JPH10239366A - Zero phase voltage detector - Google Patents

Zero phase voltage detector

Info

Publication number
JPH10239366A
JPH10239366A JP9041925A JP4192597A JPH10239366A JP H10239366 A JPH10239366 A JP H10239366A JP 9041925 A JP9041925 A JP 9041925A JP 4192597 A JP4192597 A JP 4192597A JP H10239366 A JPH10239366 A JP H10239366A
Authority
JP
Japan
Prior art keywords
voltage
phase
electrode
outside
electrostatic capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9041925A
Other languages
Japanese (ja)
Inventor
Kimihiko Shibuya
公彦 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9041925A priority Critical patent/JPH10239366A/en
Publication of JPH10239366A publication Critical patent/JPH10239366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect zero phase voltage without being affected by the other phase electric field by providing electrostatic capacity potential dividers respectively in three phase high tension distribution line paths such that distances between the centers of three electrostatic potential dividers are equalized. SOLUTION: An electrostatic capacity potential divider consists of a high tension conductor part 1, an inside electrode 2 formed inside a porcelain insulator, an induction body 3 and an outside electrode 4 formed outside the porcelain insulator. The high tension conductor part 1 is connected electrically to the inside electrode 2. An electrostatic capacity is formed between the inside electrode 2 and the outside electrode 4. An electrostatic capacity formed between the outside electrode 4 and other phase outside electrode depends on distances between the centers of three electrostatic capacity potential dividers, i.e., the outside electrodes 4 provided in respective three-shape high tension distribution line paths. Thus, when the distances between these centers are equalized, other phase electric fields received by the respective outside electrodes 4 are equalized and subjected to vector addition to be utterly cancelled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高圧配電線路の地
絡等の事故を検出するのに用いられる零相電圧検出装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero-phase voltage detecting device used for detecting an accident such as a ground fault in a high-voltage distribution line.

【0002】[0002]

【従来の技術】従来、この種の零相電圧検出装置は、図
4に示すような構成であった。
2. Description of the Related Art Conventionally, this kind of zero-sequence voltage detecting device has a configuration as shown in FIG.

【0003】図4において、1は高圧導体部、2は内側
電極、3は碍子を形成する誘電体、4は外側電極、5は
光電圧センサ、6は高圧気中開閉器内に充填されている
充填剤である。上記高圧導体部1と上記内側電極2の間
に静電容量C2が形成される。また上記内側電極2と上
記外側電極4の間に静電容量C1が形成される。これを
等価回路で示したのが、図5である。上記静電容量
1、C2に比べて、上記光電圧センサ5の静電容量が十
分に小さいとき、上記光電圧センサ5の電圧印加端子
7,8間の電圧と、1相の大地間電圧との比である分圧
比Rは、(数1)となる。
In FIG. 4, 1 is a high-voltage conductor, 2 is an inner electrode, 3 is a dielectric forming an insulator, 4 is an outer electrode, 5 is an optical voltage sensor, and 6 is a high-pressure air switch filled in a switch. Is a filler. A capacitance C 2 is formed between the high-voltage conductor 1 and the inner electrode 2. Further, a capacitance C 1 is formed between the inner electrode 2 and the outer electrode 4. FIG. 5 shows this in an equivalent circuit. When the capacitance of the optical voltage sensor 5 is sufficiently smaller than the capacitances C 1 and C 2 , the voltage between the voltage application terminals 7 and 8 of the optical voltage sensor 5 and the one-phase ground The voltage division ratio R, which is a ratio with respect to the voltage, is represented by (Equation 1).

