化学反応に対する高い選択的触媒活
性を備えた触媒を得るためには、アルミナ、チタニア、
シリカなどのセラミックスに白金族元素などを担持する
よりは、有効元素を必要量含む合金を前駆体として用い
る方が有利である。しかし、通常の方法で作られる結晶
質金属の場合、多種多量の合金金属を添加すると、しば
しば、化学的性質の異なる多相構造となることが多く、
所定の特性を備えることができないだけでなく、また脆
いために触媒として必要な比表面積の大きな材料が得難
い。
To obtain a catalyst with high selective catalytic activity for a particular chemical reaction, alumina, titania,
It is more advantageous to use an alloy containing a necessary amount of an effective element as a precursor than to carry a platinum group element or the like on ceramics such as silica. However, in the case of crystalline metals made by ordinary methods, the addition of a large amount of various alloy metals often results in a multiphase structure with different chemical properties,
In addition to being unable to have the predetermined characteristics, it is difficult to obtain a material having a large specific surface area required as a catalyst because of its brittleness.

【0024】これに対し、本発明組成のアモルファス合
金は、構成元素が局在することを許さず所定の元素を均
一に固溶している。このようなアモルファス合金を液体
急冷法、スパッター法、メカニカルアロイイング法など
を用いて作製すると、従来では実現しなかった本発明の
アモルファス合金固有の優れた触媒活性を備え、二酸化
炭素を迅速にメタンに変換し得る触媒が得られる。
On the other hand, in the amorphous alloy of the composition of the present invention, the constituent elements are not allowed to be localized, and the predetermined elements are uniformly dissolved. When such an amorphous alloy is manufactured using a liquid quenching method, a sputtering method, a mechanical alloying method, etc., it has excellent catalytic activity unique to the amorphous alloy of the present invention, which has not been realized in the past, and rapidly converts carbon dioxide into methane. A catalyst which can be converted to

【0025】上記組成のアモルファス合金に酸化還元処
理を施して得られる本発明の触媒によれば、大気圧で高
速に二酸化炭素をメタンに変換することができる。
According to the catalyst of the present invention obtained by subjecting an amorphous alloy having the above composition to an oxidation-reduction treatment, carbon dioxide can be rapidly converted to methane at atmospheric pressure.

【0026】[0026]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0027】本発明において、触媒の前駆体となるアモ
ルファス合金の組成は下記表に示す通りである。
In the present invention, the composition of the amorphous alloy serving as the catalyst precursor is as shown in the following table.

【0028】[0028]

【表1】 [Table 1]

【0029】以下に、本発明に係るアモルファス合金の
各成分組成の限定理由を述べる。
The reasons for limiting the composition of each component of the amorphous alloy according to the present invention will be described below.

【0030】Ni及びCoは、本発明に係るアモルファ
ス合金の基礎となる元素であって、バルブメタルである
Zr又はZrの一部を他のバルブメタルであるTa,T
i,Nbの1種以上で置換したものとの共存で、アモル
ファス構造を形成する元素である。このアモルファス構
造の形成のためには、Ni及び/又はCoは20原子%
以上必要であるため、他の元素の合計を80原子%以下
とする。
Ni and Co are elements that form the basis of the amorphous alloy according to the present invention. Zr or a part of Zr as a valve metal is replaced with Ta or T as another valve metal.
It is an element that forms an amorphous structure in coexistence with one substituted by one or more of i and Nb. For the formation of this amorphous structure, Ni and / or Co are 20 atomic%.
Therefore, the total of other elements is set to 80 atomic% or less.

【0031】また、Ni及びCoは活性元素として触媒
反応に寄与する元素でもある。
Ni and Co are also elements that contribute to the catalytic reaction as active elements.

【0032】ZrはZrO2 を生じてNi及びCoに対
する担体として働く必須元素である。
Zr is an essential element that forms ZrO 2 and acts as a carrier for Ni and Co.

