JPH10241555A - Transmission type photoelectric cathode - Google Patents

Transmission type photoelectric cathode

Info

Publication number
JPH10241555A
JPH10241555A JP3926597A JP3926597A JPH10241555A JP H10241555 A JPH10241555 A JP H10241555A JP 3926597 A JP3926597 A JP 3926597A JP 3926597 A JP3926597 A JP 3926597A JP H10241555 A JPH10241555 A JP H10241555A
Authority
JP
Japan
Prior art keywords
holes
semiconductor substrate
photocathode
electrons
transmission type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3926597A
Other languages
Japanese (ja)
Inventor
Minoru Hagino
實 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP3926597A priority Critical patent/JPH10241555A/en
Publication of JPH10241555A publication Critical patent/JPH10241555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric cathode with which the number of emitted electrons can be increased. SOLUTION: This transmission type photoelectric cathode 10 comprises a semiconductor substrate having a first and a second through holes 10b, 10c neighboring each other. The shortest distance DL between the inner faces of the first and the second through holes 10b, 10c is set so as to make electrons (e), which are generated in the semiconductor substrate 5 corresponding to the applied electromagnetic waves XR and proceeding in the direction to the first and the second through holes 10b, 10c, escape to either of the first and the second through holes 10b, 10c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線やγ線等の電
磁波の入射に応じて電子を発生して出射する光電陰極に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocathode that generates and emits electrons in response to the incidence of electromagnetic waves such as X-rays and gamma rays.

【0002】[0002]

【従来の技術】従来の光電陰極は、特公平5−0334
86号公報に記載されている。同公報には、入射した光
に応じて電子を出射する反射型光電面(光電陰極)が記
載されている。この光電陰極の表面には凹凸が形成され
ており、凸部の幅を略電子拡散長(1μm)に設定する
ことにより、凸部で発生した電子が容易に凹部内に脱出
できるようにされている。
2. Description of the Related Art A conventional photocathode is disclosed in Japanese Patent Publication No. 5-0334.
No. 86 is described. This publication describes a reflective photocathode (photocathode) that emits electrons in response to incident light. Irregularities are formed on the surface of the photocathode, and by setting the width of the convex portion to approximately the electron diffusion length (1 μm), electrons generated in the convex portion can easily escape into the concave portion. I have.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、透過型
光電陰極においては、光電陰極の表面にこのような凹凸
を形成しても、発生した電子は光の入射面と反対側の面
には放出されない。本発明は、このような課題に基づい
てなされたものであり、入射した電磁波に応じて放出さ
れる電子数を増加させることが可能な透過型光電陰極を
提供することを目的とする。
However, in a transmission type photocathode, even if such irregularities are formed on the surface of the photocathode, the generated electrons are not emitted to the surface opposite to the light incident surface. . The present invention has been made based on such a problem, and has as its object to provide a transmission-type photocathode capable of increasing the number of electrons emitted in response to an incident electromagnetic wave.

【0004】[0004]

【課題を解決するための手段】上述の課題を解決するた
め、本発明に係る透過型光電陰極は、入射した電磁波に
応じて発生した電子を出射する透過型光電陰極を対象と
し、隣接した第1及び第2貫通孔を有する半導体部材を
備え、第1及び第2貫通孔の内面間の最短距離は、入射
した電磁波に応じて半導体部材内で発生し、第1及び第
2貫通孔の方向に進行した電子が、第1及び第2貫通孔
の少なくともいずれか一方内に脱出できるように設定さ
れていることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a transmission type photocathode according to the present invention is intended for a transmission type photocathode which emits electrons generated in response to an incident electromagnetic wave. A semiconductor member having first and second through-holes, wherein the shortest distance between the inner surfaces of the first and second through-holes is generated in the semiconductor member in response to an incident electromagnetic wave, and the direction of the first and second through-holes; It is set so that electrons that have progressed to can escape into at least one of the first and second through holes.

