JPH10239473A - Reactor fuel covered pipe - Google Patents

Reactor fuel covered pipe

Info

Publication number
JPH10239473A
JPH10239473A JP9052513A JP5251397A JPH10239473A JP H10239473 A JPH10239473 A JP H10239473A JP 9052513 A JP9052513 A JP 9052513A JP 5251397 A JP5251397 A JP 5251397A JP H10239473 A JPH10239473 A JP H10239473A
Authority
JP
Japan
Prior art keywords
zirconium
cladding
fuel
lining layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9052513A
Other languages
Japanese (ja)
Inventor
Toru Takeda
透 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP9052513A priority Critical patent/JPH10239473A/en
Publication of JPH10239473A publication Critical patent/JPH10239473A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable reactor fuel covered pipe having hydrogen absorption resistance to the hydrogen generated within the covered pipe while keeping a hardness of the same degree as conventional pure zirconium. SOLUTION: A zirconium-made lining layer 5 metallurgically bonded to a zirconium alloy-made reactor fuel covered pipe 2 contains 0.5wt.% or more and 1wt.% or less in total in zirconium of a trace additive of either one or more of Fe, Ni, Co, Rh, and Pd, 1200ppm or less of oxygen, and 2000ppm in total of inevitable impurities. An oxide film layer 6 for preventing the covered pipe base material from absorbing the hydrogen generated from a fuel rod inner part is formed in the inner surface thin layer area of the lining layer 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉用燃料棒に
用いられる燃料被覆管に関するものであり、特に、被覆
管基材のジルコニウム製内張り層に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cladding tube used for a fuel rod for a nuclear reactor, and more particularly to a zirconium lining layer of a cladding tube base material.

【0002】[0002]

【従来の技術】軽水または重水冷却型原子炉用燃料棒に
は、通常、ジルコニウム合金からなる燃料被覆管が用い
られている。図2に一般的な燃料棒の一例を示す。
(a)は軸方向の断面模式図、(b)は軸直交方向の断
面拡大模式図である。
2. Description of the Related Art A fuel cladding tube made of a zirconium alloy is usually used for a fuel rod for a light or heavy water cooled reactor. FIG. 2 shows an example of a general fuel rod.
(A) is a schematic cross-sectional view in the axial direction, and (b) is an enlarged schematic cross-sectional view in the orthogonal direction.

【0003】図2(a)にも示すように、下部端栓4a
で封された燃料被覆管2の内部に多数の燃料ペレット1
を充填し、プレナムスプリング3を介して上部端栓4b
で密封して燃料棒が構成される。
As shown in FIG. 2A, a lower end plug 4a is provided.
A large number of fuel pellets 1 inside the fuel cladding tube 2 sealed with
And the upper end plug 4b via the plenum spring 3.
A fuel rod is formed by sealing with.

【0004】通常、ジルコニウム合金製被覆管は、中性
子の照射を受けると照射脆化が生じ、応力腐食割れが起
きやすくなる。そこで、応力腐食割れを防ぐために、被
覆管基材の内面に図2(b)に示すように、ジルカロイ
合金に比較して軟質で純度の高いジルコニウムの内張り
層5を設けることが知られている。この比較的軟らかい
内張り層5が局部的な応力を低減させる。例えば、外径
8〜20mm,肉厚0.4〜1.5mmの燃料被覆管基
材に対して、内張り層は厚さ0.03〜0.2mmであ
る。
[0004] In general, when a zirconium alloy cladding tube is irradiated with neutrons, irradiation embrittlement occurs and stress corrosion cracking is likely to occur. Therefore, in order to prevent stress corrosion cracking, it is known to provide a zirconium lining layer 5 which is softer and higher in purity than a zircaloy alloy, as shown in FIG. . This relatively soft lining layer 5 reduces local stress. For example, for a fuel cladding substrate having an outer diameter of 8 to 20 mm and a wall thickness of 0.4 to 1.5 mm, the lining layer has a thickness of 0.03 to 0.2 mm.

