JPH10238412A - Egr controller for engine - Google Patents

Egr controller for engine

Info

Publication number
JPH10238412A
JPH10238412A JP9039395A JP3939597A JPH10238412A JP H10238412 A JPH10238412 A JP H10238412A JP 9039395 A JP9039395 A JP 9039395A JP 3939597 A JP3939597 A JP 3939597A JP H10238412 A JPH10238412 A JP H10238412A
Authority
JP
Japan
Prior art keywords
egr
engine
pressure
egr valve
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9039395A
Other languages
Japanese (ja)
Other versions
JP3629876B2 (en
Inventor
Akira Shirakawa
暁 白河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP03939597A priority Critical patent/JP3629876B2/en
Publication of JPH10238412A publication Critical patent/JPH10238412A/en
Application granted granted Critical
Publication of JP3629876B2 publication Critical patent/JP3629876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To properly control the feedback of an EGR quantity depending on pressure difference generated in an EGR passage by computing a request EGR valve opening area based on a request EGR quantity and an EGR differential pressure determined in accordance with the operating state of an engine and computing a desired EGR valve opening degree considering a flow coefficient. SOLUTION: During the operation of an engine, a prescribed EGR area is decided based on engine rotating speed, fuel injection quantity, cooling water temperature, etc., in a desired EGR quantity setting means 31, a desired EGR quantity is computed based on a desired EGR rate and an inlet air quantity which are set depending on the engine rotating speed, the fuel injection quantity in the EGR area. Then, EGR differential pressure is computed depending on inlet pressure and exhaust pressure detecting signals by an EGR differential pressure detecting means 32 and a request EGR valve opening area corresponding to the desired EGR quantity is calculated 33 based on the EGR differential pressure. Then, the desired opening degree of an EGR valve is computed 38 depending on a flow coefficient and the request EGR valve opening area which are set 36 based on the rotating speed and load of the engine to control the EGR valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、EGR通路の両端
に生じる圧力差に応じてEGR量(吸気系に還流される
排気ガス量)を制御する装置の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an apparatus for controlling an EGR amount (amount of exhaust gas recirculated to an intake system) according to a pressure difference generated between both ends of an EGR passage.

【0002】[0002]

【従来の技術】自動車用エンジン等にあっては、排気ガ
ス中の有害成分であるNOxの発生を抑制するために、
吸気通路に不活性の排気ガスを再循環させる、いわゆる
EGR装置が設けられている。
2. Description of the Related Art In an automobile engine or the like, in order to suppress the generation of NOx which is a harmful component in exhaust gas,
A so-called EGR device for recirculating inert exhaust gas in the intake passage is provided.

【0003】しかし、吸気通路に不活性の排気ガスを再
循環させてNOxの発生を抑制すると、燃焼雰囲気が酸
素不足となるため、排気微粒子やHC、CO等の排出量
が増える傾向がある。
[0003] However, if the generation of NOx is suppressed by recirculating the inactive exhaust gas into the intake passage, the combustion atmosphere becomes insufficient in oxygen, and the amount of exhaust particulates, HC, CO and the like tends to increase.

【0004】このNOxと排気微粒子のトレードオフの
関係は、エンジン高負荷時、あるいはEGR量が多くな
り空気過剰率が低い運転条件で顕著になり、NOxと排
気微粒子の排出量を同時に減らすためには、EGR量を
運転条件に応じて精密に制御する必要がある。
The trade-off relationship between NOx and exhaust particulates becomes remarkable when the engine is under a high load or when the EGR amount is large and the excess air ratio is low. It is necessary to precisely control the EGR amount according to the operating conditions.

【0005】EGR量を制御する装置として、例えば特
開昭57−148048号公報に開示されたものは、エ
ンジンに吸入される空気量と新気量をそれぞれ検出し、
両者の差をEGR量と見なし、EGR率(=EGR量/
新気量)が目標EGR率と一致するように、EGR通路
の開口面積がEGR弁を介して調節されるようになって
いる。これにより、EGR弁を流れる排気ガスの挙動を
考慮しなくても、目標のEGR率に制御でき、EGR弁
の詰まりを自己補正することができる。
[0005] As a device for controlling the EGR amount, for example, one disclosed in Japanese Patent Application Laid-Open No. 57-148048 detects the amount of air taken into the engine and the amount of fresh air, respectively.
The difference between the two is regarded as the EGR amount, and the EGR rate (= EGR amount /
The opening area of the EGR passage is adjusted via the EGR valve so that the (new air amount) matches the target EGR rate. Thus, the target EGR rate can be controlled without considering the behavior of the exhaust gas flowing through the EGR valve, and the clogging of the EGR valve can be self-corrected.

【0006】しかし、この従来装置は、目標EGR量に
対して実測されるEGR量がずれた場合、EGR弁の開
度をどのように制御させればよいかを適合させる必要が
あり、例えばPI制御ならば、P分I分を適合させなけ
ればならい。また、後述するように、回転数、負荷、E
GR弁開度等の運転条件により、EGR弁の開度変化に
対するEGR量の変化が一定でないため各種補正が必要
であり、EGR量を運転条件に応じて精密に制御するこ
とが難しい。
However, in this conventional apparatus, when the actually measured EGR amount deviates from the target EGR amount, it is necessary to adjust how to control the opening of the EGR valve. For control, the P and I components must be adapted. Further, as described later, the rotation speed, the load,
Depending on the operating conditions such as the opening degree of the GR valve, the change in the EGR amount with respect to the change in the opening degree of the EGR valve is not constant, so various corrections are required, and it is difficult to precisely control the EGR amount according to the operating conditions.

【0007】これに対処して、EGR弁を流れる排気ガ
ス流量を制御する装置として、例えば特開平2−118
58号公報に開示されたものは、EGR弁の前後差圧を
計測し、目標EGR率が得られるEGR弁と吸気絞り弁
の開度を調節するようになっている。これは、EGR弁
を通過する排気ガスの流れを1次元非圧縮性流体として
考え、EGR率の目標値と実測値の差分に応じて、EG
R弁の開口面積の所要変化量を求めるため、EGR弁の
アクチュエータそのものの制御定数のみを適合させれば
よい。
To cope with this, an apparatus for controlling the flow rate of exhaust gas flowing through the EGR valve is disclosed in, for example, Japanese Patent Laid-Open No. 2-118.
The device disclosed in Japanese Patent No. 58 is configured to measure the differential pressure across the EGR valve and adjust the openings of the EGR valve and the intake throttle valve that can obtain a target EGR rate. This is because the flow of the exhaust gas passing through the EGR valve is considered as a one-dimensional incompressible fluid, and the flow rate of the EG is determined according to the difference between the target value and the measured value of the EGR rate.
In order to obtain the required amount of change in the opening area of the R valve, only the control constant of the actuator itself of the EGR valve needs to be adapted.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のエンジンのEGR制御装置にあっては、以下
の問題がある。
However, such a conventional engine EGR control device has the following problems.

【0009】まず、EGR弁を通過する排気ガスの流れ
を非圧縮性定常流とすると、EGR弁の前後差圧ΔPと
EGR量QおよびEGR弁の開口面積Aの間には次のベ
ルヌーイの式が成立する。
First, assuming that the flow of exhaust gas passing through the EGR valve is an incompressible steady flow, the following Bernoulli equation is established between the differential pressure ΔP across the EGR valve, the EGR amount Q, and the opening area A of the EGR valve. Holds.

【0010】 Q=k×A(2×ρ×ΔP)1/2 …(1) ただし、kは流量係数、ρは排気ガスの粘性である。Q = k × A (2 × ρ × ΔP) 1/2 (1) where k is a flow coefficient and ρ is a viscosity of the exhaust gas.

【0011】また、EGR弁の流路モデルとして図12
に示すように流路面積がA1からA2に拡がる管を考え
ると、流量係数kは次式で演算される。
FIG. 12 shows a flow path model of the EGR valve.
Assuming a pipe having a flow path area extending from A1 to A2 as shown in (1), the flow coefficient k is calculated by the following equation.

【0012】 k=[1−(A2/A1)2-1/2 …(2) しかし、実際にEGR弁の前後差圧ΔPとEGR量を計
測すると、式(1)より演算される要求開口面積は、図
13に示すように、実際の開口面積に対して1.4〜
4.0倍の補正が必要となる。
K = [1− (A2 / A1) 2 ] −1/2 (2) However, when actually measuring the differential pressure ΔP before and after the EGR valve and the EGR amount, the demand calculated by the equation (1) As shown in FIG. 13, the opening area is 1.4 to the actual opening area.
A 4.0-fold correction is required.