【0005】第1及び第2貫通孔の内面の最短距離は、
第1及び第2貫通孔の方向に進行した電子が、第1及び
第2貫通孔の少なくともいずれか一方内に脱出できるよ
うに設定されているので、この光電陰極から放出される
電子数を増加させることができる。
[0005] The shortest distance between the inner surfaces of the first and second through holes is:
The number of electrons emitted from the photocathode is increased because the electron traveling in the direction of the first and second through holes is set so as to escape into at least one of the first and second through holes. Can be done.

【0006】また、この半導体部材は半導体材料からな
る複数のファイバを束ねてなり、第1及び第2貫通孔は
ファイバ間の隙間によって規定されることが好ましい。
この場合、第1及び第2貫通孔は、ファイバを束ねるこ
とにより容易に形成することができる。
The semiconductor member is preferably formed by bundling a plurality of fibers made of a semiconductor material, and the first and second through holes are preferably defined by a gap between the fibers.
In this case, the first and second through holes can be easily formed by bundling the fibers.

【0007】[0007]

【発明の実施の形態】以下、実施の形態に係る透過型光
電陰極について説明する。同一要素又は同一機能を有す
る要素には同一符号を用いるものとし、重複する説明は
省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A transmission type photocathode according to an embodiment will be described below. The same reference numerals are used for the same elements or elements having the same functions, and overlapping descriptions are omitted.

【0008】図1は、この透過型光電陰極10を備えた
イメージインテンシファイア(II管)等の電子管10
0を一部破断して示す正面図である。なお、同図内にお
いては、II管100内に配置される金属配線や各素子
を支持する部材の記載は省略する。II管100は、コ
バール等の金属からなる側管1と、側管1の両端の開口
をそれぞれ封止するガラス面板2及び蛍光体3が設けら
れたガラスファイバ14とを備えており、側管1内に真
空環境(10-5torr以下の減圧環境)を提供している。
なお、以下の説明においては、面板2側を上側とし、ガ
ラスファイバ14側を下側とする。
FIG. 1 shows an electron tube 10 such as an image intensifier (II tube) provided with the transmission type photocathode 10.
FIG. It should be noted that, in the figure, the description of the metal wiring and members supporting each element arranged in the II tube 100 is omitted. The II tube 100 includes a side tube 1 made of metal such as Kovar, and a glass face plate 2 that seals openings at both ends of the side tube 1 and a glass fiber 14 provided with a phosphor 3. 1 provides a vacuum environment (a reduced pressure environment of 10 -5 torr or less).
In the following description, the face plate 2 side is the upper side, and the glass fiber 14 side is the lower side.

【0009】側管1内の面板2の表面には光電陰極10
が固定されており、側管1内の蛍光体3の表面には電極
13が固定されている。光電陰極10と電極13との間
には、光電陰極10から真空中に放出された電子を加速
する電位を与えるためのグリッド電極11、グリッド電
極11を通過した電子を増倍して出射するMCP(マイ
クロチャンネルプレート)等の電子増倍器12が配置さ
れている。陽極を構成する電極13に到達した電子は、
蛍光体3によって蛍光に変換されるので、ガラスファイ
バ14の外側の面からは、面板2に入射した光像が増倍
された光像となって出力される。
A photocathode 10 is provided on the surface of the face plate 2 in the side tube 1.
Are fixed, and an electrode 13 is fixed on the surface of the phosphor 3 in the side tube 1. Between the photocathode 10 and the electrode 13, a grid electrode 11 for giving a potential for accelerating the electrons emitted from the photocathode 10 into a vacuum, and an MCP for multiplying and passing electrons passing through the grid electrode 11 An electron multiplier 12 such as a (micro channel plate) is arranged. Electrons reaching the electrode 13 constituting the anode are:
Since the light is converted into fluorescent light by the phosphor 3, the light image incident on the face plate 2 is output as a multiplied light image from the outer surface of the glass fiber 14.