【0004】[0004]

【数1】 (Equation 1)

【0005】この時、各相の電圧の位相を考慮すると、
上記光電圧センサ5に印加される電圧VSは、 VZX=VA*R+VB*R*COS(120°)+VC
R*COS(240°) VZY=VB*R*SIN(120°)+VC*R*SIN
(240°) VS=(VZX 2+VZY 21/2 但し、VA:A相の大地間電圧 VB:B相の大地間電圧 VC:C相の大地間電圧 で与えられる。通常、VA、VB、VCの絶対値は等し
く、上記光電圧センサ5に印加される電圧は、ほぼ零で
あり、この電圧値をモニターすることにより3相の高圧
配電線路の事故等が検出できる。
At this time, considering the phase of each phase voltage,
The voltage V S applied to the optical voltage sensor 5 is as follows: V ZX = V A * R + V B * R * COS (120 °) + V C *
R * COS (240 °) V ZY = V B * R * SIN (120 °) + V C * R * SIN
(240 °) V S = (V ZX 2 + V ZY 2 ) 1/2 where VA : A-phase ground voltage V B : B-phase ground voltage V C : C-phase ground voltage . Normally, the absolute values of V A , V B , and V C are equal, and the voltage applied to the photovoltage sensor 5 is almost zero. Can be detected.

【0006】[0006]

【発明が解決しようとする課題】このように従来の構成
では、図6に示すように各相の静電容量分圧器の中心間
距離を考えた場合、A相、B相間距離とB相、C相間距
離は等しいが、A相、C相間距離が異なる。上記外側電
極4と他相の外側電極4の間には、静電容量が形成さ
れ、空間的に他相電界の影響を受けることになる。この
成分が、A相とC相が受ける影響は等しいが、B相の受
ける影響が異なるため、これをベクトル加算した場合、
高圧配電線路に異常が無いにもかかわらず、零相電圧値
が検出されるという課題があった。
As described above, in the conventional configuration, when considering the center-to-center distances of the capacitive voltage dividers of the respective phases as shown in FIG. The distances between the C phases are equal, but the distances between the A phase and the C phase are different. A capacitance is formed between the outer electrode 4 and the outer electrode 4 of the other phase, and is spatially affected by the other-phase electric field. The effect of this component on the A phase and the C phase is the same, but the effect on the B phase is different.
There is a problem that the zero-phase voltage value is detected even though there is no abnormality in the high-voltage distribution line.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に本発明は、3相の高圧配電線路の各々に静電容量分圧
器を設け、上記3相の3つの静電容量分圧器の中心距離
を各々等しくなるように配置するものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a three-phase high-voltage distribution line with a capacitive voltage divider provided at each of the three phases. They are arranged so that the distances are equal.

【0008】[0008]

【発明の実施の形態】本発明の請求項1の発明は、3相
の高圧配電線路の大地間電圧を静電容量分圧器により分
圧し、それをベクトル加算することにより生じる零相電
圧を光電圧センサに印加し高圧配電線路の事故を検出す
るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first aspect of the present invention is to convert a zero-phase voltage generated by dividing a ground-to-ground voltage of a three-phase high-voltage distribution line by a capacitive voltage divider and adding the resultant to a vector. It is applied to a voltage sensor to detect an accident in a high-voltage distribution line.

【0009】以下、本発明の一実施形態について、図面
を参照しながら説明する。図1において、1は高圧導体
部、2は碍子内部に形成した内側電極、3は碍子を構成
する誘電体、4は碍子外部に形成した外側電極、9は各
相の外側電極を電気的に接続したリード線である。10
は分圧用の誘電体コンデンサ、5は光電圧センサ、11
は上記光電圧センサ5に光の送受信を行う光ファイバ、
12は上記光ファイバ11を固定すると共に開閉器の内
外部の気密性を保つパッキン、13は高圧気中開閉器で
ある。上記高圧導体部1と、内側電極2は電気的に接続
している。この内側電極2と外側電極4の間に静電容量
1が形成される。図2に、この分圧器の等価回路を示
す。上記誘電体コンデンサ10の静電容量をC3、上記
光電圧センサ5の静電容量をC4とすれば、大地間電圧
に対する光電圧センサに印加される電圧値との比である
分圧比Rは、(数2)となる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a high-voltage conductor, 2 is an inner electrode formed inside the insulator, 3 is a dielectric constituting the insulator, 4 is an outer electrode formed outside the insulator, and 9 is an outer electrode of each phase. Connected lead wires. 10
Is a dielectric capacitor for voltage division, 5 is an optical voltage sensor, 11
Is an optical fiber for transmitting and receiving light to and from the optical voltage sensor 5,
Reference numeral 12 denotes a packing for fixing the optical fiber 11 and keeping the inside and outside of the switch airtight. Reference numeral 13 denotes a high-pressure air switch. The high-voltage conductor 1 and the inner electrode 2 are electrically connected. The capacitance C 1 is formed between the inner electrode 2 and the outer electrode 4. FIG. 2 shows an equivalent circuit of this voltage divider. Assuming that the capacitance of the dielectric capacitor 10 is C 3 and the capacitance of the optical voltage sensor 5 is C 4 , a voltage division ratio R, which is a ratio of the voltage between the ground and the voltage applied to the optical voltage sensor, Becomes (Equation 2).