【0013】これは、実際の排気ガスの流れが非定常で
あり、かつ圧縮性であるため、エンジン回転と負荷およ
びEGR弁の開口面積により、流量係数kが変化するも
のと考えられる。また、EGR弁の形状は拡がり管と異
なり、EGR弁の表面粗さやEGR通路の曲がりによっ
ても変化すると考えられる。
It is considered that the flow coefficient k varies depending on the engine speed, the load, and the opening area of the EGR valve because the actual flow of the exhaust gas is unsteady and compressible. Further, unlike the expansion pipe, the shape of the EGR valve is considered to be changed by the surface roughness of the EGR valve and the bending of the EGR passage.

【0014】エンジン回転と負荷により流量係数kが変
化する要因としては、実際にEGR弁の前後の圧力変化
を計測してみると、図14に示すように、エンジンの吸
気行程と排気行程に応じた吸気・排気脈動が生じてお
り、エンジン回転と負荷に応じてEGR弁を排気ガスが
逆流することが考えられる。
The cause of the change in the flow coefficient k depending on the engine rotation and the load is as follows. When the pressure change before and after the EGR valve is actually measured, as shown in FIG. 14, it depends on the intake stroke and the exhaust stroke of the engine. It is conceivable that exhaust gas flows back through the EGR valve depending on the engine speed and load due to intake and exhaust pulsations.

【0015】また、特開平2−11858号公報に開示
された従来装置は、目標EGR率のかわりに目標とする
EGR弁の前後差圧ΔPを目標値に近づけるようにフィ
ードバック制御して、流量係数kの変化を吸収するよう
になっている。しかし、図13からも明らかなように、
運転条件に応じてEGR弁の開度変化に対するEGR量
の変化率が異なるため、実測差圧と目標差圧の差からE
GR弁の所要開口面積変化量を演算することは難しい。
例えば、EGR弁のリフトに対してEGR量の変化率が
小さい運転条件でフィードバック制御のP分I分を適合
させると、EGR弁のリフトに対してEGR量の変化率
が大きい運転条件でフィードバック制御量が過剰とな
り、制御ハンチングを引き起こす可能性がある。逆の場
合は、フィードバック制御量が不足し、制御の応答遅れ
が生じる可能性がある。
The conventional device disclosed in Japanese Patent Laid-Open No. 11858/1990 performs feedback control so that the differential pressure ΔP across the target EGR valve approaches the target value instead of the target EGR rate, and the flow rate coefficient It is designed to absorb the change in k. However, as is clear from FIG.
Since the rate of change of the EGR amount with respect to the change in the degree of opening of the EGR valve differs depending on the operating conditions, E
It is difficult to calculate the required opening area change amount of the GR valve.
For example, when the P and I components of the feedback control are adapted under the operating condition where the rate of change of the EGR amount is small relative to the lift of the EGR valve, the feedback control is performed under the operating condition where the rate of change of the EGR amount is large relative to the lift of the EGR valve. Excessive amounts can cause control hunting. In the opposite case, there is a possibility that the feedback control amount is insufficient and a control response delay occurs.

【0016】すなわち、エンジン回転数、負荷、EGR
弁開度等の運転条件により、EGR弁の流量係数kが大
幅に増減するため、EGR量の制御誤差が大きく、NO
xあるいは排気微粒子の排出量が増加するという問題点
がある。
That is, engine speed, load, EGR
Since the flow coefficient k of the EGR valve greatly increases and decreases depending on operating conditions such as the valve opening degree, the control error of the EGR amount is large, and NO
There is a problem in that the amount of x or exhaust particulates increases.

【0017】また、EGR量あるいはEGR率を目標値
に近づけるために、EGR弁の前後差圧の目標値を実験
によりエンジン回転数、負荷に応じて設定する必要があ
り、例えば排気ガスの規制値に適合させるための実験工
数が多くなるという問題点がある。
Further, in order to bring the EGR amount or the EGR rate close to the target value, it is necessary to experimentally set the target value of the differential pressure across the EGR valve in accordance with the engine speed and the load. However, there is a problem that the number of experimental steps required to conform to the above is increased.

【0018】本発明は上記の問題点を鑑みてなされたも
のであり、EGR通路に生じる圧力差に応じてEGR量
を的確にフィードバック制御するEGR制御装置を提供
することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide an EGR control device that accurately performs feedback control of an EGR amount in accordance with a pressure difference generated in an EGR passage.

【0019】[0019]

【課題を解決するための手段】請求項1に記載のエンジ
ンのEGR制御装置は、エンジンの排気通路と吸気通路
を結ぶEGR通路と、EGR通路の途中に介装されるE
GR弁と、EGR通路の両端に生じる圧力差をEGR差
圧Dlpとして検出するEGR差圧検出手段と、運転条
件に応じて要求EGR量Tqeを設定する要求EGR量
設定手段と、要求EGR量TqeとEGR差圧Dlpに
応じて要求されるEGR弁の開口面積Aevsを演算す
る要求EGR弁開口面積演算手段と、エンジン回転数を
検出するエンジン回転数検出手段と、エンジン負荷を検
出するエンジン負荷検出手段と、エンジン回転数とエン
ジン負荷に応じて流量係数aを設定する流量係数設定手
段と、要求EGR弁開口面積Aevsと流量係数aに応
じてEGR弁の目標開度Aevを演算する目標EGR弁
開度演算手段とを備えるものとした。
According to a first aspect of the present invention, there is provided an EGR control system for an engine, wherein an EGR passage connecting an exhaust passage and an intake passage of the engine, and an EGR passage interposed in the EGR passage.
A GR valve, EGR differential pressure detecting means for detecting a pressure difference generated between both ends of the EGR passage as an EGR differential pressure Dlp, required EGR amount setting means for setting a required EGR amount Tqe according to operating conditions, and a required EGR amount Tqe EGR valve opening area calculating means for calculating the opening area Aevs of the EGR valve required in accordance with the EGR differential pressure Dlp, engine speed detecting means for detecting the engine speed, and engine load detecting for detecting the engine load. Means, a flow coefficient setting means for setting a flow coefficient a according to the engine speed and the engine load, and a target EGR valve for calculating a target opening degree Aev of the EGR valve according to the required EGR valve opening area Aevs and the flow coefficient a And an opening calculating means.

【0020】請求項2に記載のエンジンのEGR制御装
置は、請求項1に記載の発明において、前記EGR弁の
開度に対する補正係数bを設定する補正係数設定手段を
備え、前記目標EGR弁開度演算手段は要求EGR弁開
口面積Aevsと流量係数aに応じてEGR弁の目標開
度AevをAev=a×Aevsbとして演算するもの
とした。
According to a second aspect of the present invention, there is provided an EGR control device for an engine according to the first aspect of the invention, further comprising a correction coefficient setting means for setting a correction coefficient b for the opening degree of the EGR valve; degree calculating means is assumed for calculating the target opening Aev of the EGR valve as Aev = a × Aevs b in response to a request EGR valve opening area Aevs and flow coefficient a.

【0021】請求項3に記載のエンジンのEGR制御装
置は、請求項1または2に記載の発明において、吸気通
路の圧力Pmを検出する吸気圧力検出手段と、排気通路
の圧力Pexhを検出する吸気圧力検出手段とを備え、
前記EGR差圧検出手段はEGR差圧DlpをDlp=
Pexh−Pmとして演算するものとした。
According to a third aspect of the present invention, there is provided an EGR control apparatus for an engine according to the first or second aspect of the invention, wherein an intake pressure detecting means for detecting a pressure Pm in an intake passage and an intake pressure for detecting a pressure Pexh in an exhaust passage. Pressure detecting means,
The EGR differential pressure detecting means converts the EGR differential pressure Dlp to Dlp =
The calculation was performed as Pexh-Pm.