【0033】希土類元素及びMgは触媒活性が特に高い
担体として働く正方晶構造のZrO2 の生成量を増す元
素である。
Rare earth elements and Mg are elements that increase the amount of tetragonal structure ZrO 2 acting as a carrier having particularly high catalytic activity.

【0034】しかし、先願においては、Zr又はZrの
一部を他のバルブメタルであるTa,Ti,Nbの1種
以上と置換したものの下限を8原子%としたため、アモ
ルファス合金生成には、希土類元素量は5原子%以下と
せざるを得なかった。これに対し、本発明では、Zr又
はZrの一部を他のバルブメタルであるTa,Ti,N
bの1種以上と置換したものの下限を20原子%とした
ため、5原子%を超える希土類元素の添加が実現した。
しかし、希土類元素の一定量以上の添加は不要であり、
また多量の添加はアモルファス合金の生成を困難にす
る。従って、本発明の請求項1及び請求項2において
は、希土類元素量を5原子%を超え15原子%以下とす
る。
However, in the prior application, Zr or a part of Zr was replaced with at least one of Ta, Ti, and Nb as another valve metal, and the lower limit was set at 8 atomic%. The amount of the rare earth element had to be 5 atomic% or less. On the other hand, in the present invention, Zr or a part of Zr is replaced with another valve metal such as Ta, Ti, N
Since the lower limit of those substituted with one or more kinds of b was set to 20 atomic%, addition of a rare earth element exceeding 5 atomic% was realized.
However, addition of a certain amount or more of rare earth elements is unnecessary,
Also, the addition of a large amount makes it difficult to form an amorphous alloy. Therefore, in claim 1 and claim 2 of the present invention, the amount of the rare earth element is set to more than 5 atomic% and 15 atomic% or less.

【0035】Ti,Nb,TaはZrを置換してNi及
び/又はCoとアモルファス構造を形成する有効元素で
あるが、酸化物となって担体として機能する際、触媒活
性に対するZrO2 の作用をしのぐことはないため、本
発明の請求項2、請求項4及び請求項6において、Zr
の含有量は10原子%以上で、ZrとTi,Nb,Ta
との合計の含有量が20原子%以上とする。
Ti, Nb, and Ta are effective elements that form an amorphous structure with Ni and / or Co by substituting Zr. When they function as an oxide and serve as a carrier, they exert an effect of ZrO 2 on the catalytic activity. Since it cannot surpass, Zr in claims 2, 4 and 6 of the present invention
Is 10 atomic% or more, and Zr and Ti, Nb, Ta
Is 20 atomic% or more.

【0036】前述のように、Mgは触媒活性が特に高い
担体として働く正方晶構造のZrO2 の生成量を増す元
素であるが、一定量以上の添加は不要であり、また多量
の添加はアモルファス合金の生成を困難にするため、本
発明の請求項3及び請求項4においてMgの含有量は1
5原子%以下とする。
As described above, Mg is an element that increases the amount of ZrO 2 having a tetragonal structure that acts as a carrier having a particularly high catalytic activity. However, it is not necessary to add a certain amount or more. In order to make it difficult to form an alloy, the content of Mg in claims 3 and 4 of the present invention is 1
5 at% or less.

【0037】また、Mgと希土類元素の共存も、活性が
特に高い担体として働く正方晶構造のZrO2 の生成量
を増すのに有効であるが、一定量以上の添加は不要であ
る上に、多量の添加はアモルファス合金の生成を困難に
するため、本発明の請求項5及び請求項6において、M
gと希土類元素の合計の含有量は15原子%以下とす
る。
The coexistence of Mg and a rare earth element is also effective in increasing the amount of tetragonal ZrO 2 acting as a carrier having a particularly high activity, but it is not necessary to add a certain amount or more. Since the addition of a large amount makes the formation of an amorphous alloy difficult, in the fifth and sixth aspects of the present invention, M
The total content of g and the rare earth element is 15 atomic% or less.