【0010】[0010]

【数2】 (Equation 2)

【0011】一方、上記光電圧センサ5に印加される零
相電圧値は、下式で表せる。 VZX=VA*R+VB*R*COS(120°)+VC
R*COS(240°) VZY=VB*R*SIN(120°)+VC*R*SIN
(240°) VS=(VZX 2+VZY 21/2 但し、VA:A相の大地間電圧 VB:B相の大地間電圧 VC:C相の大地間電圧 一方、上記外側電極4と他相の外側電極との間に形成さ
れる静電容量CTは、(数3)となり、中心間距離aに
よることがわかる。
On the other hand, the zero-phase voltage value applied to the optical voltage sensor 5 can be expressed by the following equation. V ZX = V A * R + V B * R * COS (120 °) + V C *
R * COS (240 °) V ZY = V B * R * SIN (120 °) + V C * R * SIN
(240 °) V S = (V ZX 2 + V ZY 2 ) 1/2 where V A : A-phase ground voltage V B : B-phase ground voltage V C : C-phase ground voltage The capacitance C T formed between the outer electrode 4 and the outer electrode of the other phase is given by (Equation 3), which indicates that it depends on the center distance a.

【0012】[0012]

【数3】 (Equation 3)

【0013】しかるに、本発明のごとく、静電容量分圧
器の中心間距離を等しく配置すれば、各相上記外側電極
4の受ける他相電界の等しく、分圧器上でベクトル加算
される、本発明の分圧器構成の場合、すべて打ち消され
ることになる。
However, as in the present invention, if the distances between the centers of the capacitive voltage dividers are equal, the other-phase electric fields received by the outer electrodes 4 of each phase are equal, and the vectors are added on the voltage divider. In the case of the voltage divider configuration described above, all are canceled out.

【0014】図3に、制御用変圧器への引き下げ線に静
電容量分圧器を設けた例を示す。14は引き下げ線、1
5は光電圧センサ5へ、光信号の送受信を行うための回
路である。
FIG. 3 shows an example in which a capacitance voltage divider is provided on a down line to a control transformer. 14 is the downline, 1
Reference numeral 5 denotes a circuit for transmitting and receiving an optical signal to and from the optical voltage sensor 5.

【0015】なお、図1に示す実施形態では、静電容量
分圧器上で3相の分電圧をベクトル加算し、零相電圧を
一つの光電圧センサ5で検出していたが、本実施形態の
ように各相に電圧センサを取り付け、上記回路15上で
演算処理してもよい。
In the embodiment shown in FIG. 1, the three-phase divided voltages are vector-added on the capacitive voltage divider, and the zero-phase voltage is detected by one optical voltage sensor 5. As described above, a voltage sensor may be attached to each phase, and arithmetic processing may be performed on the circuit 15.

【0016】[0016]

【発明の効果】以上のように本発明によれば、3相の高
圧配電線路に静電容量分圧器を3つの静電容量分圧器の
中心距離が各々等しくなるように配することにより、他
相電界の影響を受けない、零相電圧検出が可能になると
いう効果がある。
As described above, according to the present invention, by disposing the capacitive voltage dividers on the three-phase high-voltage distribution line such that the center distances of the three capacitive voltage dividers are equal to each other, There is an effect that a zero-sequence voltage can be detected without being affected by the phase electric field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による零相電圧検出装置を
示す断面図
FIG. 1 is a cross-sectional view illustrating a zero-phase voltage detection device according to an embodiment of the present invention.