【0005】米国特許4,300,492号によれば、
このような被覆管内張り層に用いられる純ジルコニウム
として、不純物含有量が合計1000ppm〜5000
ppmであり、そのうち酸素含有量が1200ppmの
ものが示されている。このようなジルコニウムは、所
謂、商用の原子炉級スポンジジルコニウムである。
According to US Pat. No. 4,300,492,
As pure zirconium used for such a cladding tube lining layer, the total impurity content is 1000 ppm to 5000 ppm.
ppm, of which the oxygen content is 1200 ppm. Such zirconium is a so-called commercial reactor grade sponge zirconium.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の如き従
来の燃料被覆管では、被覆管の製造欠陥や異物とのフレ
ッティングによって、燃料棒(被覆管)内部に水が浸入
してしまうと、内張りの高純度ジルコニウム層とUO2
とが急激に酸化することになる。この反応によって放出
された水素は、燃料棒内部を移動するとともに被覆管基
材に吸収され、被覆管の低温部でジルコニウム水素化物
となって析出し、被覆管を脆化させる。これは、所謂水
素化二次破損と呼ばれる重大な事故を引き起こす恐れが
ある。
However, in the conventional fuel cladding tube as described above, if water enters the fuel rod (cladding tube) due to manufacturing defects of the cladding tube or fretting with foreign matter, High purity zirconium layer of lining and UO 2
Will rapidly oxidize. The hydrogen released by this reaction moves inside the fuel rods and is absorbed by the cladding base material, and precipitates as zirconium hydride in the low temperature portion of the cladding, embrittle the cladding. This can cause a serious accident called so-called hydrogenation secondary failure.

【0007】一方、内張り層として、高純度ジルコニウ
ムに他の合金元素を添加したものを用いた場合には、ジ
ルコニウム内張り層の高温高圧水蒸気中での耐食性が向
上し、内張り層の腐食に伴う水素発生は抑制される。し
かしながら、ペレットの酸化に伴って発生する水素を吸
収してしまう可能性があった。
On the other hand, when a high-purity zirconium alloy containing another alloy element is used as the lining layer, the corrosion resistance of the zirconium lining layer in high-temperature and high-pressure steam is improved, and hydrogen accompanying the corrosion of the lining layer is increased. The occurrence is suppressed. However, there is a possibility that hydrogen generated due to oxidation of the pellet may be absorbed.

【0008】本発明は、上記問題点に鑑み、内面の急激
な酸化に対する抑制力を維持しつつ、従来の高純度ジル
コニウムと同程度の軟度を有しながらも、被覆管内部で
発生した水素に対して耐水素吸収性を備えた信頼性の高
い原子炉用燃料被覆管を得ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and has the same degree of softness as conventional high-purity zirconium, but maintains hydrogen generated inside the cladding tube, while maintaining the suppression of rapid oxidation of the inner surface. An object of the present invention is to obtain a highly reliable fuel cladding tube for a nuclear reactor having hydrogen absorption resistance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明に係る原子炉用燃料被覆管で
は、内部に核燃料を収納するジルコニウム合金製原子炉
用燃料被覆管基材と、該被覆管基材に冶金的に結合した
ジルコニウム製内張り層とを備えた燃料被覆管におい
て、前記内張り層は、ジルコニウム中に、合計で0.0
5wt%以上1wt%以下のFe,Ni,Co,Rh,
Pdのうちいずれか一つ以上の微量添加物と、1200
ppm以下の酸素と、合計2000ppm以下の不可避
不純物と、を含み、前記内張り層の内表面薄層領域に、
被覆管基材が管内部から発生する水素を吸収するのを防
ぐための酸化膜層が形成されているものである。
In order to achieve the above object, a fuel cladding tube for a nuclear reactor according to the first aspect of the present invention comprises a zirconium alloy fuel cladding substrate for a nuclear reactor which contains nuclear fuel therein. And a zirconium lining layer metallurgically bonded to the cladding substrate, wherein the lining layer comprises a total of 0.0
5 wt% or more and 1 wt% or less of Fe, Ni, Co, Rh,
A minor additive of one or more of Pd;
ppm or less of oxygen and unavoidable impurities of 2000 ppm or less in total, and in an inner surface thin layer region of the lining layer,
An oxide film layer is formed to prevent the cladding tube base from absorbing hydrogen generated from inside the tube.