【0022】請求項4に記載のエンジンのEGR制御装
置は、請求項1または2に記載の発明において、吸気量
を検出する吸気量検出手段と、吸気量に応じて吸気圧P
mを演算する吸気圧演算手段と、エンジン負荷を検出す
るエンジン負荷検出手段と、エンジン負荷に応じて排気
圧Pexhを演算する排気圧演算手段とを備え、前記E
GR差圧検出手段はEGR差圧DlpをDlp=Pex
h−Pmとして演算するものとした。
According to a fourth aspect of the present invention, there is provided an EGR control device for an engine according to the first or second aspect of the invention, wherein an intake air amount detecting means for detecting an intake air amount and an intake pressure P in accordance with the intake air amount.
m, an engine load detecting means for detecting an engine load, and an exhaust pressure calculating means for calculating an exhaust pressure Pexh according to the engine load.
The GR differential pressure detecting means calculates the EGR differential pressure Dlp as Dlp = Pex
The calculation was made as h-Pm.

【0023】[0023]

【発明の作用および効果】請求項1に記載のエンジンの
EGR制御装置において、要求EGR弁開口面積Aev
sは、EGR弁を通過する排気ガスの流れを非圧縮性定
常流として、ベルヌーイの式から導かれる。しかしなが
ら、実際の排気ガスは圧縮性非定常流であり、エンジン
回転数、エンジン負荷、EGR弁の開度等によって流量
係数が変化するため、要求EGR弁開口面積Aevsに
よって調節されるEGR量が目標EGR量TQeと大幅
に相違する可能性がある。
In the EGR control system for an engine according to the first aspect, the required EGR valve opening area Aev
s is derived from Bernoulli's equation assuming that the flow of exhaust gas passing through the EGR valve is an incompressible steady flow. However, since the actual exhaust gas is a compressible unsteady flow, and the flow coefficient changes depending on the engine speed, the engine load, the opening of the EGR valve, and the like, the EGR amount adjusted by the required EGR valve opening area Aevs is set to the target value. It may be significantly different from the EGR amount TQe.

【0024】これに対処して、流量係数設定手段はエン
ジン回転数とエンジン負荷に応じて流量係数aを演算
し、目標EGR弁開口面積演算手段は要求EGR弁開口
面積Aevsと流量係数aに応じて演算する。
In response to this, the flow coefficient setting means calculates the flow coefficient a according to the engine speed and the engine load, and the target EGR valve opening area calculating means calculates the required EGR valve opening area Aevs and the flow coefficient a. To calculate.

【0025】図5はエンジンの回転数Neと発生トルク
をそれぞれ変えてEGR弁の要求開口面積(差圧、EG
R量とからベルヌーイの式から求まる)と必要開口面積
(幾何学的形状によって決まる)の関係を示している。
これから両者の間にはy=a×xbの関係があり、係数
aはエンジン回転数と負荷に応じて変化し、傾きbが一
定であることがわかる。
FIG. 5 shows the required opening area (differential pressure, EG) of the EGR valve by changing the engine speed Ne and the generated torque, respectively.
The relationship between the R amount and the required opening area (determined by the geometric shape) and the required opening area (determined by Bernoulli's equation) is shown.
From this, it can be seen that there is a relationship of y = a × x b between the two, the coefficient a changes according to the engine speed and the load, and the slope b is constant.

【0026】したがって、本発明は、係数aをエンジン
回転数と負荷に応じて変化させ、目標EGR弁開口面積
Aevを要求EGR弁開口面積Aevsと流量係数aに
応じて演算する構成により、EGR量を精密に制御する
ことができる。
Therefore, according to the present invention, the EGR amount is changed according to the engine speed and the load, and the target EGR valve opening area Aev is calculated according to the required EGR valve opening area Aevs and the flow coefficient a. Can be precisely controlled.

【0027】請求項2に記載のエンジンのEGR制御装
置において、補正係数設定手段はEGR弁の開度に応じ
て補正係数bを設定し、目標EGR弁開口面積演算手段
は目標EGR弁開口面積AevをAev=a×Aevs
bとして演算する。
In the engine EGR control device according to the second aspect, the correction coefficient setting means sets the correction coefficient b according to the degree of opening of the EGR valve, and the target EGR valve opening area calculation means sets the target EGR valve opening area Aev. Aev = a × Aevs
Calculate as b .

【0028】図6は、EGR弁の幾何学的形状とEGR
通路の管形状およびエンジンの吸・排気系の管形状をそ
れぞれ変えてEGR弁の上記要求開口面積と必要開口面
積の関係を示している。これから両者の間にはy=a×
bの関係があり、傾きbが流路の幾何学的形状に応じ
て変化することがわかる。
FIG. 6 shows the EGR valve geometry and EGR.
The relationship between the required opening area and the required opening area of the EGR valve is shown by changing the pipe shape of the passage and the pipe shape of the intake / exhaust system of the engine. From now on, y = a ×
It can be seen that there is a relationship of xb , and the slope b changes according to the geometric shape of the flow path.

【0029】したがって、本発明は、傾きbをEGR弁
の開度(流路の幾何学的形状)に応じて変化させ、目標
EGR弁開口面積AevをAev=a×Aevsbとし
て演算する構成により、EGR量を精密に制御すること
ができる。
[0029] Accordingly, the present invention is the configuration which is varied in accordance with the opening degree of the EGR valve inclination b (geometry of the flow channel), calculates a target EGR valve opening area Aev as Aev = a × Aevs b , EGR amount can be precisely controlled.

【0030】請求項3に記載のエンジンのEGR制御装
置において、吸気通路の圧力Pmと排気通路の圧力Pe
xhがそれぞれ検出され、EGR差圧Dlpは排気通路
と吸気通路の圧力差Pexh−Pmとして演算される。
これにより、EGR差圧DlpはEGR通路の前後差圧
となり、EGR量が少ない運転時でもEGR差圧Dlp
に応じて目標EGR量TQeに対する要求EGR弁開口
面積Aevsを的確に算出することができる。
In the engine EGR control device according to the third aspect, the pressure Pm in the intake passage and the pressure Pe in the exhaust passage.
xh is detected, and the EGR differential pressure Dlp is calculated as the pressure difference Pexh-Pm between the exhaust passage and the intake passage.
As a result, the EGR differential pressure Dlp becomes a differential pressure across the EGR passage, and even during operation with a small EGR amount, the EGR differential pressure Dlp
Accordingly, the required EGR valve opening area Aevs for the target EGR amount TQe can be accurately calculated.

【0031】請求項4に記載のエンジンのEGR制御装
置において、吸気量に応じて吸気圧Pmを演算し、エン
ジン負荷に応じて排気圧Pexhを演算する。こうして
求められる吸気圧Pmと排気圧Pexhに応じて、EG
R差圧DlpをDlp=Pexh−Pmとして演算す
る。これにより、EGR差圧DlpはEGR通路の前後
差圧となり、EGR量が多い運転時でもEGR差圧Dl
pに応じて目標EGR量TQeに対する要求EGR弁開
口面積Aevsを的確に算出することができる。
In the engine EGR control device according to the fourth aspect, the intake pressure Pm is calculated according to the intake air amount, and the exhaust pressure Pexh is calculated according to the engine load. According to the intake pressure Pm and the exhaust pressure Pexh thus obtained, EG
The R differential pressure Dlp is calculated as Dlp = Pexh-Pm. As a result, the EGR differential pressure Dlp becomes a differential pressure across the EGR passage, and even during operation with a large EGR amount, the EGR differential pressure Dlp
The required EGR valve opening area Aevs for the target EGR amount TQe can be accurately calculated in accordance with p.

【0032】[0032]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0033】図1に示すように、ディーゼルエンジンに
備えられる分配型燃料噴射ポンプは、燃料がドライブシ
ャフト52により駆動されるフィードポンプ53によっ
て吸引され、フィードポンプ53からポンプ室55に供
給された燃料は、吸入ポート56を通って高圧プランジ
ャポンプ57に送られる。
As shown in FIG. 1, in a distribution type fuel injection pump provided in a diesel engine, fuel is sucked by a feed pump 53 driven by a drive shaft 52, and supplied to a pump chamber 55 from the feed pump 53. Is sent to a high-pressure plunger pump 57 through a suction port 56.

【0034】プランジャポンプ57のプランジャ58
は、継手79を介してドライブシャフト52によりエン
ジン回転に同期して、エンジン回転数の1/2の速度で
回転駆動される。
Plunger 58 of plunger pump 57
Is rotationally driven at a speed of エ ン ジ ン of the engine speed in synchronism with the engine speed by the drive shaft 52 via the joint 79.