【0010】図2は、図1に示したII管100のA−
A矢印断面図である。光電陰極10には、長手方向に垂
直な断面の形状が略円形の貫通孔10a,10bを含む
複数の貫通孔が形成されており、これらの貫通孔は、そ
の中心が光電陰極10の面板2側の表面内において正六
角形の頂点をなすような位置に形成されている。また、
光電陰極10の外周の形状は、略円形であるが、これは
長方形であってもよい。
FIG. 2 is a sectional view of the II-tube 100 shown in FIG.
It is A arrow sectional drawing. The photocathode 10 is formed with a plurality of through-holes including through-holes 10 a and 10 b whose cross section perpendicular to the longitudinal direction has a substantially circular shape, and the center of these through-holes is the face plate 2 of the photocathode 10. It is formed at a position that forms a vertex of a regular hexagon in the surface on the side. Also,
The shape of the outer periphery of the photocathode 10 is substantially circular, but may be rectangular.

【0011】図3は、図2に示した光電陰極10のB−
B矢印断面図である。光電陰極10は、上面電極4と、
上面電極4がその上面に形成された半導体基板(半導体
部材)5と、半導体基板5の下面に形成された絶縁層6
と、半導体基板5の下面側に絶縁層6を介して固定され
た下面電極7とを備える。なお、図1に示したグリッド
電極11をII管100が備える場合は、絶縁層6及び
下面電極7を省略してもよい。なお、上述した貫通孔の
内面に仕事関数を低下させるためにCs−O等を堆積し
てもよい。
FIG. 3 is a sectional view of the photocathode 10 shown in FIG.
It is arrow B sectional drawing. The photocathode 10 includes an upper electrode 4 and
A semiconductor substrate (semiconductor member) 5 having an upper electrode 4 formed on the upper surface thereof, and an insulating layer 6 formed on a lower surface of the semiconductor substrate 5
And a lower electrode 7 fixed to the lower surface of the semiconductor substrate 5 with an insulating layer 6 interposed therebetween. When the II tube 100 includes the grid electrode 11 shown in FIG. 1, the insulating layer 6 and the lower electrode 7 may be omitted. Note that Cs—O or the like may be deposited on the inner surface of the above-described through hole to lower the work function.

【0012】図1に示した面板2を透過したX線やγ線
等の電磁波XRが光電陰極10の半導体基板5内に入射
すると、半導体基板5内において電子eが発生し、発生
した電子eは貫通孔10a〜10d内に進行する。ここ
で、半導体基板5は、隣接した第1及び第2貫通孔10
b,10cを有しており、第1及び第2貫通孔10b,
10cの内面間の最短距離DLは、入射した電磁波XR
に応じて半導体基板5内で発生し、第1及び第2貫通孔
10b,10cの方向に進行した電子eが、第1及び第
2貫通孔10b,10cの少なくともいずれか一方内に
脱出できるように設定されている。この最短距離DL
は、発生した電子の拡散長の2倍よりも短い。ここで
は、距離DLを2μmとし、各貫通孔10a〜10dの
直径D1を1.4μmとする。この場合、半導体基板5
の厚み方向に垂直な平面内における貫通孔10a〜10
dを含む全体の貫通孔の占める割合は約40%である。
なお、半導体基板5の厚みは20μmである。また、各
貫通孔10a〜10dの長手方向は、半導体基板5の厚
み方向に対して交差しており、半導体基板5の表面に垂
直に入射した電磁波XRが、半導体基板5を通過するこ
となく貫通孔10a〜10d内を通過することを防止し
ている。
When an electromagnetic wave XR such as X-ray or γ-ray transmitted through the face plate 2 shown in FIG. 1 enters the semiconductor substrate 5 of the photocathode 10, electrons e are generated in the semiconductor substrate 5, and the generated electrons e Proceeds into the through holes 10a to 10d. Here, the semiconductor substrate 5 is formed between the adjacent first and second through holes 10.
b, 10c, and the first and second through holes 10b,
The shortest distance DL between the inner surfaces of 10c is the incident electromagnetic wave XR
The electrons e generated in the semiconductor substrate 5 according to the above and advanced in the directions of the first and second through holes 10b and 10c can escape into at least one of the first and second through holes 10b and 10c. Is set to This shortest distance DL
Is shorter than twice the diffusion length of the generated electrons. Here, the distance DL is 2 μm, and the diameter D 1 of each of the through holes 10 a to 10 d is 1.4 μm. In this case, the semiconductor substrate 5
Through holes 10a-10 in a plane perpendicular to the thickness direction of
The ratio of the entire through hole including d is about 40%.
Note that the thickness of the semiconductor substrate 5 is 20 μm. The longitudinal direction of each of the through holes 10 a to 10 d intersects the thickness direction of the semiconductor substrate 5, and the electromagnetic wave XR perpendicularly incident on the surface of the semiconductor substrate 5 penetrates without passing through the semiconductor substrate 5. It is prevented from passing through the holes 10a to 10d.