【0038】なお、本発明に係るアモルファス合金にお
いて、Ni及び/又はCoの一部を小量のFeで置換す
ることは本発明の目的に何ら支障を与えるものではな
い。
It should be noted that substituting a part of Ni and / or Co with a small amount of Fe in the amorphous alloy according to the present invention does not affect the object of the present invention.

【0039】本発明の二酸化炭素のメタン化用アモルフ
ァス合金触媒は、液体急冷法、スパッター法、メカニカ
ルアロイイング法等により得られた上記組成のアモルフ
ァス合金を前駆体とし、これを酸化還元処理することに
より得られる。
The amorphous alloy catalyst for methanation of carbon dioxide of the present invention is obtained by subjecting an amorphous alloy having the above composition obtained by a liquid quenching method, a sputtering method, a mechanical alloying method or the like to a precursor, and subjecting the same to a redox treatment. Is obtained by

【0040】このアモルファス合金の酸化還元処理は、
例えば、アモルファス合金を酸素雰囲気中300〜70
0℃で1〜12時間加熱して酸化した後、水素雰囲気中
100〜500℃で1〜24時間加熱して還元すること
により行うことができる。
The oxidation-reduction treatment of this amorphous alloy is performed by
For example, an amorphous alloy is placed in an oxygen atmosphere at 300-70.
After oxidizing by heating at 0 ° C. for 1 to 12 hours, reduction can be performed by heating at 100 to 500 ° C. for 1 to 24 hours in a hydrogen atmosphere.

【0041】このようにして得られる本発明の二酸化炭
素のメタン化用アモルファス合金触媒は、二酸化炭素と
水素とを所定のモル比で反応させるメタン化反応の触媒
として高い触媒活性を示す。
The thus obtained amorphous alloy catalyst for methanation of carbon dioxide of the present invention exhibits high catalytic activity as a catalyst for methanation reaction in which carbon dioxide and hydrogen are reacted at a predetermined molar ratio.

【0042】なお、本発明の二酸化炭素のメタン化用ア
モルファス合金触媒を用いて、二酸化炭素のメタン化を
行なうには、例えば、本発明の二酸化炭素のメタン化用
アモルファス合金触媒1gを充填した反応管に、二酸化
炭素と水素とをCO2 :H2=1:1〜4(モル比)の
割合で混合したガスを100〜300℃で15〜300
ml/minで流通させて反応させれば良い。
In order to methanize carbon dioxide using the amorphous carbon dioxide methanation catalyst of the present invention, for example, a reaction filled with 1 g of the carbon dioxide methanation amorphous alloy catalyst of the present invention is performed. A gas in which carbon dioxide and hydrogen are mixed in a ratio of CO 2 : H 2 = 1: 1 to 4 (molar ratio) in a tube at 15 to 300 ° C. at 100 to 300 ° C.
The reaction may be carried out at a flow rate of ml / min.

【0043】[0043]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0044】実施例1,2,比較例1 表2に示す組成となるように原料金属を混合し、アルゴ
ンアーク溶融により原料合金を作製した。この合金をア
ルゴン雰囲気中で再溶融し、図1に示す単ロール法で超
急冷凝固させることにより、厚さ0.01〜0.05m
m、幅1〜3mm、長さ3〜20mのアモルファス合金
薄板を得た。
Examples 1, 2 and Comparative Example 1 Raw materials were mixed to have the compositions shown in Table 2, and raw material alloys were produced by argon arc melting. This alloy was re-melted in an argon atmosphere and was rapidly quenched and solidified by the single roll method shown in FIG.
m, a width of 1 to 3 mm, and a length of 3 to 20 m were obtained.