【0035】プランジャ58に固定されたカムディスク
59は、エンジンの気筒数と同数のフェイスカムをも
ち、回転しながらローラリング61に配設されたローラ
62を乗り越えるたびに、スプリング69に抗してプラ
ンジャ58を所定のカムリフトだけ往復運動する。プラ
ンジャ58の回転往復運動により、吸入ポート56から
プランジャ58に刻まれた吸入スリットを介してプラン
ジャ高圧室54に吸引された燃料が分配ポート63より
デリバリーバルブ64を通って各気筒の図示しない噴射
ノズル77へと圧送される。
The cam disk 59 fixed to the plunger 58 has the same number of face cams as the number of cylinders of the engine. Each time the cam disk 59 rotates and passes over the roller 62 provided on the roller ring 61, it opposes the spring 69. The plunger 58 is reciprocated by a predetermined cam lift. By the reciprocating movement of the plunger 58, the fuel sucked into the plunger high-pressure chamber 54 from the suction port 56 through the suction slit formed in the plunger 58, passes from the distribution port 63 through the delivery valve 64, and the injection nozzle (not shown) of each cylinder. 77.

【0036】プランジャ58が図中右側に移動してプラ
ンジャ高圧室54から分配スリットを経て分配ポート6
3へと燃料を圧送する過程で、カットオフポートの開口
部がコントロールスリーブ66の図中右側端部を越える
と圧送されていた燃料が低圧ポンプ室5へと開放され
る。
The plunger 58 moves to the right side in the drawing and moves from the plunger high pressure chamber 54 through the distribution slit to the distribution port 6.
When the opening of the cut-off port exceeds the right end of the control sleeve 66 in the drawing in the process of pumping the fuel to the fuel tank 3, the fuel that has been pumped is released to the low-pressure pump chamber 5.

【0037】燃料噴射量は、プランジャ58に形成され
たカットオフポートを開閉するコントロールスリーブ6
6の位置によって決められる。すなわち、コントロール
スリーブ66を図中右側に変位させると、燃料噴射時期
が遅くなって燃料噴射量が増加し、図中左側に変位させ
ると燃料噴射時期が早まって燃料噴射量が減少するので
ある。
The fuel injection amount is controlled by a control sleeve 6 for opening and closing a cutoff port formed in the plunger 58.
It is determined by the position of 6. That is, when the control sleeve 66 is displaced to the right in the drawing, the fuel injection timing is delayed and the fuel injection amount is increased, and when the control sleeve 66 is displaced to the left in the drawing, the fuel injection timing is advanced and the fuel injection amount is reduced.

【0038】コントロールスリーブ66の位置を自動的
に調節する電子制御式ガバナとしてロータリソレノイド
71が設けられる。ロータリソレノイド71はロータ7
2を回転運動させ、その先端に偏心して設けられたボー
ルを介してコントロールスリーブ66を直線運動させ
る。
A rotary solenoid 71 is provided as an electronically controlled governor for automatically adjusting the position of the control sleeve 66. The rotary solenoid 71 is connected to the rotor 7
2 is rotated, and the control sleeve 66 is linearly moved via a ball provided eccentrically at the tip.

【0039】燃料噴射時期は、タイマーピストン75に
よりローラリング61を介してフェイスカムをローラ6
2に対して相対回転させることによって調整される。タ
イマーヒストン75の両端部に作用する油圧差をデュー
ティソレノイドバルブ76を介して調節することによ
り、タイマーピストン75を移動させてローラリング6
1を回転させ、フェイスカムがローラ62に乗り上げる
時期を変化させるようになっている。
The fuel injection timing is determined by setting the face cam to the roller 6 by the timer piston 75 via the roller ring 61.
It is adjusted by rotating relative to 2. By adjusting the hydraulic pressure difference acting on both ends of the timer histone 75 through the duty solenoid valve 76, the timer piston 75 is moved to
1 is rotated to change the timing at which the face cam rides on the roller 62.

【0040】ロータリソレノイド71とデューティソレ
ノイドバルブ76の制御手段として備えられるコントロ
ールユニット70は、ロータリソレノイド71の制御電
圧を予めマップ情報として設定し、スタータスイッチ8
0からの信号、アクセル開度センサ81によって検出さ
れるアクセル開度Acc、ポンプ回転数センサ82によ
って検出されるエンジン回転数Ne、水温センサ83に
よって検出されるエンジン水温Tw、ノズルリフトセン
サ84によって検出される噴射ノズル77の開弁時期等
を入力し、これら検出された運転条件に応じて適切な燃
料噴射量と燃料噴射時期を演算し、演算された燃料噴射
量をロータリソレノイド71の制御電圧に変換して出力
するとともに、演算された燃料噴射時期をデューティソ
レノイドバルブ76のデューティ信号として出力する。
なお、図中65は燃料温度センサである。
A control unit 70 provided as control means for the rotary solenoid 71 and the duty solenoid valve 76 sets the control voltage of the rotary solenoid 71 as map information in advance, and sets the starter switch 8
0, the accelerator opening Acc detected by the accelerator opening sensor 81, the engine speed Ne detected by the pump speed sensor 82, the engine water temperature Tw detected by the water temperature sensor 83, and the detection by the nozzle lift sensor 84. And the like to calculate the appropriate fuel injection amount and fuel injection timing in accordance with the detected operating conditions. The calculated fuel injection amount is used as the control voltage of the rotary solenoid 71. The output is converted and output, and the calculated fuel injection timing is output as a duty signal of the duty solenoid valve 76.
In the figure, reference numeral 65 denotes a fuel temperature sensor.

【0041】図2はディーゼルエンジンに備えられるE
GR装置の概略を示している。エンジンの排気通路2と
吸気通路1のインテークマニホールド8を結ぶEGR通
路3が設けられ、EGR通路3の途中にはEGR弁4が
介装される。EGR弁4の開度が大きくなるほど、EG
R通路3を介して吸気通路1に還流されるEGR量は増
大する。EGR弁4はステップモータ5によって駆動さ
れる。ステップモータ5のステップ数がコントロールユ
ニット30によりエンジン運転条件に応じて制御される
ことにより、EGR弁4の開度が調節される。
FIG. 2 is a diagram showing an E provided in a diesel engine.
1 shows an outline of a GR device. An EGR passage 3 that connects the exhaust passage 2 of the engine and the intake manifold 8 of the intake passage 1 is provided, and an EGR valve 4 is interposed in the EGR passage 3. As the opening of the EGR valve 4 increases, the EG
The amount of EGR recirculated to the intake passage 1 via the R passage 3 increases. The EGR valve 4 is driven by a step motor 5. The number of steps of the step motor 5 is controlled by the control unit 30 according to the engine operating conditions, so that the opening of the EGR valve 4 is adjusted.

【0042】吸気通路1にはEGR通路3の合流部より
上流側にバタフライ式の吸気絞り弁9が介装される。吸
気絞り弁9はダイヤフラム式アクチュエータ6を介して
開閉作動する。吸気絞り弁9より下流側の吸気通路1に
は、吸気絞り弁9の開度が小さくなるのに伴って吸入負
圧が発生し、EGR通路3を介して吸気通路1に還流さ
れるEGR量が増大する。
A butterfly-type intake throttle valve 9 is interposed in the intake passage 1 upstream of the junction of the EGR passage 3. The intake throttle valve 9 opens and closes via a diaphragm actuator 6. In the intake passage 1 downstream of the intake throttle valve 9, an intake negative pressure is generated as the opening degree of the intake throttle valve 9 decreases, and the EGR amount is returned to the intake passage 1 via the EGR passage 3. Increase.

【0043】ダイヤフラム式アクチュエータ6は、バキ
ュームポンプ(図示せず)から電磁弁21を介して導か
れる負圧と、電磁弁22とオリフィス23を介して導か
れる負圧に応じて作動する。電磁弁21と電磁弁22の
開度がコントロールユニット30によりエンジン運転条
件に応じて制御されることにより、吸気絞り弁9の開度
が調節される。
The diaphragm type actuator 6 operates according to a negative pressure guided from a vacuum pump (not shown) via a solenoid valve 21 and a negative pressure guided via a solenoid valve 22 and an orifice 23. The opening of the intake throttle valve 9 is adjusted by controlling the opening of the solenoid valves 21 and 22 by the control unit 30 according to the engine operating conditions.

【0044】吸気通路1の絞り弁9より上流側に熱線式
のエアフロメータ12が介装される。通電により加熱さ
れるホットワイヤ(発熱抵抗体)はその抵抗値が吸入空
気量に応じて変化するので、吸入新気量Qacに応じた
信号を出力する。
A hot-wire type air flow meter 12 is provided upstream of the throttle valve 9 in the intake passage 1. Since the resistance of the hot wire (heating resistor) heated by energization changes according to the intake air amount, it outputs a signal corresponding to the intake new air amount Qac.