【0010】[0010]

【発明の実施の形態】本発明の被覆管内張り層に利用さ
れる高純度ジルコニウムは、市販のスポンジジルコニウ
ム、一般的には1200ppm以下の酸素と、合計20
00ppm以下の不可避不純物とを含むものに、適宜微
量添加物を含有してなるものである。この際、その組成
は、内張り層として必要な塑性に実質的に影響を及ぼす
ことなく優れた耐食性を示すものが選択された。
DETAILED DESCRIPTION OF THE INVENTION The high-purity zirconium used for the cladding lining layer of the present invention is commercially available sponge zirconium, generally not more than 1200 ppm of oxygen and a total of 20 ppm.
A substance containing unavoidable impurities of not more than 00 ppm and appropriately containing a trace amount of an additive. At this time, the composition was selected so as to exhibit excellent corrosion resistance without substantially affecting the plasticity required for the lining layer.

【0011】即ち、本発明の内張り層用高純度ジルコニ
ウムの組成は、Fe,Ni,Co,Rh,Pdのうちい
ずれか一つ以上の微量添加物を合計で0.05wt%以
上1.0wt%以下の含有率で含むものである。
That is, the composition of the high-purity zirconium for the lining layer according to the present invention is such that a total of at least one of Fe, Ni, Co, Rh and Pd is 0.05 wt% or more and 1.0 wt% or less. It is included at the following contents.

【0012】さらに、本発明においては、図1の被覆管
断面図に示すように、内張り層5の内表面薄層領域にさ
らに酸化膜層6を形成するものであるため、この酸化膜
層6に充分な厚みを持たせることによって、被覆管基材
2が被覆管(燃料棒)内部からの水素を吸収してしまう
のを抑えることができる。
Further, in the present invention, as shown in the sectional view of the cladding tube of FIG. 1, an oxide film layer 6 is further formed on the inner surface thin layer region of the lining layer 5, so that the oxide film layer 6 is formed. With sufficient thickness, it is possible to prevent the cladding tube base 2 from absorbing hydrogen from inside the cladding tube (fuel rod).

【0013】なお、被覆管内張り層の内表面に酸化膜層
を形成させる方法としては、内張り層表面を高温に加熱
したり、酸化剤を施して酸化膜を生成するなど様々な方
法があるが、均一で緻密な酸化膜を形成するためには、
例えば、陽極酸化法が適した方法である。これは、被覆
管内に充填した電解質溶液を陰極として電圧を印加する
ことによって酸化膜を生成させ得るものであり、印加す
る電圧と時間を適宜設定することによって任意の酸化膜
厚が得られるようコントロールできる方法である。但
し、電圧が低い場合には表面の溶解が起こるため、少な
くとも2V以上の印加電圧であることが望ましい。
There are various methods for forming an oxide film layer on the inner surface of the cladding lining layer, such as heating the lining layer surface to a high temperature or applying an oxidizing agent to form an oxide film. In order to form a uniform and dense oxide film,
For example, an anodic oxidation method is a suitable method. In this method, an oxide film can be formed by applying a voltage using the electrolyte solution filled in the cladding tube as a cathode, and by appropriately setting the applied voltage and time, control can be performed so that an arbitrary oxide film thickness can be obtained. That's the way you can. However, if the voltage is low, the surface is dissolved, so it is desirable that the applied voltage be at least 2 V or more.