【0045】図1において、1は石英管であり、2はそ
の原料挿入口、3は先端の垂直ノズルである。この石英
管1内に入れた原料合金4を加熱炉5によりアルゴンガ
ス雰囲気中で加熱溶融させ、溶融合金をモータ6で高速
回転させたロール7の表面に高圧のアルゴンガスで吹き
つけてアモルファス合金薄板を得る。なお、図1におい
て破線で囲まれた部分は真空チャンバー内に設置されて
いる。
In FIG. 1, 1 is a quartz tube, 2 is a raw material insertion port, and 3 is a vertical nozzle at the tip. The raw material alloy 4 put in the quartz tube 1 is heated and melted in a heating furnace 5 in an argon gas atmosphere. Obtain a thin plate. In FIG. 1, a portion surrounded by a broken line is installed in a vacuum chamber.

【0046】得られた薄板のアモルファス構造形成の確
認はX線回析によって行なった。
The formation of an amorphous structure in the obtained thin plate was confirmed by X-ray diffraction.

【0047】次いで、得られたアモルファス合金薄板の
試料を、酸素雰囲気中にて500℃で3時間酸化した
後、水素雰囲気中にて300℃で1時間還元して触媒を
得た。
Next, the sample of the obtained amorphous alloy thin plate was oxidized in an oxygen atmosphere at 500 ° C. for 3 hours, and then reduced in a hydrogen atmosphere at 300 ° C. for 1 hour to obtain a catalyst.

【0048】得られた触媒1gを内径8mmのガラス管
に5cmの長さにつめて反応管とし、これを電気炉内に
設置した。この反応管に、所定の温度にてCO2 とH2
をモル比で1:4含むガスを流速60ml/minで流
し、反応管出口におけるCO2 ,H2 ,CH4 ,その他
検出される物質の量をガスクロマトグラフで測定した。
その結果、検出される物質はCO2 ,H2 ,CH4 のみ
であって、選択率100%でCH4 が生じることが確認
された。各反応温度におけるCO2 からCH4への変換
率を表2に示す。
1 g of the obtained catalyst was packed in a glass tube having an inner diameter of 8 mm to a length of 5 cm to form a reaction tube, which was placed in an electric furnace. CO 2 and H 2 are added to the reaction tube at a predetermined temperature.
Was flowed at a flow rate of 60 ml / min, and the amounts of CO 2 , H 2 , CH 4 , and other detected substances at the outlet of the reaction tube were measured by gas chromatography.
As a result, it was confirmed that only the detected substances were CO 2 , H 2 , and CH 4 , and CH 4 was generated at a selectivity of 100%. Table 2 shows the conversion from CO 2 to CH 4 at each reaction temperature.

【0049】[0049]

【表2】 [Table 2]

【0050】表2より、Ni−30原子%Zr−10原
子%Y及びNi−30原子%Zr−10原子%Sm合金
に酸化還元処理を施して得られる本発明の触媒はCO2
からCH4 への変換用高活性触媒であることが明らかで
ある。
From Table 2, it can be seen that the catalyst of the present invention obtained by subjecting the Ni-30 atomic% Zr-10 atomic% Y and Ni-30 atomic% Zr-10 atomic% Sm alloys to oxidation-reduction treatment is CO 2
It is clear that from a conversion highly active catalyst into CH 4.

【0051】実施例3〜25 実施例1において、合金組成を表3に示す組成としたこ
と以外は同様にして触媒を調製し、同様に二酸化炭素の
メタン化反応を行い、その時のCO2 からCH4 への変
換率を調べ、結果を表3に示した。
[0051] In Example 3-25 Example 1, the alloy composition in the same manner except for using the composition shown in Table 3 to prepare a catalyst, likewise performed methanation reaction of carbon dioxide, from the CO 2 at that time The conversion to CH 4 was determined and the results are shown in Table 3.

【0052】[0052]

【表3】 [Table 3]

【0053】表3より、本発明の二酸化炭素のメタン化
用アモルファス合金触媒は極めて高活性であることが明
らかである。
From Table 3, it is clear that the amorphous alloy catalyst for methanation of carbon dioxide of the present invention has extremely high activity.