【0045】吸気通路1の絞り弁9より下流側のインテ
ークマニホールド8に吸気圧センサ13が介装される。
吸気圧センサ13はインテークマニホールド8の吸気圧
力Pmに応じた信号を出力する。
An intake pressure sensor 13 is interposed in the intake manifold 8 downstream of the throttle valve 9 in the intake passage 1.
The intake pressure sensor 13 outputs a signal corresponding to the intake pressure Pm of the intake manifold 8.

【0046】排気通路2に排気圧センサ14が介装され
る。排気圧センサ14は排気通路2の排気圧力Pexh
に応じた信号を出力する。
An exhaust pressure sensor 14 is interposed in the exhaust passage 2. The exhaust pressure sensor 14 detects the exhaust pressure Pexh of the exhaust passage 2.
And outputs a signal corresponding to.

【0047】コントロールユニット30は、図3に示す
ように、エンジン運転条件に応じて目標EGR量を設定
する目標EGR量設定手段31を備える。目標EGR量
設定手段31は、エンジン運転条件を代表する信号とし
て、例えばエンジン回転数Ne、燃料噴射量Qf、燃料
噴射時期、エンジン冷却水温、あるいはエンジン油温等
を表す信号を入力し、これらに基づいて所定のEGR領
域を判定する。このEGR領域で、エンジン回転数N
e、燃料噴射量Qfに応じて予め設定された目標EGR
率Megrと吸入新気量Qacに応じて目標EGR量T
Qeを演算する。
As shown in FIG. 3, the control unit 30 includes a target EGR amount setting means 31 for setting a target EGR amount according to engine operating conditions. The target EGR amount setting means 31 inputs, as signals representing the engine operating conditions, signals representing, for example, the engine speed Ne, the fuel injection amount Qf, the fuel injection timing, the engine cooling water temperature, the engine oil temperature, and the like. A predetermined EGR region is determined based on the EGR region. In this EGR region, the engine speed N
e, a target EGR preset according to the fuel injection amount Qf
The target EGR amount T according to the rate Megr and the intake fresh air amount Qac
Calculate Qe.

【0048】EGR差圧検出手段32は、吸気圧センサ
13によって検出される吸気圧力Pmと、排気圧センサ
14によって検出される排気圧力Pexhとに応じて、
EGR差圧DlpをDlp=Pexh−Pmとして演算
する。EGR差圧DlpはEGR通路3の前後差圧とな
るため、EGR差圧Dlpに応じて目標EGR量TQe
に対する要求EGR弁開口面積Aevsを的確に算出す
ることができる。
The EGR differential pressure detecting means 32 detects the intake pressure Pm detected by the intake pressure sensor 13 and the exhaust pressure Pexh detected by the exhaust pressure sensor 14,
The EGR differential pressure Dlp is calculated as Dlp = Pexh-Pm. Since the EGR differential pressure Dlp is a differential pressure across the EGR passage 3, the target EGR amount TQe is determined according to the EGR differential pressure Dlp.
, The required EGR valve opening area Aevs can be calculated accurately.

【0049】図7に示すように、吸気圧と排気圧は実際
に脈動しているが、EGR差圧Dlpは両者を平均化し
た圧力差として演算している。これにより、コントロー
ルユニット30における負担を軽減するとともに制御安
定性を確保できる。
As shown in FIG. 7, the intake pressure and the exhaust pressure are actually pulsating, but the EGR differential pressure Dlp is calculated as a pressure difference obtained by averaging the two. As a result, the load on the control unit 30 can be reduced, and control stability can be ensured.

【0050】要求EGR弁開口面積演算手段33は、要
求EGR量TQeとEGR差圧Dlpに応じて、要求E
GR弁開口面積AevsをAevs=TQe/(2×R
OU#×Dlp)-1/2として演算する。ただしROU#
は、排気ガスの粘性である。
The required EGR valve opening area calculating means 33 calculates the required EGR amount in accordance with the required EGR amount TQe and the EGR differential pressure Dlp.
The GR valve opening area Aevs is calculated as Aevs = TQe / (2 × R
OU # × Dlp) −Calculate as −1/2 . However, ROU #
Is the viscosity of the exhaust gas.

【0051】この要求EGR弁開口面積Aevsは、E
GR弁4を通過する排気ガスの流れを非圧縮性定常流と
して、ベルヌーイの式から導かれる。しかしながら、実
際の排気ガスは圧縮性非定常流であり、エンジン回転数
Ne、エンジン負荷、EGR弁4の開度等によって流量
係数が変化するため、要求EGR弁開口面積Aevsに
よって調節されるEGR量が目標EGR量TQeと大幅
に相違する可能性がある。
The required EGR valve opening area Aevs is E
The flow of the exhaust gas passing through the GR valve 4 is derived from Bernoulli's equation as an incompressible steady flow. However, since the actual exhaust gas is a compressible unsteady flow, and the flow coefficient changes depending on the engine speed Ne, the engine load, the opening of the EGR valve 4, and the like, the EGR amount adjusted by the required EGR valve opening area Aevs May greatly differ from the target EGR amount TQe.

【0052】これに対処して、流量係数設定手段36
は、エンジン回転数検出手段34として設けられるポン
プ回転数センサ82によって検出されるエンジン回転数
Neと、エンジン負荷検出手段35からの負荷信号とし
て燃料噴射量Qfを入力し、燃料噴射量Qfに応じて流
量係数aを演算する。
In response to this, the flow coefficient setting means 36
Inputs the engine speed Ne detected by a pump speed sensor 82 provided as the engine speed detecting means 34, and the fuel injection amount Qf as a load signal from the engine load detecting means 35, and To calculate the flow coefficient a.

【0053】また、補正係数設定手段37は、EGR弁
4の開度に応じて補正係数bを設定する。
The correction coefficient setting means 37 sets the correction coefficient b according to the opening of the EGR valve 4.

【0054】そして、目標EGR弁開口面積演算手段3
8は、目標EGR弁開口面積AevをAev=a×Ae
vsbとして演算する。
Then, the target EGR valve opening area calculation means 3
8 is the target EGR valve opening area Aev = Aev = a × Ae
Compute as vs b .

【0055】続いて、EGR弁面積リフト量変換手段3
9は、目標EGR弁開口面積Aevに応じてEGR弁4
のリフト量Tliftを演算する。
Subsequently, the EGR valve area lift amount conversion means 3
9 is an EGR valve 4 according to the target EGR valve opening area Aev.
Of the lift amount Tlift is calculated.

【0056】続いて、EGR弁駆動手段40はリフト量
Tliftに応じてステップモータ5に出力するステッ
プ数を演算する。
Subsequently, the EGR valve driving means 40 calculates the number of steps to be output to the step motor 5 according to the lift amount Tlift.

【0057】図5はエンジンの回転数Neと発生トルク
をそれぞれ変えてEGR弁4の要求開口面積(差圧、E
GR量とからベルヌーイの式から求まる)と必要開口面
積(幾何学的形状によって決まる)の関係を示してい
る。これから両者の間にはy=a×xbの関係があり、
係数aはエンジン回転数と負荷に応じて変化し、傾きb
が一定であることがわかる。
FIG. 5 shows the required opening area of the EGR valve 4 (differential pressure, E
It shows the relationship between the GR amount and the required opening area (determined by the geometric shape) from the Bernoulli equation. From now on, there is a relationship of y = a × x b ,
The coefficient a changes according to the engine speed and the load, and the slope b
Is constant.

【0058】図6は、EGR弁4の幾何学的形状とEG
R通路3の管形状およびエンジンの吸・排気系の管形状
をそれぞれ変えてEGR弁4の上記要求開口面積と必要
開口面積の関係を示している。これから両者の間にはy
=a×xbの関係があり、傾きbが変化することがわか
る。
FIG. 6 shows the geometric shape of the EGR valve 4 and the EG.
The relationship between the required opening area and the required opening area of the EGR valve 4 is shown by changing the pipe shape of the R passage 3 and the pipe shape of the intake / exhaust system of the engine. From now on, y
= A × x b , indicating that the slope b changes.