【0013】以上のように、本実施の形態に係る透過型
光電陰極10によれば、複数の貫通孔10a〜10dを
最短距離DL以下の間隔で設けることにより、半導体基
板5の厚みを厚くすることができる。すなわち、X線や
γ線等の半導体物質に対して透過性が高く吸収されにく
い入射光を、厚みの薄い半導体基板5に照射した場合に
は、入射光が半導体物質に十分吸収されず、これを用い
た電子管の検出感度を向上させることができない。半導
体基板5の厚みを厚くすると、入射光は十分に吸収され
るが、電子の拡散長は1μm程度であるので、入射光の
入力に対応して半導体基板5内で発生した電子が半導体
基板5内から脱出できない。本実施の形態に係る透過型
光電陰極10は、発生した電子が最小距離DLの1/2
だけ貫通孔10a〜10d方向に進行すれば、この電子
が貫通孔10a〜10d内に脱出できる。好ましい半導
体基板5の厚みは3μm以上である。このような厚みと
することにより、光電陰極10を構成する半導体基板5
内で発生する電子数を増加させることができるととも
に、半導体基板5から脱出できる電子数も増加させるこ
とができる。X線に感度を有する半導体基板5の好まし
い材料は、GaAsの他、Si、InP、CdTe、C
dZnTe及びPbO等である。
As described above, according to the transmission type photocathode 10 according to the present embodiment, the thickness of the semiconductor substrate 5 is increased by providing the plurality of through holes 10a to 10d at intervals equal to or less than the shortest distance DL. be able to. That is, when incident light having a high transmittance and being hardly absorbed by a semiconductor substance such as X-rays and γ-rays is applied to the thin semiconductor substrate 5, the incident light is not sufficiently absorbed by the semiconductor substance. It is not possible to improve the detection sensitivity of an electron tube using the method. Increasing the thickness of the semiconductor substrate 5 allows the incident light to be sufficiently absorbed, but the diffusion length of the electrons is about 1 μm. I can't escape from inside. In the transmission type photocathode 10 according to the present embodiment, the generated electrons are が of the minimum distance DL.
If the electrons proceed only in the direction of the through holes 10a to 10d, the electrons can escape into the through holes 10a to 10d. The preferred thickness of the semiconductor substrate 5 is 3 μm or more. With such a thickness, the semiconductor substrate 5 constituting the photocathode 10 is formed.
The number of electrons generated in the semiconductor substrate 5 can be increased, and the number of electrons that can escape from the semiconductor substrate 5 can be increased. Preferred materials for the semiconductor substrate 5 having sensitivity to X-rays are GaAs, Si, InP, CdTe, C
dZnTe and PbO.