【0054】[0054]

【発明の効果】以上詳述した通り、本発明の二酸化炭素
のメタン化用アモルファス合金触媒によれば、大気圧下
の反応で大量の二酸化炭素を効率的にメタンに変換する
ことが可能とされている。
As described in detail above, according to the amorphous alloy catalyst for methanation of carbon dioxide of the present invention, a large amount of carbon dioxide can be efficiently converted to methane by a reaction under atmospheric pressure. ing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るアモルファス合金を製造するため
の装置の一例を示す断面図である。
FIG. 1 is a sectional view showing an example of an apparatus for producing an amorphous alloy according to the present invention.

【符号の説明】[Explanation of symbols]

1 原料挿入口 2 石英管 3 垂直ノズル 4 原料合金 5 加熱炉 6 モータ 7 高速回転ロール DESCRIPTION OF SYMBOLS 1 Raw material insertion port 2 Quartz tube 3 Vertical nozzle 4 Raw material alloy 5 Heating furnace 6 Motor 7 High-speed rotating roll

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B01D 53/86 B01D 53/36 Z (72)発明者 嶋村 和郎 東京都中央区築地5丁目6番4号 三井造 船株式会社内 (72)発明者 吉田 健 宮城県仙台市太白区三神峯2丁目14−18 (72)発明者 幅崎 浩樹 宮城県仙台市太白区長町8丁目2−31 (72)発明者 秋山 英二 宮城県仙台市太白区向山2丁目13−5──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI // B01D 53/86 B01D 53/36 Z (72) Inventor Kazuo Shimamura 5-6-4 Tsukiji, Chuo-ku, Tokyo Mitsui Engineering Ship Inc. (72) Inventor Ken Yoshida 2-14-18, Sanjinmine, Taihaku-ku, Sendai City, Miyagi Prefecture (72) Inventor Hiroki Hirosaki 8-2-131 Nagamachi, Taishiro-ku, Sendai City, Miyagi Prefecture (72) Eiji Akiyama Miyagi 13-5 Mukaiyama, Taihaku-ku, Sendai City, Japan