【0059】したがって、本発明は、係数aをエンジン
回転数と負荷に応じて変化させ、傾きbをEGR弁4の
開度(流路の幾何学的形状)に応じて変化させ、目標E
GR弁開口面積AevをAev=a×Aevsbとして
演算する構成により、図8に示すように、EGR量を精
密に制御することができる。
Therefore, according to the present invention, the coefficient a is changed according to the engine speed and the load, and the slope b is changed according to the opening degree of the EGR valve 4 (the geometrical shape of the flow path).
The arrangement for calculating the GR valve opening area Aev as Aev = a × Aevs b, as shown in FIG. 8, it is possible to precisely control the EGR quantity.

【0060】図4のフローチャートはEGR弁4のリフ
ト量を制御するルーチンを示しており、コントロールユ
ニット30において一定周期毎に実行される。
FIG. 4 is a flowchart showing a routine for controlling the lift amount of the EGR valve 4, which is executed by the control unit 30 at regular intervals.

【0061】これについて説明すると、Step1にて
吸気圧センサ13によって検出される吸気圧力Pmを読
込む。
More specifically, the intake pressure Pm detected by the intake pressure sensor 13 in Step 1 is read.

【0062】続いてStep2に進んで、排気圧センサ
14によって検出される排気圧力Pexhを読込む。
Subsequently, the program proceeds to Step 2 where the exhaust pressure Pexh detected by the exhaust pressure sensor 14 is read.

【0063】続いてStep3に進んで、EGR差圧D
lpをDlp=Pexh−Pmとして演算する。
Then, the process proceeds to Step 3, where the EGR differential pressure D
lp is calculated as Dlp = Pexh-Pm.

【0064】一方、Step4にて、エンジン運転条件
を代表する信号として、エンジン回転数Ne、燃料噴射
量Qf等に応じて予め設定された目標EGR率Megr
を検索する。
On the other hand, in Step 4, as a signal representative of the engine operating conditions, a target EGR rate Megr preset according to the engine speed Ne, the fuel injection amount Qf, etc.
Search for.

【0065】続いてStep5に進んで、エアフロメー
タ12によって検出される吸入新気量Qacを読込む。
Subsequently, the program proceeds to Step 5, where the new intake air amount Qac detected by the air flow meter 12 is read.

【0066】続いてStep6に進んで、目標EGR量
TQeを目標EGR率Megrと吸入新気量Qacに応
じて、TQe=Megr×Qacとして演算する。
Subsequently, the process proceeds to Step 6, where the target EGR amount TQe is calculated as TQe = Megr × Qac according to the target EGR rate Megr and the intake fresh air amount Qac.

【0067】続いてStep7に進んで、要求EGR弁
開口面積Aevsを要求EGR量TQeとEGR差圧D
lpに応じて、Aevs=TQe/(2×ROU#×D
lp)-1/2として演算する。ただしROU#は、排気ガ
スの粘性である。
Then, the process proceeds to Step 7, wherein the required EGR valve opening area Aevs is changed to the required EGR amount TQe and the EGR differential pressure D.
Aevs = TQe / (2 × ROU # × D, depending on lp
lp) -1/2 . Here, ROU # is the viscosity of the exhaust gas.

【0068】一方、Step8にて、流量係数aをエン
ジン回転数Neと燃料噴射量Qfに応じて検索する。
On the other hand, in Step 8, the flow coefficient a is searched according to the engine speed Ne and the fuel injection amount Qf.

【0069】続いてStep9に進んで、流量係数aと
要求EGR弁開口面積Aevsに応じて目標EGR弁開
口面積AevをAev=a×Aevsbとして演算す
る。ただし、係数bはEGR弁4の開度に応じて予め設
定された値である。
[0069] Then the process proceeds to Step9, calculates a target EGR valve opening area Aev as Aev = a × Aevs b in accordance with the flow rate coefficient a and the required EGR valve opening area Aevs. However, the coefficient b is a value set in advance according to the opening degree of the EGR valve 4.

【0070】続いてStep10に進んで、目標EGR
弁開口面積Aevに対するEGR弁4のリフト量Tli
ftを検索する。
Subsequently, the routine proceeds to Step 10, where the target EGR
Lift amount Tli of EGR valve 4 with respect to valve opening area Aev
Search for ft.

【0071】続いてStep11に進んで、リフト量T
liftに応じたステップ数をステップモータ5に出力
する。
Then, the process proceeds to Step 11, where the lift amount T
The number of steps according to the lift is output to the step motor 5.

【0072】次に、図9に示す実施形態について説明す
る。なお、図2との対応部分には同一符号を付す。
Next, the embodiment shown in FIG. 9 will be described. The parts corresponding to those in FIG. 2 are denoted by the same reference numerals.

【0073】前記実施形態では排気圧センサ14と吸気
圧センサ13の圧力検出精度は±10mmHg程度の誤
差があるため、EGR量が増えて排気通路3と吸気通路
1の圧力差Pexh−Pmが小さくなる運転領域ではE
GR差圧Dlpを的確に検出することが難しい。
In the above embodiment, since the pressure detection accuracy of the exhaust pressure sensor 14 and the intake pressure sensor 13 has an error of about ± 10 mmHg, the EGR amount increases, and the pressure difference Pexh-Pm between the exhaust passage 3 and the intake passage 1 decreases. E
It is difficult to accurately detect the GR differential pressure Dlp.

【0074】排気圧センサ14と吸気圧センサ13は、
排気ガスまたはEGRガスにさらされるため、熱劣化や
検出部のつまり等を起こして検出精度が悪化する可能性
がある。
The exhaust pressure sensor 14 and the intake pressure sensor 13
Since it is exposed to the exhaust gas or the EGR gas, there is a possibility that the detection accuracy may be deteriorated due to thermal deterioration or clogging of the detection unit.

【0075】これに対処して、本実施形態では、吸入新
気量と新気温度から吸気圧を演算し、吸入新気量と燃料
噴射量およびエンジン回転数から排気圧を演算し、これ
ら演算値によりEGR差圧Dlpを演算して、EGR量
を的確に制御するものである。
To cope with this, in the present embodiment, the intake pressure is calculated from the new intake air amount and the fresh air temperature, and the exhaust pressure is calculated from the new intake air amount, the fuel injection amount, and the engine speed. The EGR differential pressure Dlp is calculated from the value to precisely control the EGR amount.

【0076】図10のフローチャートは吸気圧Pmを演
算するルーチンを示しており、コントロールユニット3
0において一定周期毎に実行される。
FIG. 10 is a flowchart showing a routine for calculating the intake pressure Pm.
At 0, it is executed at regular intervals.

【0077】これについて説明すると、Step1にて
エアフロメータ12の出力電圧を読込み、単位時間当た
りの吸気重量Qas0に変換する。
To explain this, the output voltage of the air flow meter 12 is read in Step 1 and converted into the intake air weight Qas0 per unit time.

【0078】続いてStep2に進んで、吸気重量Qa
s0とエンジン回転数Neに応じて単位サイクル当たり
の吸気量Qacbを演算する。
Subsequently, the routine proceeds to Step 2, where the intake air weight Qa
An intake air amount Qacb per unit cycle is calculated according to s0 and the engine speed Ne.

【0079】続いてStep3に進んで、吸気通路1の
流路形状に対するエアフロメータ12の出力の補正を行
うため、吸気量Qacbをエンジン回転数Neにに応じ
て補正した吸入新気量Qacに変換する。
Subsequently, the program proceeds to Step 3, in which the intake air amount Qacb is converted into a new intake air amount Qac corrected in accordance with the engine speed Ne in order to correct the output of the air flow meter 12 with respect to the flow path shape of the intake passage 1. I do.

【0080】一方、Step4にて、エンジン回転数N
eと吸入新気量Qsolに応じて補正係数KinHQを
検索する。
On the other hand, at Step 4, the engine speed N
A correction coefficient KinHQ is retrieved according to e and the new intake air amount Qsol.

【0081】また、Step5にて、エンジン回転数N
eと吸気量Qac(負荷)に応じて補正係数KinH2
を検索する。
At Step 5, the engine speed N
eH and the correction coefficient KinH2 according to the intake air amount Qac (load).
Search for.

【0082】続いてStep6に進んで、体積効率相当
値KinをKin=KinHQ×KinH2として演算
する。
Then, the process proceeds to Step 6, in which the volume efficiency equivalent value Kin is calculated as Kin = KinHQ × KinH2.

【0083】一方、Step7にて、吸気温度センサ1
8の出力電圧を吸気温度Ta0に変換する。
On the other hand, in Step 7, the intake air temperature sensor 1
8 is converted to the intake air temperature Ta0.