【0014】次に、上記光電陰極10の製造方法につい
て説明する。まず、厚さ20μmのp型GaAs半導体
基板5(ウエハ)を用意し、この半導体基板5の表面を
研磨及びエッチングして鏡面とする。この半導体基板5
の表面上にホトレジストを塗布した後、複数の貫通孔に
相当する部分が現像によって半導体基板5から除去され
るようなホトマスクをホトレジスト上に配置し、露光及
び現像を行う。この行程により、複数の貫通孔に相当す
る部分の半導体基板5表面は露出するので、半導体基板
5の露出表面から内部に向けてドライエッチングを行
う。ドライエッチングとしては、プラズマスパッタエッ
チング法を用いることができる。半導体基板5の表面に
対して垂直にエッチングを行う場合は、スパッタリング
に用いるイオンを加速する電界の方向を半導体基板5の
表面に対して垂直に設定する。また、反応性イオンを用
いる反応性イオンビームエッチング(RIBE)法を用
いてこのエッチングを行ってもよい。上述のように、貫
通孔の長手方向が半導体基板5の表面に垂直な方向(厚
み方向)に対して交差している場合は、上記加速電界を
半導体基板5の厚み方向に対して斜めに印加する。な
お、半導体基板5の面方向とエッチング液を適当に選択
することにより、ウエットエッチング法による異方性エ
ッチングを行ってもよい。いずれのエッチングにおいて
も、エッチングは半導体基板5に貫通孔が形成されるま
で行う。
Next, a method for manufacturing the photocathode 10 will be described. First, a p-type GaAs semiconductor substrate 5 (wafer) having a thickness of 20 μm is prepared, and the surface of the semiconductor substrate 5 is polished and etched to a mirror surface. This semiconductor substrate 5
After a photoresist is applied on the surface of the substrate, a photomask such that portions corresponding to a plurality of through holes are removed from the semiconductor substrate 5 by development is arranged on the photoresist, and exposure and development are performed. Since the surface of the semiconductor substrate 5 corresponding to the plurality of through holes is exposed by this process, dry etching is performed from the exposed surface of the semiconductor substrate 5 toward the inside. As the dry etching, a plasma sputter etching method can be used. When etching is performed perpendicularly to the surface of the semiconductor substrate 5, the direction of an electric field that accelerates ions used for sputtering is set perpendicular to the surface of the semiconductor substrate 5. This etching may be performed by using a reactive ion beam etching (RIBE) method using reactive ions. As described above, when the longitudinal direction of the through hole intersects the direction (thickness direction) perpendicular to the surface of the semiconductor substrate 5, the acceleration electric field is applied obliquely to the thickness direction of the semiconductor substrate 5. I do. Incidentally, anisotropic etching by wet etching may be performed by appropriately selecting the surface direction of the semiconductor substrate 5 and an etching solution. In any case, the etching is performed until a through hole is formed in the semiconductor substrate 5.

【0015】次に、X線が透過できる程度の厚さに半導
体基板5の表面にAlを蒸着し、Alの上面電極4を形
成する。上面電極4の形成後、半導体基板5の下面に絶
縁層6及び下面電極7を順次形成する。下面電極7と上
面電極4の形成工程は同一である。各電極4,7にリー
ド電極を取付けて、図1に示した側管1内に配置する。
なお、この工程の後に、Cs−O等の仕事関数を低下さ
せるための材料を半導体基板5に接するように形成する
ため、Cs及びO2等を側管1内に導入することとして
もよい。また、半導体基板5の材料としてGaAsのX
線吸収係数(10.8cm-1)よりも大きいX線吸収係
数(39cm-1)を有するCdTeを用いる場合は、半
導体基板5の厚みは10μm程度でよい。なお、可視光
に対する感度を有するためには、半導体基板5の材料と
して高濃度p型GaAsを用い、電極4を半導体基板5
の端に設けられたオーミック電極とするか、又は、半導
体基板5の表面を覆う透明電極とし、半導体基板5の厚
みを3〜5μmとすることが望ましい。
Next, Al is vapor-deposited on the surface of the semiconductor substrate 5 to a thickness such that X-rays can be transmitted therethrough to form an Al upper electrode 4. After the formation of the upper electrode 4, the insulating layer 6 and the lower electrode 7 are sequentially formed on the lower surface of the semiconductor substrate 5. The process of forming the lower electrode 7 and the upper electrode 4 is the same. A lead electrode is attached to each of the electrodes 4 and 7, and is arranged in the side tube 1 shown in FIG.
After this step, Cs, O 2 and the like may be introduced into the side tube 1 in order to form a material for lowering the work function such as Cs—O so as to be in contact with the semiconductor substrate 5. In addition, GaAs X
When using a CdTe having a large X-ray absorption coefficient than (39cm -1) linear absorption coefficient (10.8 cm -1), the thickness of the semiconductor substrate 5 may be about 10 [mu] m. In order to have sensitivity to visible light, high-concentration p-type GaAs is used as the material of the semiconductor substrate 5 and the electrode 4 is
Or a transparent electrode covering the surface of the semiconductor substrate 5, and the thickness of the semiconductor substrate 5 is desirably 3 to 5 μm.