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アモルファス合金よりなる前駆体に酸化
還元処理を施してなる二酸化炭素のメタン化用アモルフ
ァス合金触媒であって、 該アモルファス合金が、Zrと、Y,La,Ce,N
d,Sm,Gd,Tb及びDyよりなる群から選ばれる
1種又は2種以上の希土類元素とを含み、残部が実質的
にCo及び/又はNiよりなり、Zrの含有量が20原
子%以上、希土類元素の含有量が5原子%を超え15原
子%以下で、Zrと希土類元素との合計の含有量が80
原子%以下であることを特徴とする二酸化炭素のメタン
化用アモルファス合金触媒。
1. An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy comprises Zr, Y, La, Ce, and N.
one or more rare earth elements selected from the group consisting of d, Sm, Gd, Tb and Dy, and the balance substantially consisting of Co and / or Ni, with a Zr content of 20 atomic% or more The content of the rare earth element is more than 5 atomic% and not more than 15 atomic%, and the total content of Zr and the rare earth element is 80%.
An amorphous alloy catalyst for methanation of carbon dioxide, which is at most atomic%.
【請求項2】 アモルファス合金よりなる前駆体に酸化
還元処理を施してなる二酸化炭素のメタン化用アモルフ
ァス合金触媒であって、 該アモルファス合金が、Ti,Nb及びTaよりなる群
から選ばれる1種又は2種以上と、Zrと、Y,La,
Ce,Nd,Sm,Gd,Tb及びDyよりなる群から
選ばれる1種又は2種以上の希土類元素とを含み、残部
が実質的にCo及び/又はNiよりなり、Zrの含有量
が10原子%以上、Ti,Nb及びTaよりなる群から
選ばれる1種又は2種以上とZrとの合計の含有量が2
0原子%以上、希土類元素の含有量が5原子%を超え1
5原子%以下で、Ti,Nb及びTaよりなる群から選
ばれる1種又は2種以上とZrと希土類元素との合計の
含有量が80原子%以下であることを特徴とする二酸化
炭素のメタン化用アモルファス合金触媒。
2. An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor comprising an amorphous alloy to a redox treatment, wherein the amorphous alloy is one selected from the group consisting of Ti, Nb and Ta. Or two or more, Zr, Y, La,
One or more rare earth elements selected from the group consisting of Ce, Nd, Sm, Gd, Tb and Dy, and the balance substantially consisting of Co and / or Ni, and a Zr content of 10 atoms % Or more, and the total content of one or more selected from the group consisting of Ti, Nb and Ta and Zr is 2%.
0 atomic% or more, rare earth element content exceeds 5 atomic% and 1
Methane of carbon dioxide, wherein the total content of one or more selected from the group consisting of Ti, Nb and Ta, Zr and a rare earth element is 80 atomic% or less. Amorphous alloy catalyst.
【請求項3】 アモルファス合金よりなる前駆体に酸化
還元処理を施してなる二酸化炭素のメタン化用アモルフ
ァス合金触媒であって、 該アモルファス合金が、ZrとMgとを含み、残部が実
質的にCo及び/又はNiよりなり、Zrの含有量が2
0原子%以上、Mgの含有量が15原子%以下で、Zr
とMgとの合計の含有量が80原子%以下であることを
特徴とする二酸化炭素のメタン化用アモルファス合金触
媒。
3. An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy contains Zr and Mg, and the balance is substantially Co. And / or Ni, and the Zr content is 2
0 atomic% or more, Mg content is 15 atomic% or less, Zr
An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that the total content of Mg and Mg is 80 atomic% or less.
【請求項4】 アモルファス合金よりなる前駆体に酸化
還元処理を施してなる二酸化炭素のメタン化用アモルフ
ァス合金触媒であって、 該アモルファス合金が、Ti,Nb及びTaよりなる群
から選ばれる1種又は2種以上と、ZrとMgとを含
み、残部が実質的にCo及び/又はNiよりなり、Zr
の含有量が10原子%以上、Ti,Nb及びTaよりな
る群から選ばれる1種又は2種以上とZrとの合計の含
有量が20原子%以上、Mgの含有量が15原子%以下
で、Ti,Nb及びTaよりなる群から選ばれる1種又
は2種以上とZrとMgとの合計の含有量が80原子%
以下であることを特徴とする二酸化炭素のメタン化用ア
モルファス合金触媒。