【0014】[0014]

【実施例】本発明による条件に基づいて決定された種々
の組成の被覆管内張り層用高純度ジルコニウム合金につ
いて、ジルカロイ−2(No.24)と何も添加しなかった市
販のスポンジジルコニウム(No.25)を比較例とし、スポ
ンジジルコニウムに、Fe,Ni,Co,Rh,Pdの
うちの一つあるいは組み合わせたものをそれぞれ各種含
有量で添加したものを試験片(No.1〜23)として、それ
ぞれ腐食試験による耐食性評価を行なった。
EXAMPLE A high-purity zirconium alloy for a cladding liner having various compositions determined on the basis of the conditions according to the present invention was obtained from a commercially available sponge zirconium (No. 24) containing no zircaloy-2 (No. 24). .25) as a comparative example, and sponge zirconium to which one or a combination of Fe, Ni, Co, Rh, and Pd was added at various contents were used as test pieces (Nos. 1 to 23). Each was evaluated for corrosion resistance by a corrosion test.

【0015】具体的には、各試験片を400℃、105
気圧条件下で24時間置いた後、腐食増量を測定した。
ここで、腐食増量が20mg/dm2 以下のものをラン
ク◎とし、20mg/dm2 〜40mg/dm2 以下の
ものをランク○とし、40mg/dm2 を越えて腐食増
量の大きいものをランク×と評価した。結果を表1に示
す。なお、このとき、各試験片は全て500ppmの酸
素を共通に含有するものである。
Specifically, each test piece was heated at 400 ° C., 105
After 24 hours under atmospheric conditions, the corrosion gain was measured.
Here, the corrosion increment is the rank ◎ those 20 mg / dm 2 or less, 20mg / dm 2 ~40mg / dm 2 and the rank ○ the following ones, rank × those corrosion increment larger beyond 40 mg / dm 2 Was evaluated. Table 1 shows the results. In this case, all the test pieces commonly contain 500 ppm of oxygen.

【0016】[0016]

【表1】 [Table 1]

【0017】表1からもわかるように、まず、各添加物
Fe,Ni,Co,Rh,Pdをそれぞれ単独で含有す
るものの場合、含有率0.05〜1.0wt%の範囲内
でいずれの場合(No.1〜15,23 )も高い耐食性を示し
た。
As can be seen from Table 1, in the case where each of the additives Fe, Ni, Co, Rh, and Pd is contained alone, any of the additives within the range of 0.05 to 1.0 wt% is used. In the cases (Nos. 1 to 15, 23), high corrosion resistance was also exhibited.

【0018】また、各微量添加物のうち2つを添加(合
計0.5wt%以下)したものの場合(No.16 〜22)で
も、いずれも評価はランク◎と高い耐食性を示した。上
記表1では、各微量添加物のうち一つあるいは2つを添
加したものの場合のみを示したが、各微量添加物のうち
3つ以上を添加(合計0.5wt%以下)した場合にお
いても、同様に高い耐食性が得られる。
In addition, in the case of adding two of the trace additives (total 0.5 wt% or less) (Nos. 16 to 22), the evaluation was ranked ラ ン ク in all cases, indicating high corrosion resistance. In Table 1 above, only the case where one or two of the trace additives are added is shown, but even when three or more of the trace additives are added (total 0.5 wt% or less). Similarly, high corrosion resistance is obtained.

【0019】次に、上記腐食試験で高い耐食性を示した
組成を持つ高純度ジルコニウム(No.5,8,11,14,16,17,1
8,19,23)に関して、各々被覆管基材の内面に内張りして
合金ライナ被覆管を製作し、陽極酸化法で各被覆管の内
張り層内表面に酸化膜を形成した。
Next, high-purity zirconium (No. 5, 8, 11, 14, 16, 17, 17) having a composition exhibiting high corrosion resistance in the corrosion test described above.
8,19,23), the alloy liner cladding was manufactured by lining the inner surface of the cladding base material, and an oxide film was formed on the inner surface of the lining layer of each cladding by anodization.

【0020】即ち、被覆管内に電解質溶液として1%K
OH水溶液を充填し、これを陰極として約40〜150
ボルトの電圧を数秒〜数分印加した。生成した酸化膜厚
は、40ボルトを数秒間印加した場合に約50〜100
nm、120ボルトを数分間印加した場合で約800n
mであった。
That is, 1% K is contained in the cladding tube as an electrolyte solution.
An OH aqueous solution is charged, and this is
A volt voltage was applied for a few seconds to a few minutes. The resulting oxide film thickness is about 50 to 100 when 40 volts is applied for several seconds.
nm, about 800 n when 120 volts are applied for several minutes
m.