【0016】また、X線検出用の半導体基板5の材料と
して、CdZnTe、p型CdTe及びPbO等を用い
ることもできる。
Further, as a material of the semiconductor substrate 5 for X-ray detection, CdZnTe, p-type CdTe, PbO or the like can be used.

【0017】なお、本発明は上述の透過型光電陰極10
に限られるものではなく、貫通孔の形状及び配置を以下
に説明するようにしてもよい。
The present invention relates to the transmission type photocathode 10 described above.
However, the shape and arrangement of the through holes may be described below.

【0018】図4は、貫通孔の形状及び配置のみを変え
た光電陰極10を図2と同一形式にて示すII管10の
断面図であり、図5は、図4に示した光電陰極10のC
−C矢印断面図である。貫通孔10e〜10hの長手方
向に垂直な断面は長方形であり、隣接する貫通孔10
f,10gの内面の最短距離DLは、上記と同様に設定
される。これら断面長方形の貫通孔10e〜10hを含
む全ての貫通孔の長辺は、隣接する貫通孔の長辺と平行
であり、短辺は隣接する貫通孔の短辺と平行であり、長
辺の長さXは、最短距離DLよりも短く設定されてい
る。ここでは、最短距離DLは2μmであり、長辺の長
さXは1.6μm、短辺の長さYは1μmである。半導
体基板5の厚み方向に垂直な平面内における貫通孔10
e〜10hを含む全体の貫通孔の占める割合は約36%
である。なお、半導体基板5の厚みは10μmである。
すなわち、貫通孔の占める割合が減少するほど有効受光
面積は増加するので、半導体基板5の厚みを上記のもの
よりも薄くすることができる。
FIG. 4 is a sectional view of the II tube 10 showing the photocathode 10 in which only the shape and arrangement of the through-holes are changed in the same manner as FIG. 2, and FIG. 5 is a sectional view of the photocathode 10 shown in FIG. C
It is arrow C sectional drawing. The cross section perpendicular to the longitudinal direction of the through holes 10e to 10h is rectangular, and the adjacent through holes 10e to 10h are rectangular.
The shortest distance DL of the inner surface of f, 10g is set in the same manner as described above. The long sides of all the through holes including these rectangular through holes 10e to 10h are parallel to the long sides of the adjacent through holes, and the short sides are parallel to the short sides of the adjacent through holes. The length X is set shorter than the shortest distance DL. Here, the shortest distance DL is 2 μm, the length X of the long side is 1.6 μm, and the length Y of the short side is 1 μm. Through hole 10 in a plane perpendicular to the thickness direction of semiconductor substrate 5
The ratio of the entire through hole including e to 10h is about 36%
It is. The thickness of the semiconductor substrate 5 is 10 μm.
That is, since the effective light receiving area increases as the proportion of the through holes decreases, the thickness of the semiconductor substrate 5 can be made smaller than that described above.

【0019】図6は、貫通孔の寸法を図2に示したもの
から変えた光電陰極10の平面図である。光電陰極10
には、長手方向に垂直な断面の形状が略円形の貫通孔1
0h〜10mを含む複数の貫通孔が形成されており、こ
れらの貫通孔は、その中心が光電陰極10の面板2側の
表面内において正六角形の頂点をなすような位置に形成
されている。ここで、六角形の対向する頂点に位置する
貫通孔10i,10lの中心間の距離は2μmであり、
貫通孔10iの直径D2は0.9μmである。このよう
に設定を行った場合、半導体基板5の厚み方向に垂直な
平面内における貫通孔10h〜10mを含む全体の貫通
孔の占める割合は約49%である。
FIG. 6 is a plan view of the photocathode 10 in which the dimensions of the through holes are changed from those shown in FIG. Photocathode 10
Has a through hole 1 having a substantially circular cross section perpendicular to the longitudinal direction.
A plurality of through-holes including 0h to 10m are formed, and these through-holes are formed at positions such that the center thereof forms a vertex of a regular hexagon in the surface of the photocathode 10 on the face plate 2 side. Here, the distance between the centers of the through holes 10i and 10l located at the opposing vertices of the hexagon is 2 μm,
The diameter D 2 of the through hole 10i is 0.9 .mu.m. When the setting is performed in this manner, the ratio of the entire through hole including the through holes 10h to 10m in a plane perpendicular to the thickness direction of the semiconductor substrate 5 is about 49%.