4. An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy is one selected from the group consisting of Ti, Nb and Ta. Or Zr and Mg, the balance being substantially composed of Co and / or Ni;
Is not less than 10 atomic%, the total content of one or more selected from the group consisting of Ti, Nb and Ta and Zr is not less than 20 atomic%, and the Mg content is not more than 15 atomic%. , Ti, Nb and Ta, the total content of one or more selected from the group consisting of Zr and Mg is 80 atomic%.
An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that:
【請求項5】 アモルファス合金よりなる前駆体に酸化
還元処理を施してなる二酸化炭素のメタン化用アモルフ
ァス合金触媒であって、 該アモルファス合金が、Zrと、Y,La,Ce,N
d,Sm,Gd,Tb及びDyよりなる群から選ばれる
1種又は2種以上の希土類元素と、Mgとを含み、残部
が実質的にCo及び/又はNiよりなり、Zrの含有量
が20原子%以上、希土類元素とMgとの合計の含有量
が15原子%以下で、Zrと希土類元素とMgとの合計
の含有量が80原子%以下であることを特徴とする二酸
化炭素のメタン化用アモルファス合金触媒。
5. An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy comprises Zr, Y, La, Ce, and N.
one or more rare earth elements selected from the group consisting of d, Sm, Gd, Tb, and Dy, and Mg, and the balance substantially consisting of Co and / or Ni; Carbon dioxide methanation, characterized in that the total content of rare earth elements and Mg is 15 atomic% or less, and the total content of Zr, rare earth elements and Mg is 80 atomic% or less. For amorphous alloy catalyst.
【請求項6】 アモルファス合金よりなる前駆体に酸化
還元処理を施してなる二酸化炭素のメタン化用アモルフ
ァス合金触媒であって、 該アモルファス合金が、Ti,Nb及びTaよりなる群
から選ばれる1種又は2種以上と、Zrと、Y,La,
Ce,Nd,Sm,Gd,Tb及びDyよりなる群から
選ばれる1種又は2種以上の希土類元素と、Mgとを含
み、残部が実質的にCo及び/又はNiよりなり、Zr
の含有量が10原子%以上、Ti,Nb及びTaよりな
る群から選ばれる1種又は2種以上とZrとの合計の含
有量が20原子%以上、希土類元素とMgとの合計の含
有量が15原子%以下で、Ti,Nb及びTaよりなる
群から選ばれる1種又は2種以上とZrと希土類元素と
Mgとの合計の含有量が80原子%以下であることを特
徴とする二酸化炭素のメタン化用アモルファス合金触
媒。
6. An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to a redox treatment, wherein the amorphous alloy is one selected from the group consisting of Ti, Nb and Ta. Or two or more, Zr, Y, La,
One or more rare earth elements selected from the group consisting of Ce, Nd, Sm, Gd, Tb and Dy, and Mg, and the balance substantially consisting of Co and / or Ni;
Is 10 atomic% or more, the total content of one or more selected from the group consisting of Ti, Nb and Ta and Zr is 20 atomic% or more, and the total content of rare earth elements and Mg is Is not more than 15 atomic%, and the total content of one or more selected from the group consisting of Ti, Nb and Ta, Zr, a rare earth element and Mg is not more than 80 atomic%. Amorphous alloy catalyst for methanation of carbon.
JP05159897A 1997-03-06 1997-03-06 Amorphous alloy catalysts for methanation of carbon dioxide Expired - Lifetime JP3819516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05159897A JP3819516B2 (en) 1997-03-06 1997-03-06 Amorphous alloy catalysts for methanation of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05159897A JP3819516B2 (en) 1997-03-06 1997-03-06 Amorphous alloy catalysts for methanation of carbon dioxide