【0021】以上の各膜厚の酸化膜が形成された合金ラ
イナ被覆管について、それぞれ、耐水素吸収性試験を行
なった。これは、350℃において各被覆管内に水素ガ
スを12時間通気した後、被覆管基材の水素分析を行な
った。結果を以下の表2に示す。このとき、比較例とし
て、表1のNo.24,25の各ジルカロイ合金に関して酸化処
理無しの状態で同様の水素吸収性試験を行なった。
A hydrogen absorption resistance test was performed on each of the alloy liner cladding tubes on which the oxide films having the above thicknesses were formed. In this test, hydrogen gas was passed through each cladding tube at 350 ° C. for 12 hours, and then the cladding tube base material was subjected to hydrogen analysis. The results are shown in Table 2 below. At this time, as a comparative example, the same hydrogen absorption test was performed on each of the zircaloy alloys of Nos. 24 and 25 in Table 1 without oxidation treatment.

【0022】[0022]

【表2】 [Table 2]

【0023】表2からもわかるように、膜厚50〜80
0nmに亙って、酸化膜が形成された被覆管について
は、いずれ(No.31 〜41)も水素吸収量が0.2mg/
dm2以下という結果が得られた。これは、比較例の酸
化処理しないで2nm以下とほとんど酸化膜層を持たな
いもの(No.42,43) に比べて大幅に減少しており、ほと
んど水素吸収が起こらなかったと言える。
As can be seen from Table 2, the film thickness is 50 to 80.
In each of the cladding tubes on which an oxide film was formed over a range of 0 nm, the hydrogen absorption amount of all (Nos. 31 to 41) was 0.2 mg / mg.
A result of not more than dm 2 was obtained. This is significantly less than the comparative example having no oxide film layer of 2 nm or less without oxidation treatment (Nos. 42 and 43), and it can be said that hydrogen absorption hardly occurred.

【0024】[0024]

【発明の効果】本発明の原子炉用燃料被覆管によれば、
以上説明したとおり、被覆管内張り層が高耐食性を持つ
ものであるため、被覆管内張り層の酸化による水素発生
が抑制されるという効果がある。さらに、被覆管内部に
水素が発生した場合でも、内張り層内表面に形成された
酸化膜層によって、被覆管基材への水素の吸収が抑制さ
れるため、従来に比べて格段に信頼性の高い原子炉用燃
料被覆管となる。
According to the fuel cladding for a nuclear reactor of the present invention,
As described above, since the cladding tube lining layer has high corrosion resistance, there is an effect that generation of hydrogen due to oxidation of the cladding tube lining layer is suppressed. Furthermore, even when hydrogen is generated inside the cladding tube, the absorption of hydrogen into the cladding tube base is suppressed by the oxide film layer formed on the inner surface of the lining layer, so the reliability is much higher than before. High fuel cladding for reactors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による原子炉用燃料被覆
管の軸直交方向の断面拡大模式図である。
FIG. 1 is an enlarged schematic cross-sectional view in a direction perpendicular to an axis of a fuel cladding tube for a nuclear reactor according to an embodiment of the present invention.

【図2】従来の一般的な原子炉用燃料棒の一例を示す説
明図であり、(a)は軸方向の断面模式図であり、
(b)は軸直交方向の断面拡大模式図である。
FIG. 2 is an explanatory view showing an example of a conventional general fuel rod for a nuclear reactor, where (a) is a schematic cross-sectional view in the axial direction;
(B) is an enlarged schematic cross-sectional view in the direction perpendicular to the axis.