【0020】図7は、図6に示した六角形の頂点に配置
された貫通孔10h〜10mに加えて、六角形の各辺上
にも貫通孔10n,10p〜10tを配置した光電陰極
10の平面図である。六角形の対向する頂点に位置する
貫通孔10i,10lの中心間の距離は2μmであり、
貫通孔10iの直径D3は0.4μmである。このよう
に設定を行った場合、半導体基板5の厚み方向に垂直な
平面内における全体の貫通孔の占める割合は約24%で
ある。
FIG. 7 shows a photocathode 10 in which through holes 10n, 10p to 10t are arranged on each side of the hexagon in addition to the through holes 10h to 10m arranged at the vertices of the hexagon shown in FIG. FIG. The distance between the centers of the through holes 10i, 10l located at the opposite vertices of the hexagon is 2 μm,
The diameter D 3 of the through hole 10i is 0.4 .mu.m. When the setting is performed in this manner, the proportion of the entire through hole in a plane perpendicular to the thickness direction of the semiconductor substrate 5 is about 24%.

【0021】図8は、半導体基板5の厚み方向に垂直な
平面内における全体の貫通孔の占める割合を約10%ま
で減少させ、有効受光面積を90%まで増加させた半導
体光電陰陰極10の平面図である。この半導体基板5
は、正六角形の頂点に各ファイバFの軸が位置するよう
に、これらのファイバFを束ねることにより形成され
る。このファイバFは半導体材料からなり、貫通孔10
u〜10zはファイバF間の隙間によって規定される。
この場合、貫通孔10u〜10zは、ファイバFを束ね
ることにより容易に形成することができ、また、有効受
光面積を著しく増加させることができる。
FIG. 8 shows a semiconductor photocathode 10 in which the proportion of the entire through-hole in a plane perpendicular to the thickness direction of the semiconductor substrate 5 is reduced to about 10% and the effective light receiving area is increased to 90%. It is a top view. This semiconductor substrate 5
Is formed by bundling the fibers F such that the axis of each fiber F is located at the vertex of the regular hexagon. This fiber F is made of a semiconductor material and has a through hole 10.
u to 10z are defined by the gap between the fibers F.
In this case, the through holes 10u to 10z can be easily formed by bundling the fibers F, and the effective light receiving area can be significantly increased.

【0022】[0022]

【発明の効果】以上、説明したように、本発明の透過型
光電陰極は、放出される電子数を増加させることができ
るので、これを用いた電子管の検出感度を向上させるこ
とができる。
As described above, the transmission type photocathode of the present invention can increase the number of emitted electrons, so that the detection sensitivity of an electron tube using the same can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電子管を一部破断して示す電子管の正面図。FIG. 1 is a front view of an electron tube showing a partly broken electron tube.

【図2】図1に示した電子管のA−A矢印断面図。FIG. 2 is a sectional view of the electron tube shown in FIG.

【図3】図2に示した光電陰極のB−B矢印断面図。FIG. 3 is a sectional view of the photocathode shown in FIG.

【図4】別の電子管の断面図。FIG. 4 is a cross-sectional view of another electron tube.

【図5】図4に示した光電陰極のC−C矢印断面図。5 is a cross-sectional view of the photocathode shown in FIG. 4 taken along the line CC.

【図6】別の光電陰極の平面図。FIG. 6 is a plan view of another photocathode.

【図7】別の光電陰極の平面図。FIG. 7 is a plan view of another photocathode.

【図8】別の光電陰極の平面図。FIG. 8 is a plan view of another photocathode.

【符号の説明】[Explanation of symbols]

10…光電陰極、10a,10b…貫通孔。 10 photocathode, 10a, 10b ... through-hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入射した電磁波に応じて発生した電子を
出射する透過型光電陰極において、隣接した第1及び第
2貫通孔を有する半導体部材を備え、前記第1及び第2
貫通孔の内面間の最短距離は、入射した電磁波に応じて
前記半導体部材内で発生し、前記第1及び第2貫通孔の
方向に進行した電子が、前記第1及び第2貫通孔の少な
くともいずれか一方内に脱出できるように設定されてい
ることを特徴とする透過型光電陰極。
1. A transmission type photocathode for emitting electrons generated in response to an incident electromagnetic wave, comprising a semiconductor member having adjacent first and second through holes, wherein the first and second semiconductor members have adjacent through holes.
The shortest distance between the inner surfaces of the through holes is generated in the semiconductor member in response to the incident electromagnetic wave, and electrons traveling in the directions of the first and second through holes are at least one of the first and second through holes. A transmissive photocathode characterized in that it is set so that it can escape into either one of them.
【請求項2】 前記半導体部材は半導体材料からなる複
数のファイバを束ねてなり、前記第1及び第2貫通孔は
前記ファイバ間の隙間によって規定されることを特徴と
する請求項1に記載の透過型光電陰極。
2. The semiconductor device according to claim 1, wherein the semiconductor member is formed by bundling a plurality of fibers made of a semiconductor material, and the first and second through holes are defined by a gap between the fibers. Transmission type photocathode.
JP3926597A 1997-02-24 1997-02-24 Transmission type photoelectric cathode Pending JPH10241555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3926597A JPH10241555A (en) 1997-02-24 1997-02-24 Transmission type photoelectric cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3926597A JPH10241555A (en) 1997-02-24 1997-02-24 Transmission type photoelectric cathode

Publications (1)

Publication Number Publication Date
JPH10241555A true JPH10241555A (en) 1998-09-11

Family

ID=12548319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3926597A Pending JPH10241555A (en) 1997-02-24 1997-02-24 Transmission type photoelectric cathode

Country Status (1)

Country Link
JP (1) JPH10241555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269337A (en) * 2014-10-09 2015-01-07 中国工程物理研究院激光聚变研究中心 Transmission-type X-ray photoelectric cathode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269337A (en) * 2014-10-09 2015-01-07 中国工程物理研究院激光聚变研究中心 Transmission-type X-ray photoelectric cathode
CN104269337B (en) * 2014-10-09 2017-01-18 中国工程物理研究院激光聚变研究中心 Transmission-type X-ray photoelectric cathode

Similar Documents

Publication Publication Date Title
US5936348A (en) Photomultiplier tube with focusing electrode plate
JP3468789B2 (en) Image intensifier
EP0841684B1 (en) Electron tube provided with an electron multiplier
GB819217A (en) Improvements in or relating to photo-electron image multipliers
US7652425B2 (en) Transmission type photocathode including light absorption layer and voltage applying arrangement and electron tube
US4893020A (en) X-ray fluorescent image intensifier
US6040000A (en) Method and apparatus for a microchannel plate having a fissured coating
EP3400469B1 (en) Image intensifier for night vision device
JPH09213206A (en) Transmission type photoelectric surface, manufacture thereof and photoelectric transfer tube using the transmission type photoelectric surface
US20050104527A1 (en) Transmitting type secondary electron surface and electron tube
JPH10241555A (en) Transmission type photoelectric cathode
US6069445A (en) Having an electrical contact on an emission surface thereof
JP2002042636A (en) Photocathode and electron tube
JP3955836B2 (en) Gas proportional counter and imaging system
JPS6258536A (en) Electron multiplying element
US4604519A (en) Intensified charge coupled image sensor having an improved CCD support
US4362933A (en) Multistage vacuum x-ray image intensifier
EP0911865B1 (en) An electron multiplier
US3898498A (en) Channel multiplier having non-reflective amorphous aluminum layer obturating channel entrances on side facing photocathode
US3514658A (en) Photoelectrically sensitive devices with window means adapted to increase the absorption of radiation by the photoelectrically sensitive cathode
Siegmund 7. Amplifying and Position Sensitive Detectors
JPH08106869A (en) Image element and operating method thereof
JPH0487247A (en) Multiple channel plate
JPH081784B2 (en) Gas discharge display panel
GB2293685A (en) Photomultipliers