【0084】続いてStep8に進んで、吸気圧に対す
る温度上昇を補正し、吸入新気温度Tintとして出力
する。
Subsequently, the program proceeds to Step 8, in which the temperature rise with respect to the intake pressure is corrected and output as the intake fresh air temperature Tint.

【0085】続いてStep9に進んで、吸気圧指数C
pmをCpm=Qac×Tint÷Kinとして演算す
る。
Subsequently, the routine proceeds to Step 9, where the intake pressure index C
pm is calculated as Cpm = Qac × Tint ÷ Kin.

【0086】続いてStep10に進んで、吸気圧Pm
をPm=Kpm#×Cpm+Opm#として演算する。
Subsequently, the routine proceeds to Step 10, where the intake pressure Pm
Is calculated as Pm = Kpm # × Cpm + Opm #.

【0087】図11のフローチャートは排気圧Pexh
を演算するルーチンを示しており、コントロールユニッ
ト30において一定周期毎に実行される。
The flowchart of FIG. 11 shows the exhaust pressure Pexh
Is calculated, and is executed in the control unit 30 at regular intervals.

【0088】これについて説明すると、Step1にて
燃料噴射量Qfに応じた基本排気温度を検索する。
To explain this, a basic exhaust temperature corresponding to the fuel injection amount Qf is searched in Step 1.

【0089】続いてStep2に進んで、スワール制御
弁開度に応じて基本排気温度を補正し、補正基本排気温
度Texhiに変換する。なお、図示しないスワール制
御弁は吸気通路に介装され、運転条件に応じてシリンダ
に流入する吸気流速を変えて、シリンダにスワールを生
起するようになっている。
Subsequently, the program proceeds to Step 2, in which the basic exhaust gas temperature is corrected in accordance with the swirl control valve opening and converted to a corrected basic exhaust gas temperature Texhi. A swirl control valve (not shown) is interposed in the intake passage, and changes the flow velocity of the intake air flowing into the cylinder according to the operating conditions to generate swirl in the cylinder.

【0090】Step3にて、吸気温度補正係数Ktm
peを吸気温度Tne/TA#に応じて検索する。
At Step 3, the intake air temperature correction coefficient Ktm
Pe is searched according to the intake air temperature Tne / TA #.

【0091】Step4にて、排気圧力補正係数Ktm
ppを排気圧力Pexh/PA#に応じて検索する。
At Step 4, the exhaust pressure correction coefficient Ktm
pp is searched according to the exhaust pressure Pexh / PA #.

【0092】Step5にて、噴射時期補正係数Ktm
pitを噴射時期ITTDC#等に応じてKtmpit=(ITTD
C-Itistd)/ITTDC#×GIT-Texhi#+1演算する。
At Step 5, the injection timing correction coefficient Ktm
pit according to the injection timing ITTDC # etc. Ktmpit = (ITTD
C-Itistd) / ITTDC # × GIT-Texhi # + 1

【0093】続いてStep6に進んで、排気温度相当
値TmpehをTmpeh=Ktexhi×Ktmpe
×Ktmpp×Ktmpitとして演算する。
Then, the process proceeds to Step 6, where the exhaust temperature-equivalent value Tmpeh is calculated as Tmpeh = Ktexhi × Ktmpe.
It is calculated as × Ktmpp × Ktmpit.

【0094】一方、Step7にて、吸気量Qacに応
じて、吸気行程と排気行程の差分だけサイクル処理し、
作動排気ガス量Qexhとして出力する。
On the other hand, in Step 7, the cycle processing is performed by the difference between the intake stroke and the exhaust stroke according to the intake air amount Qac.
It is output as the working exhaust gas amount Qexh.

【0095】続いてStep8に進んで、排気圧力指数
Cpexhを算出し、Step9に進んで、排気圧Pe
xhをPexh=Kpexh#×Cpexh+Opex
h#として演算する。
Subsequently, the routine proceeds to Step 8, where the exhaust pressure index Cpexh is calculated, and the routine proceeds to Step 9, where the exhaust pressure Pe is calculated.
xh is Pexh = Kpexh # × Cpexh + Opex
Calculate as h #.

【0096】こうして求められる吸気圧Pmと排気圧P
exhに応じて、EGR差圧DlpをDlp=Pexh
−Pmとして演算する。これにより、EGR差圧Dlp
はEGR通路の前後差圧となり、EGR量が多い運転時
でもEGR差圧Dlpに応じて目標EGR量TQeに対
する要求EGR弁開口面積Aevsを的確に算出するこ
とができる。
The intake pressure Pm and the exhaust pressure P thus determined
exp, the EGR differential pressure Dlp is calculated as Dlp = Pexh
Calculate as -Pm. Thereby, the EGR differential pressure Dlp
Is the differential pressure across the EGR passage, and the required EGR valve opening area Aevs for the target EGR amount TQe can be accurately calculated according to the EGR differential pressure Dlp even during operation with a large EGR amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す燃料噴射ポンプの断面
図。
FIG. 1 is a sectional view of a fuel injection pump according to an embodiment of the present invention.

【図2】同じくEGR装置のシステム図。FIG. 2 is a system diagram of the EGR device.

【図3】同じく制御系の構成図。FIG. 3 is a configuration diagram of a control system.

【図4】同じく制御内容を示すフローチャート。FIG. 4 is a flowchart showing control contents.

【図5】同じくEGR弁の要求開口面積と必要開口面積
の関係を示す特性図。
FIG. 5 is a characteristic diagram showing a relationship between a required opening area and a required opening area of the EGR valve.

【図6】同じくEGR弁の要求開口面積と必要開口面積
の関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between a required opening area and a required opening area of the EGR valve.

【図7】同じく吸気圧と排気圧等の関係を示す特性図。FIG. 7 is a characteristic diagram showing a relationship between an intake pressure, an exhaust pressure, and the like.

【図8】同じくEGR制御精度を示す特性図。FIG. 8 is a characteristic diagram showing EGR control accuracy.

【図9】他の実施形態を示す制御内容を示すフローチャ
ート。
FIG. 9 is a flowchart showing control contents according to another embodiment.

【図10】同じく制御内容を示すフローチャート。FIG. 10 is a flowchart showing control contents.

【図11】同じく制御内容を示すフローチャート。FIG. 11 is a flowchart showing control contents.

【図12】従来例を示すEGR弁のモデル図。FIG. 12 is a model diagram of an EGR valve showing a conventional example.

【図13】同じくEGR弁補正係数と要求開口面積と必
要開口面積の関係を示す特性図。
FIG. 13 is a characteristic diagram showing a relationship between an EGR valve correction coefficient, a required opening area, and a required opening area.

【図14】同じく吸気圧と排気圧等の関係を示す特性
図。
FIG. 14 is a characteristic diagram showing a relationship between an intake pressure, an exhaust pressure, and the like.

【符号の説明】[Explanation of symbols]