Publications (2)

Publication Number Publication Date
JPH10244158A true JPH10244158A (en) 1998-09-14
JP3819516B2 JP3819516B2 (en) 2006-09-13

Family

ID=12891352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05159897A Expired - Lifetime JP3819516B2 (en) 1997-03-06 1997-03-06 Amorphous alloy catalysts for methanation of carbon dioxide

Country Status (1)

Country Link
JP (1) JP3819516B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090042998A1 (en) * 2007-08-03 2009-02-12 Daiki Ataka Engineering Co., Ltd. Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP2009034650A (en) * 2007-08-03 2009-02-19 Daiki Ataka Engineering Co Ltd Methanation catalyst of carbon oxide, its manufacturing method and methanation method
JP2015038056A (en) * 2013-07-19 2015-02-26 豊田合成株式会社 Method for producing hydrocarbon
US10343147B2 (en) 2014-07-19 2019-07-09 Hitachi Zosen Corporation Methanation reaction catalyst, method for producing methanation reaction catalyst and method for producing methane
CN111116346A (en) * 2019-12-31 2020-05-08 上海师范大学 Supercritical CO based on amorphous alloy2Hydrogenation process
CN114797867A (en) * 2022-03-10 2022-07-29 宁夏大学 Amorphous alloy photo-thermal catalyst and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732010B2 (en) 2007-08-03 2017-08-15 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP2009034650A (en) * 2007-08-03 2009-02-19 Daiki Ataka Engineering Co Ltd Methanation catalyst of carbon oxide, its manufacturing method and methanation method
EP2033943A1 (en) 2007-08-03 2009-03-11 Daiki Ataka Engineering Co., Ltd. Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US20090042998A1 (en) * 2007-08-03 2009-02-12 Daiki Ataka Engineering Co., Ltd. Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US9617196B2 (en) * 2007-08-03 2017-04-11 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
US9731278B2 (en) 2007-08-03 2017-08-15 Hitachi Zosen Corporation Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation
JP2015038056A (en) * 2013-07-19 2015-02-26 豊田合成株式会社 Method for producing hydrocarbon
US10343147B2 (en) 2014-07-19 2019-07-09 Hitachi Zosen Corporation Methanation reaction catalyst, method for producing methanation reaction catalyst and method for producing methane
CN111116346A (en) * 2019-12-31 2020-05-08 上海师范大学 Supercritical CO based on amorphous alloy2Hydrogenation process
WO2021135387A1 (en) * 2019-12-31 2021-07-08 上海师范大学 Amorphous alloy-based process for use in supercritical co2 hydrogenation
CN111116346B (en) * 2019-12-31 2021-10-22 上海师范大学 Supercritical CO based on amorphous alloy2Hydrogenation process
CN114797867A (en) * 2022-03-10 2022-07-29 宁夏大学 Amorphous alloy photo-thermal catalyst and preparation method and application thereof
CN114797867B (en) * 2022-03-10 2023-10-31 宁夏大学 Amorphous alloy photo-thermal catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP3819516B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
US10159969B2 (en) Ammonia synthesis at moderate conditions using hydrogen permeable membrane reactors
JP2000254508A (en) Catalyst for methanizing carbon dioxide
JPH07116517A (en) Methanol reforming catalyst, its production and methanol reforming method
JPH10244158A (en) Amorphous alloy catalyst for conversion of carbon dioxide into methane
JP7125229B2 (en) Cluster-supported catalyst and method for producing the same
FI103954B (en) Method for Activating the Surface of Heavy Duty Heavy Metal Carbides for Catalytic Reactions
JP3932494B2 (en) Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof
US6478853B1 (en) Amorphous Ni alloy membrane for separation/dissociation of hydrogen, preparing method and activating method thereof
JP3819486B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
US5220108A (en) Amorphous alloy catalysts for decomposition of flons
JP4772561B2 (en) Methanol reforming catalyst, shift catalyst, method for producing methanol reforming catalyst, and method for producing shift catalyst
EP0448976B1 (en) The use of an amorphous alloy catalyst for decomposition of chlorofluorocarbons
EP0446710B1 (en) The use of an amorphous alloy catalyst for conversion of carbon dioxide
JP4006107B2 (en) Method and apparatus for producing high purity CO
JP3226571B2 (en) Amorphous alloy catalyst for carbon dioxide conversion
JP2004181435A5 (en)
JPH1190227A (en) Amorphous alloy catalyst for hydrocarbon-modified gas containing sulfur
JPH08269598A (en) Oxidation catalyst for gaseous sulfur compound
Komori et al. Decomposition of nitrogen monoxide over NiTa2O6-supported palladium catalysts prepared from amorphous alloy precursors
Szummer et al. Effect of hydrogenation under high pressure on the structure and catalytic properties of Cu–Zr amorphous alloys
CN115652160B (en) Vanadium alloy membrane material for separating and purifying ammonia decomposition hydrogen and preparation method thereof
KR100253915B1 (en) Method for manufacturing cobalt metal using nitrogen reducing agent
JPS56108538A (en) Catalyst for preparing methane and preparation thereof
CA2024582A1 (en) Amorphous alloy catalysts for conversion of exhaust gases to harmless gases
JPH08215570A (en) Catalyst for synthesis of methanol, production thereof and synthesis of methanol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term