【図2】同零相電圧検出装置の分圧器回路を示す等価回
路図
FIG. 2 is an equivalent circuit diagram showing a voltage divider circuit of the zero-phase voltage detection device.

【図3】本発明の他の実施形態による零相電圧検出装置
を示す斜視図
FIG. 3 is a perspective view showing a zero-phase voltage detecting device according to another embodiment of the present invention.

【図4】従来の零相電圧検出装置を示す断面図FIG. 4 is a sectional view showing a conventional zero-sequence voltage detecting device.

【図5】同零相電圧検出装置の分圧器回路を示す等価回
路図
FIG. 5 is an equivalent circuit diagram showing a voltage divider circuit of the zero-phase voltage detection device.

【図6】同装置の断面図FIG. 6 is a sectional view of the apparatus.

【符号の説明】[Explanation of symbols]

1 高圧導体部 2 内側電極 3 誘電体 4 外側電極 5 光電圧センサ DESCRIPTION OF SYMBOLS 1 High voltage conductor part 2 Inner electrode 3 Dielectric 4 Outer electrode 5 Optical voltage sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3相の高圧配電線路の各々に静電容量分
圧器を設け、上記3相の3つの静電容量分圧器の中心距
離を各々等しくなるように配置したことを特徴とする零
相電圧検出装置。
1. A three-phase high-voltage power distribution line, wherein a capacitance divider is provided in each of the three-phase high-voltage distribution lines, and the three-phase three capacitance dividers are arranged so that their center distances are equal to each other. Phase voltage detector.
JP9041925A 1997-02-26 1997-02-26 Zero phase voltage detector Pending JPH10239366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9041925A JPH10239366A (en) 1997-02-26 1997-02-26 Zero phase voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9041925A JPH10239366A (en) 1997-02-26 1997-02-26 Zero phase voltage detector

Publications (1)

Publication Number Publication Date
JPH10239366A true JPH10239366A (en) 1998-09-11

Family

ID=12621831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9041925A Pending JPH10239366A (en) 1997-02-26 1997-02-26 Zero phase voltage detector

Country Status (1)

Country Link
JP (1) JPH10239366A (en)

Similar Documents

Publication Publication Date Title
US6717395B2 (en) Current transformer based high voltage measurement apparatus
US6529013B2 (en) Three-phase voltage sensor with active crosstalk cancellation
US4700123A (en) Power distribution systems and means for control thereof
JPH10239366A (en) Zero phase voltage detector
JP2544121Y2 (en) Reed relay and switch matrix device using the same
JP2004177310A (en) Dielectric loss tangent-measuring device and non-contact voltage measuring device using the same
EP0809115A2 (en) Voltage measuring instrument and voltage measuring method using the same
JPH0331768A (en) Voltage detecting device
WO2007041002A1 (en) Voltage sensors and voltage sensing methods for gas insulated switchgear
JPH073343Y2 (en) Three-phase collective switchgear voltage detector
JP3327186B2 (en) Zero-phase voltage detector
SU864425A1 (en) Overhead three-phase ac power transmission line in network with insulated neutral wire
JP2002277496A (en) Measuring method for dielectric loss tangent of cable
JP2856523B2 (en) Voltage detector
JP3232580B2 (en) Zero-phase voltage detector
JPH0743392B2 (en) Voltage detector
JPH01136074A (en) Detector for voltage of gas insulated closed appliance and partial discharge
JP2889252B2 (en) Power cable dielectric loss measuring device
JPH03221872A (en) Voltage sensor
JPS59221671A (en) Optical voltage transformer device
JPH09219912A (en) Gas-insulated equipment fitted with current detecting electrode
JP2000187045A (en) Voltage transformer
JPH06109801A (en) Detection of partial discharge
JPH0218570B2 (en)
JPH11264841A (en) Voltage divider