【符号の説明】[Explanation of symbols]

1:燃料ペレット 2:被覆管 3:プレナムスプリング 4a:下部端栓 4b:上部端栓 5:内張り層 6:酸化膜層 1: fuel pellet 2: cladding tube 3: plenum spring 4a: lower end plug 4b: upper end plug 5: lining layer 6: oxide film layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に核燃料を収納するジルコニウム合
金製原子炉用燃料被覆管基材と、該被覆管基材に冶金的
に結合したジルコニウム製内張り層とを備えた燃料被覆
管において、 前記内張り層は、ジルコニウム中に、合計で0.05w
t%以上1wt%以下のFe,Ni,Co,Rh,Pd
のうちいずれか一つ以上の微量添加物と、1200pp
m以下の酸素と、合計2000ppm以下の不可避不純
物と、を含み、前記内張り層の内表面薄層領域に、被覆
管基材が管内部から発生する水素を吸収するのを防ぐた
めの酸化膜層が形成されていることを特徴とする原子炉
用燃料被覆管。
1. A fuel cladding tube comprising: a zirconium alloy nuclear reactor cladding base material containing nuclear fuel therein; and a zirconium lining layer metallurgically bonded to the cladding base material. The layers are a total of 0.05 w in zirconium
Fe, Ni, Co, Rh, Pd of not less than t% and not more than 1 wt%
Any one or more of a trace additive and 1200 pp
m, and an oxide film layer for preventing the cladding base material from absorbing hydrogen generated from inside the pipe in the inner surface thin layer region of the lining layer, containing oxygen of 2000 m or less and unavoidable impurities of 2000 ppm or less in total. A fuel cladding tube for a nuclear reactor, characterized in that the cladding is formed.
JP9052513A 1997-02-21 1997-02-21 Reactor fuel covered pipe Pending JPH10239473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9052513A JPH10239473A (en) 1997-02-21 1997-02-21 Reactor fuel covered pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9052513A JPH10239473A (en) 1997-02-21 1997-02-21 Reactor fuel covered pipe

Publications (1)

Publication Number Publication Date
JPH10239473A true JPH10239473A (en) 1998-09-11

Family

ID=12916827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9052513A Pending JPH10239473A (en) 1997-02-21 1997-02-21 Reactor fuel covered pipe

Country Status (1)

Country Link
JP (1) JPH10239473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915602B1 (en) * 2007-08-17 2009-09-07 한국원자력연구원 Fuel rod coated with oxide film on inner surface of the cladding and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915602B1 (en) * 2007-08-17 2009-09-07 한국원자력연구원 Fuel rod coated with oxide film on inner surface of the cladding and its manufacturing method

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
US4610842A (en) Fuel rod for a nuclear reactor
US5539791A (en) Material and structural part made from modified zircaloy
EP0712938B1 (en) Zirconium alloy
CA1198231A (en) Zirconium alloy barrier having improved corrosion resistance
JPH07301687A (en) Coating pipe
JPH05247567A (en) Zirconium-bismuth-niobium alloy for bulkhead for nuclear fuel cladding
US5912935A (en) Fuel rod for light water reactor and method for manufacturing the same
EP0893800A1 (en) Pressurized water reactor nuclear fuel assembly
EP0867889A1 (en) Nuclear fuel rod for pressurized water reactor
JPH10239473A (en) Reactor fuel covered pipe
GB2119559A (en) Zirconium alloy barrier having improved corrosion resistance
JP4301540B2 (en) Fuel rod and manufacturing method thereof
JP2926519B2 (en) Zirconium alloy containing tungsten and nickel
JP4318478B2 (en) Fuel assembly for boiling water LWR
JP4999270B2 (en) Methods, applications, and apparatus for boiling water nuclear fuel and fuel assembly cladding.
JP3371303B2 (en) Reactor fuel cladding
KR19980080622A (en) Composite sheath of nuclear fuel rods
KR100323299B1 (en) High strength zirconium alloys containing bismuth and niobium
JP2008026182A (en) High-burnup fuel covering pipe and manufacturing method therefor
JP3389018B2 (en) Zirconium alloy with excellent hydrogen absorption resistance
JP2000230993A (en) Fuel clad tube and its production method
JP3564646B2 (en) Fuel cladding for reactor
EP0964407B1 (en) High strength zirconium alloys containing bismuth, tin and niobium
KR100272296B1 (en) Nuclear reactor fuel rod with double layer cladding tube

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010417