1 吸気通路 2 排気通路 3 EGR通路 4 EGR弁 5 ステップモータ 6 アクチュエータ 9 吸気絞り弁 12 エアフロメータ 13 吸気圧センサ 14 排気圧センサ 18 吸気温度センサ 30 コントロールユニット 31 要求EGR量設定手段 32 EGR差圧検出手段 33 要求EGR弁開口面積演算手段 34 エンジン回転数検出手段 35 エンジン負荷検出手段 36 流量係数設定手段 37 EGR弁開度に対する補正係数設定手段 38 目標EGR弁開口面積演算手段 39 EGR弁面積リフト量変換手段 40 EGR弁駆動手段 REFERENCE SIGNS LIST 1 intake passage 2 exhaust passage 3 EGR passage 4 EGR valve 5 step motor 6 actuator 9 intake throttle valve 12 air flow meter 13 intake pressure sensor 14 exhaust pressure sensor 18 intake temperature sensor 30 control unit 31 required EGR amount setting means 32 EGR differential pressure detection Means 33 Required EGR valve opening area calculating means 34 Engine speed detecting means 35 Engine load detecting means 36 Flow coefficient setting means 37 Correction coefficient setting means for EGR valve opening degree 38 Target EGR valve opening area calculating means 39 EGR valve area lift amount conversion Means 40 EGR valve driving means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】エンジンの排気通路と吸気通路を結ぶEG
R通路と、 EGR通路の途中に介装されるEGR弁と、 EGR通路の両端に生じる圧力差をEGR差圧Dlpと
して検出するEGR差圧検出手段と、 運転条件に応じて要求EGR量Tqeを設定する要求E
GR量設定手段と、 要求EGR量TqeとEGR差圧Dlpに応じて要求さ
れるEGR弁の開口面積Aevsを演算する要求EGR
弁開口面積演算手段と、 エンジン回転数を検出するエンジン回転数検出手段と、 エンジン負荷を検出するエンジン負荷検出手段と、 エンジン回転数とエンジン負荷に応じて流量係数aを設
定する流量係数設定手段と、 要求EGR弁開口面積Aevsと流量係数aに応じてE
GR弁の目標開度Aevを演算する目標EGR弁開度演
算手段と、 を備えたことを特徴とするエンジンのEGR制御装置。
An EG connecting an exhaust passage and an intake passage of an engine.
An RGR passage, an EGR valve interposed in the middle of the EGR passage, EGR differential pressure detecting means for detecting a pressure difference generated at both ends of the EGR passage as an EGR differential pressure Dlp, and a required EGR amount Tqe according to operating conditions. Request E to set
GR amount setting means, and a required EGR for calculating an opening area Aevs of the EGR valve required according to the required EGR amount Tqe and the EGR differential pressure Dlp.
Valve opening area calculating means, engine speed detecting means for detecting engine speed, engine load detecting means for detecting engine load, flow coefficient setting means for setting flow coefficient a according to engine speed and engine load And E according to the required EGR valve opening area Aevs and the flow coefficient a.
An EGR control device for an engine, comprising: a target EGR valve opening calculating means for calculating a target opening Aev of the GR valve.
【請求項2】前記EGR弁の開度に対する補正係数bを
設定する補正係数設定手段を備え、 前記目標EGR弁開度演算手段は要求EGR弁開口面積
Aevsと流量係数aに応じてEGR弁の目標開度Ae
vをAev=a×Aevsbとして演算することを特徴
とする請求項1に記載のエンジンのEGR制御装置。
And a correction coefficient setting means for setting a correction coefficient for the opening degree of the EGR valve, wherein the target EGR valve opening calculating means sets the EGR valve opening area Aevs and the flow coefficient a in accordance with the required EGR valve opening area Aevs. Target opening Ae
v EGR control device for an engine according to claim 1, characterized in that calculating a Aev = a × Aevs b a.
【請求項3】吸気通路の圧力Pmを検出する吸気圧力検
出手段と、 排気通路の圧力Pexhを検出する吸気圧力検出手段と
を備え、 前記EGR差圧検出手段はEGR差圧DlpをDlp=
Pexh−Pmとして演算することを特徴とする請求項
1または2に記載のエンジンのEGR制御装置。
3. An intake pressure detecting means for detecting an intake passage pressure Pm, and an intake pressure detecting means for detecting an exhaust passage pressure Pexh, wherein the EGR differential pressure detecting means detects the EGR differential pressure Dlp as Dlp =
The EGR control device for an engine according to claim 1 or 2, wherein the calculation is performed as Pexh-Pm.
【請求項4】吸気量を検出する吸気量検出手段と、 吸気量に応じて吸気圧Pmを演算する吸気圧演算手段
と、 エンジン負荷を検出するエンジン負荷検出手段と、 エンジン負荷に応じて排気圧Pexhを演算する排気圧
演算手段とを備え、 前記EGR差圧検出手段はEGR差圧DlpをDlp=
Pexh−Pmとして演算することを特徴とする請求項
1または2に記載のエンジンのEGR制御装置。
4. An intake air amount detecting means for detecting an intake air amount, an intake pressure calculating means for calculating an intake pressure Pm according to an intake air amount, an engine load detecting means for detecting an engine load, and an exhaust gas amount according to an engine load. Exhaust pressure calculating means for calculating the atmospheric pressure Pexh, wherein the EGR differential pressure detecting means sets the EGR differential pressure Dlp to Dlp =
The EGR control device for an engine according to claim 1 or 2, wherein the calculation is performed as Pexh-Pm.
JP03939597A 1997-02-24 1997-02-24 EGR control device for engine Expired - Fee Related JP3629876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03939597A JP3629876B2 (en) 1997-02-24 1997-02-24 EGR control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03939597A JP3629876B2 (en) 1997-02-24 1997-02-24 EGR control device for engine

Publications (2)

Publication Number Publication Date
JPH10238412A true JPH10238412A (en) 1998-09-08
JP3629876B2 JP3629876B2 (en) 2005-03-16

Family

ID=12551819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03939597A Expired - Fee Related JP3629876B2 (en) 1997-02-24 1997-02-24 EGR control device for engine

Country Status (1)

Country Link
JP (1) JP3629876B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003796A (en) * 1999-06-17 2001-01-09 Nissan Motor Co Ltd Control device for diesel engine
EP1375876A2 (en) 2002-06-28 2004-01-02 Kabushiki Kaisha Toyota Jidoshokki Apparatus and method for controlling EGR in an engine
KR100428181B1 (en) * 2001-12-17 2004-04-28 현대자동차주식회사 A Device And The Method For Exhaust Gas Recirculation Of Diesel Engine
JP2010127203A (en) * 2008-11-28 2010-06-10 Toyota Motor Corp Control device for internal combustion engine
JP2013204454A (en) * 2012-03-27 2013-10-07 Yanmar Co Ltd Calculation method of mass flow rate of external egr gas, calculation device for mass flow rate of external egr gas, and engine
JP2016056802A (en) * 2014-09-10 2016-04-21 日産自動車株式会社 EGR control device
CN117418946A (en) * 2023-12-18 2024-01-19 潍柴动力股份有限公司 EGR system, control method thereof and engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003796A (en) * 1999-06-17 2001-01-09 Nissan Motor Co Ltd Control device for diesel engine
KR100428181B1 (en) * 2001-12-17 2004-04-28 현대자동차주식회사 A Device And The Method For Exhaust Gas Recirculation Of Diesel Engine
EP1375876A2 (en) 2002-06-28 2004-01-02 Kabushiki Kaisha Toyota Jidoshokki Apparatus and method for controlling EGR in an engine
US6973785B2 (en) 2002-06-28 2005-12-13 Kabushiki Kaisha Toyota Jidoshokki Apparatus and method for controlling EGR in an engine
JP2010127203A (en) * 2008-11-28 2010-06-10 Toyota Motor Corp Control device for internal combustion engine
JP2013204454A (en) * 2012-03-27 2013-10-07 Yanmar Co Ltd Calculation method of mass flow rate of external egr gas, calculation device for mass flow rate of external egr gas, and engine
JP2016056802A (en) * 2014-09-10 2016-04-21 日産自動車株式会社 EGR control device
CN117418946A (en) * 2023-12-18 2024-01-19 潍柴动力股份有限公司 EGR system, control method thereof and engine
CN117418946B (en) * 2023-12-18 2024-04-16 潍柴动力股份有限公司 EGR system, control method thereof and engine

Also Published As

Publication number Publication date
JP3629876B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
JP3744036B2 (en) Diesel engine fuel property detection device and control device
US6561016B1 (en) Method and apparatus for determining the air charge mass for an internal combustion engine
CN102822482B (en) The control gear of internal-combustion engine
JPH10238412A (en) Egr controller for engine
JP3551717B2 (en) Engine EGR control device
JP2001280202A (en) Exhaust gas recirculation system
US10837373B2 (en) Precombustion chamber gas engine
JP3493981B2 (en) Supercharging pressure control device for internal combustion engine with EGR control device
US20030131832A1 (en) Fuel injection control device for internal combustion engine
US11078864B2 (en) Method of controlling fuel injection amount of internal combustion engine
JP4033125B2 (en) EGR control device for engine
JP4692213B2 (en) Fuel consumption detector for internal combustion engine
JPH1162719A (en) Egr controller for engine
JPH06173805A (en) Fuel feeding device for internal combustion engine
JP3541554B2 (en) Dynamic injection timing detector for diesel engine
JP4186648B2 (en) Linear actuator controller
JPH09256886A (en) Fuel injection controller for direct injection type engine
JP2000291493A (en) Egr controller
JP6871981B2 (en) Internal combustion engine control device
JPH1136993A (en) Exhaust gas circulation control device of direct injection engine
JP2569587B2 (en) Exhaust gas recirculation control system for diesel engine
JP2001295702A (en) Exhaust gas recirculation device
JP2001280201A (en) Exhaust gas recirculation system
JPH11148411A (en) Engine controller

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees