JPH1023730A - Multi-phase stepping motor and drive system thereof - Google Patents

Multi-phase stepping motor and drive system thereof

Info

Publication number
JPH1023730A
JPH1023730A JP16889596A JP16889596A JPH1023730A JP H1023730 A JPH1023730 A JP H1023730A JP 16889596 A JP16889596 A JP 16889596A JP 16889596 A JP16889596 A JP 16889596A JP H1023730 A JPH1023730 A JP H1023730A
Authority
JP
Japan
Prior art keywords
phase
winding
stepping motor
excitation state
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16889596A
Other languages
Japanese (ja)
Other versions
JP3751367B2 (en
Inventor
Yasuo Sato
靖雄 佐藤
Hirobumi Satomi
博文 里見
Takao Iwasa
孝夫 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Motor Co Ltd
Original Assignee
Oriental Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Motor Co Ltd filed Critical Oriental Motor Co Ltd
Priority to JP16889596A priority Critical patent/JP3751367B2/en
Publication of JPH1023730A publication Critical patent/JPH1023730A/en
Application granted granted Critical
Publication of JP3751367B2 publication Critical patent/JP3751367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for facilitating the configuration of an exciting sequece for a multi-phase stepping motor. SOLUTION: This stepping motor is constituted so as to have the number of phases of 6 or more expressed by a×b, where a: odd number of three or more, b: integer of two or more. Phase windings ϕA-ϕO provided at the salient pole of a stator are constituted so as to prepare (b) sets of windings where phase windings of (a) pieces whose phases are shifted by 2 π/a respectively are connected in an annular or star shape, and input terminals C1-C15 of (a×b) pieces are also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多相ステッピングモ
ータとその駆動方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyphase stepping motor and its driving system.

【0002】[0002]

【従来の技術】相数がnの多相ステッピングモータのモ
ータ巻線の接続方式としては、位相差が2πi/n(i
はn/2を越えない正の整数であってaの約数でないも
の)である相巻線の始端と終端を順次接続して1つの環
状に接続するか、相巻線の始端同士または終端同士を一
点で接続して1つの星状に接続し、環状の場合には、そ
の各接続点を入力端子とし、星状の場合には、接続点以
外を入力端子とするという方法があった。そして、2n
個のスイッチング素子で制御する駆動回路に入力端子を
接続し、入力パルス信号毎に各端子を電源の正極または
負極に接続、或いは、どちらにも接続しないように切り
換えて駆動している。
2. Description of the Related Art As a method of connecting motor windings of a polyphase stepping motor having n phases, a phase difference of 2πi / n (i
Is a positive integer that does not exceed n / 2 and is not a divisor of a). The start and end of the phase winding are connected in series to form a ring, or the start or end of the phase winding There is a method in which the terminals are connected at one point and connected in a star shape, and in the case of a ring shape, each connection point is used as an input terminal, and in the case of a star shape, other than the connection point is used as an input terminal. . And 2n
An input terminal is connected to a drive circuit controlled by the number of switching elements, and each terminal is connected to a positive electrode or a negative electrode of a power supply for each input pulse signal, or is switched so as not to be connected to any of them.

【0003】[0003]

【発明が解決しようとする課題】ステッピングモータの
分解能を高くする方法にモータの相数を多くする方法が
あるが、相数が多くなると励磁シーケンス構築が複雑に
なるという課題があった。
As a method of increasing the resolution of a stepping motor, there is a method of increasing the number of motor phases. However, as the number of phases increases, there is a problem that the construction of the excitation sequence becomes complicated.

【0004】本発明は上記課題を解決するためのもの
で、その目的とするところは、多相モータの励磁シーケ
ンスの構築を容易に行うことができる多相ステッピング
モータとその駆動方式を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a polyphase stepping motor and a driving method thereof which can easily construct an excitation sequence of the polyphase motor. It is in.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成は次のとおりである。相数がa×b(a
は3以上の奇数、bは2以上の整数)の6以上の相数を
有するステッピングモータにおいて、相巻線を位相差が
2πi/a(iはa/2を越えない正の整数であってa
の約数でないもの)である相巻線の始端と終端を順次接
続して巻線を環状に接続し、各接続点を入力端子とする
b個の巻線組を構成する、または巻線を位相差が2π/
aである相巻線の始端同士あるいは終端同士を1点に接
続した星状に接続し、非接点を入力端子とするb個の巻
線組を構成する。そして、ステッピングモータの前記入
力端子にスイッチング手段を接続し、スイッチングによ
り前記入力端子を駆動電源の正極または負極に接続する
か、或いはいずれの極にも接続しないように制御するス
テッピングモータの駆動回路において、入力パルス毎に
任意の環状結線または星状結線の励磁状態が切り換わる
ように制御する。
The configuration of the present invention for achieving the above object is as follows. If the number of phases is a × b (a
Is an odd number of 3 or more, and b is an integer of 2 or more. In a stepping motor having 6 or more phases, the phase difference is 2πi / a (i is a positive integer not exceeding a / 2). a
The windings are connected in a ring by sequentially connecting the starting end and the ending of the phase winding which is not a divisor of the above) to form a b winding set having each connection point as an input terminal. The phase difference is 2π /
The start windings or the end ends of the phase windings a are connected in a star shape with one point connected to each other, and b winding sets each having a non-contact as an input terminal are configured. Then, a switching means is connected to the input terminal of the stepping motor, and the input terminal is connected to the positive electrode or the negative electrode of the driving power supply by switching, or the driving circuit of the stepping motor is controlled so as not to be connected to any of the poles. The control is such that the excitation state of an arbitrary ring connection or star connection is switched for each input pulse.

【0006】(作 用)上記スイッチング手段で接続さ
れた各巻線組は、電気角で2π/a度ずつずれたトルク
ベクトル組を形成し、従って、単一巻線組で励磁状態を
切り換えてフルステップ駆動を行うと電気角でπ/aの
回転が可能であり、ハーフステップ駆動を行うと電気角
でπ/2aの回転が可能である。同時に各トルクベクト
ル組は、電気角で2π/(a×b)度ずつずれており、
従って、各巻線組を一つの相とみなし各巻線組単位で励
磁状態を切り換えて、フルステップ駆動を行うと電気角
でπ/(a×b)の回転が可能であり、また、ハーフス
テップ駆動を行うと電気角でπ/(2a×b)の回転が
可能である。従って、a相モータの励磁シーケンスの組
み合わせでa×b相モータの制御が可能となるため励磁
シーケンスの構築が容易になる。
(Operation) Each of the winding sets connected by the switching means forms a torque vector set shifted by 2π / a degrees in electrical angle. When step driving is performed, rotation of π / a is possible in electrical angle, and when half-step driving is performed, rotation of π / 2a is possible in electrical angle. At the same time, each torque vector set is shifted by 2π / (a × b) degrees in electrical angle,
Therefore, when each winding group is regarded as one phase and the excitation state is switched for each winding group, and full-step driving is performed, rotation of π / (a × b) in electrical angle is possible, and half-step driving is performed. Is performed, a rotation of π / (2a × b) is possible in the electrical angle. Accordingly, since the a × b-phase motor can be controlled by combining the excitation sequence of the a-phase motor, the construction of the excitation sequence is facilitated.

【0007】[0007]

【発明の実施の形態】以下、図面に基づいて本発明の好
適な実施の形態を、a=5、b=3である15相モータ
で詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings by using a 15-phase motor in which a = 5 and b = 3.

【0008】各巻線組の接続の方法としては、相巻線を
位相差が2πi/a(iはa/2を越えない正の整数で
あってaの約数でないもの)である相巻線の始端と終端
を順次接続して巻線を環状に接続し、各接続点を入力端
子とする方法、または巻線を位相差が2π/aである相
巻線の始端同士あるいは終端同士を1点に接続した星状
に接続し、非接続点を入力端子とする方法がある。
As a method for connecting the winding sets, a phase winding having a phase difference of 2πi / a (i is a positive integer not exceeding a / 2 and not a divisor of a) is used. The windings are connected in an annular manner by sequentially connecting the start and end of the phase winding, and each connection point is used as an input terminal, or the winding is connected to the beginning or end of a phase winding having a phase difference of 2π / a. There is a method of connecting in a star shape connected to points and using a non-connection point as an input terminal.

【0009】図1は巻線組を環状結線で構成し、上記i
をi=1としたときの本発明のステッピングモータの相
巻線の接続図である。φA〜φOは入力端子C1〜C1
5に各々接続された相巻線を示し、各入力端子C1〜C
15は、スイッチングにより入力端子C1〜C15を駆
動電源の正極または負極に接続するか、或いは、いずれ
の極にも接続しないように制御するステッピングモータ
の駆動回路に接続される。
FIG. 1 shows a case where the winding set is formed by a ring connection, and
FIG. 4 is a connection diagram of phase windings of the stepping motor of the present invention when i = 1. φA to φO are input terminals C1 to C1
5 shows phase windings respectively connected to the input terminals C1 to C
Reference numeral 15 is connected to a drive circuit of a stepping motor that controls the input terminals C1 to C15 to be connected to the positive or negative electrode of the drive power supply by switching or not to connect to any of the poles.

【0010】巻線組W1は、相巻線φAを規準に電気角
で72度(=360/5)ずつずれた相巻線φD、φ
G、φJ、φMの始端と終端が順次接続され、同様に巻
線組W2は、相巻線φAから電気角で48度(=360
×2/15)ずれた相巻線φCを規準に電気角で72度
ずつずれた相巻線φF、φI、φL、φOの始端と終端
が順次接続され、更に同様に巻線組W3は、相巻線φA
から電気角で24度(=360/15)ずれた相巻線φ
Bを基準に電気角で72度ずつずれた相巻線φE、φ
H、φK、φNの始端と終端が順次接続されている。各
巻線組W1,W2,W3を構成する相巻線(φA、φ
D、φG、φJ、φM),(φC、φF、φI、φL、
φO),(φB、φE、φH、φK、φN)は、同一方
向に電流を流した場合、電気角で72度ずつずれたトル
クベクトルを形成するとともに、各巻線組W1,W2,
W3の対応する相巻線は電気角で24度ずつずれたトル
クベクトルを形成する。
The winding set W1 is composed of phase windings φD, φ which are shifted by 72 degrees (= 360/5) in electrical angle with respect to the phase winding φA.
The start and end of G, φJ, and φM are sequentially connected. Similarly, the winding set W2 is 48 degrees (= 360 degrees) in electrical angle from the phase winding φA.
× 2/15) The starting and ending ends of the phase windings φF, φI, φL, and φO, which are shifted by 72 degrees in electrical angle with respect to the shifted phase winding φC, are sequentially connected. Phase winding φA
Phase winding φ shifted by 24 degrees (= 360/15) in electrical angle from
Phase windings φE, φ deviated by 72 electrical degrees from B
The start and end of H, φK, and φN are sequentially connected. The phase windings (φA, φ
D, φG, φJ, φM), (φC, φF, φI, φL,
φO), (φB, φE, φH, φK, φN) form torque vectors that are shifted by 72 degrees in electrical angle when a current is passed in the same direction, and each winding set W1, W2,
The corresponding phase winding of W3 forms a torque vector shifted by 24 electrical degrees.

【0011】図2は請求項2の励磁状態を表したタイム
チャートの一例であり、Aは相巻線φAの順方向電流、
A′は相巻線φAの反対方向の電流による励磁を意味す
る。他の文字についても同様である。
FIG. 2 is an example of a time chart showing an excitation state according to claim 2, wherein A is a forward current of the phase winding φA,
A 'means excitation by current in the opposite direction of the phase winding φA. The same applies to other characters.

【0012】同図において、先ずステップ1では、巻線
組W1のA、J′、D、M′相、巻線組W2のI′、
C、L′、F相、巻線組W3のB、K′、E、N′相が
それぞれ励磁されるため12相励磁状態となる。次に、
ステップ2に移行すると、巻線組W1のA相の励磁が解
除されると同時にG相が励磁され、巻線組2及び巻線組
W3の励磁状態は切り換わらないため、12相励磁状態
となる。更にステップ3に移行すると、巻線組W2の
I′相の励磁が解除されると同時にO′相が励磁され、
巻線組W1及び巻線組W3の励磁状態は切り換わらない
ため、12相励磁状態となる。更にステップ4では巻線
組W3のB相の励磁が解除されると同時にH相が励磁さ
れ、巻線組W1及びW2の励磁状態は切り換わらないた
め12相励磁状態となる。更にステップ5では巻線組W
1のJ′相の励磁が解除されると同時にA′相が励磁さ
れ、巻線組W2及びW3の励磁状態は切り換わらないた
め12相励磁状態となる。以下同様にステップ6〜ステ
ップ30においても入力パルス毎に一つの巻線組の励磁
状態が切り換わるとともに任意の巻線組の励磁状態は3
(=b)パルス毎に切り換わるとともに任意の巻線組の
励磁状態は3(=b)パルス毎に切り換わるように制御
され、12相励磁状態を繰り返す。
In FIG. 1, first, in step 1, the phases A, J ', D, and M' of the winding set W1, the I 'of the winding set W2,
Since the C, L ', and F phases and the B, K', E, and N 'phases of the winding set W3 are respectively excited, a 12-phase excitation state results. next,
In step 2, the excitation of the A phase of the winding set W1 is released and the G phase is excited at the same time, and the excitation states of the winding set 2 and the winding set W3 are not switched. Become. When the process further proceeds to step 3, the excitation of the I 'phase of the winding set W2 is released, and at the same time, the O' phase is excited.
Since the excitation states of the winding set W1 and the winding set W3 are not switched, a 12-phase excitation state is set. Further, in step 4, the H-phase is excited at the same time as the excitation of the B-phase of the winding set W3 is released, and the excitation state of the winding sets W1 and W2 is not switched, so that the 12-phase excitation state is set. Further, in step 5, the winding set W
At the same time when the excitation of the J 'phase of 1 is released, the A' phase is excited, and the excitation state of the winding sets W2 and W3 is not switched, so that the 12-phase excitation state is set. Similarly, in steps 6 to 30, the excitation state of one winding set is switched for each input pulse, and the excitation state of an arbitrary winding set is 3
(= B) Switching is performed every pulse, and the excitation state of an arbitrary winding set is controlled to be switched every 3 (= b) pulses, and the 12-phase excitation state is repeated.

【0013】図3は上記駆動方式による発生ベクトル図
である。同図から分かるように、各ステップにおいて励
磁状態が切り換わった巻線組W1,W2,W3による発
生ベクトルは、電気角で36度(=180/5)回転し
た結果、励磁巻線により発生する合成ベクトルは12度
(=180/15)回転しており、フルステップ駆動が
達成できている。
FIG. 3 is a generated vector diagram according to the above-mentioned driving method. As can be seen from the figure, the vectors generated by the winding sets W1, W2 and W3 whose excitation state has been switched in each step are generated by the excitation windings as a result of rotating by 36 degrees (= 180/5) in electrical angle. The composite vector is rotated by 12 degrees (= 180/15), and full-step driving has been achieved.

【0014】更に、図4は請求項2の励磁状態を表した
タイムチャートの上記とは異なる一例である。同図にお
いて、先ずステップ1では、上記ステップ1と等しく、
12相励磁状態になる。次に、ステップ2に移行する
と、巻線組W1のG相が励磁され、巻線組W2及び巻線
組W3の励磁状態は切り換わらないため、13相励磁状
態となる。更にステップ3に移行すると、巻線組W2の
O′相が励磁され、巻線組W1及び巻線組W3の励磁状
態は切り換わらないため、14相励磁状態となる。更に
ステップ4では、巻線組W3のH相が励磁され、巻線組
W1及びW2の励磁状態は切り換わらないため15相励
磁状態となる。更にステップ5では、巻線組W1のA相
の励磁が解除され、巻線組W2及びW3の励磁状態は切
り換わらないため14相励磁状態となる。更にステップ
6では、巻線組W2のI′相の励磁が解除され、巻線組
W1及びW3の励磁状態は切り換わらないため13相励
磁状態となる。更にステップ7では、巻線組W3のB相
の励磁が解除され、巻線組W1及びW2の励磁状態は切
り換わらないため12相励磁状態となる。次に、ステッ
プ8に移行すると、巻線組W1のA′相が励磁され、巻
線組W2及び巻線組W3の励磁状態は切り換わらないた
め、13相励磁状態となる。以下同様にステップ9〜6
0においても入力パルス毎に一つの巻線組の励磁状態が
切り換わるとともに任意の巻線組の励磁状態は3(=
b)パルス毎に切り換わるように制御され、12−13
−14−15−14−13相励磁を繰り返す。
FIG. 4 is another example of a time chart showing the excitation state according to the present invention, which is different from the above. In the figure, first, in step 1, it is equal to the above step 1,
It becomes a 12-phase excitation state. Next, when the process proceeds to step 2, the G phase of the winding set W1 is excited, and the excitation states of the winding set W2 and the winding set W3 are not switched, so that a 13-phase excitation state is set. When the process further proceeds to step 3, the O 'phase of the winding set W2 is excited, and the excitation states of the winding set W1 and the winding set W3 are not switched, so that a 14-phase excitation state is set. Further, in step 4, the H-phase of the winding set W3 is excited, and the excitation state of the winding sets W1 and W2 is not switched, so that a 15-phase excitation state is set. Further, in step 5, the excitation of the A-phase of the winding set W1 is released, and the excitation states of the winding sets W2 and W3 are not switched, so that a 14-phase excitation state is set. Further, in step 6, the excitation of the I 'phase of the winding set W2 is released, and the excitation states of the winding sets W1 and W3 are not switched, so that a 13-phase excitation state is set. Further, in step 7, the B-phase excitation of the winding set W3 is released, and the excitation state of the winding sets W1 and W2 is not switched, so that a 12-phase excitation state is set. Next, in step 8, the A 'phase of the winding set W1 is excited, and the excitation states of the winding set W2 and the winding set W3 are not switched, so that a 13-phase excitation state is set. Hereinafter, steps 9 to 6 are performed similarly.
Even at 0, the excitation state of one winding set is switched for each input pulse, and the excitation state of an arbitrary winding set is 3 (=
b) It is controlled to switch every pulse, and 12-13
-14-15-14-13 phase excitation is repeated.

【0015】図5は上記駆動方式による発生ベクトル図
である。各相による発生ベクトルは図3と同等であるの
で省略し、巻線組による発生ベクトルとその合成ベクト
ルのみを示した。同図から分かるように、各ステップに
おいて励磁状態が切り換わった巻線組により発生ベクト
ルは、電気角で18度(=180/10)回転した結
果、励磁巻線により発生する合成ベクトルは6度(=1
80/30)回転しており、ハーフステップ駆動が達成
できている。
FIG. 5 is a generated vector diagram by the above-mentioned driving method. Vectors generated by each phase are the same as those in FIG. 3 and are omitted, and only the vectors generated by the winding sets and their combined vectors are shown. As can be seen from the drawing, the vector generated by the winding set whose excitation state has been switched in each step is rotated by 18 degrees (= 180/10) in electrical angle, and as a result, the combined vector generated by the excitation winding is 6 degrees. (= 1
80/30), and a half-step drive can be achieved.

【0016】図6は請求項3の励磁状態を表したタイム
チャートの一例である。同図において、先ずステップ1
では、上記ステップ1と等しく、12相励磁となる。次
に、ステップ2に移行すると、巻線組W1のG相が励磁
され、巻線組W2及び巻線組W3の励磁状態は切り換わ
らないため、13相励磁状態となる。更にステップ3に
移行すると、巻線組W1のA相の励磁が解除され、巻線
組W2及び巻線組W3の励磁状態は切り換わらないた
め、12相励磁状態となる。更にステップ4では、巻線
組W2のO′相が励磁され、巻線組W1及びW3の励磁
状態は切り換わらないため13相励磁状態となる。更に
ステップ5に移行すると、巻線組W2のI′相の励磁が
解除され、巻線組W1及び巻線組W3の励磁状態は切り
換わらないため、12相励磁状態となる。更にステップ
6では、巻線組W3のH相が励磁され、巻線組W1及び
W2の励磁状態は切り換わらないため13相励磁状態と
なる。更にステップ7に移行すると、巻線組W3のB相
の励磁が解除され、巻線組W1及び巻線組W2の励磁状
態は切り換わらないため、12相励磁状態となる。更に
ステップ8では、巻線組W1のA′相が励磁され、巻線
組W2及びW3の励磁状態は切り換わらないため13相
励磁状態となる。以下同様にステップ9〜60において
も入力パルス毎に一つの巻線組の励磁状態が切り換わる
とともに、任意の巻線組の励磁状態は入力パルスにより
2回連続して切り換わり、その後引き続く2b−2パル
ス間は、励磁状態が変化しないように制御され、12−
13相励磁状態を繰り返す。
FIG. 6 is an example of a time chart showing the excitation state according to the third aspect. Referring to FIG.
Then, it is equal to the above-mentioned step 1 and 12-phase excitation is performed. Next, when the process proceeds to step 2, the G phase of the winding set W1 is excited, and the excitation states of the winding set W2 and the winding set W3 are not switched, so that a 13-phase excitation state is set. When the process further proceeds to step 3, the excitation of the A-phase of the winding set W1 is released and the excitation states of the winding set W2 and the winding set W3 are not switched, so that a 12-phase excitation state is set. Further, in step 4, the O 'phase of the winding set W2 is excited, and the excitation states of the winding sets W1 and W3 are not switched, so that a 13-phase excitation state is set. When the process further proceeds to step 5, the excitation of the I 'phase of the winding set W2 is released, and the excitation states of the winding set W1 and the winding set W3 are not switched, so that a 12-phase excitation state is set. Further, in step 6, the H-phase of the winding set W3 is excited, and the excitation state of the winding sets W1 and W2 is not switched, so that a 13-phase excitation state is set. When the process further proceeds to step 7, the B-phase excitation of the winding set W3 is released and the excitation states of the winding set W1 and the winding set W2 are not switched, so that a 12-phase excitation state is set. Further, in step 8, the A 'phase of the winding set W1 is excited, and the excitation states of the winding sets W2 and W3 are not switched, so that a 13-phase excitation state is set. Similarly, in steps 9 to 60 as well, the excitation state of one winding set is switched for each input pulse, and the excitation state of an arbitrary winding set is switched twice consecutively by the input pulse, and the subsequent 2b- Between two pulses, the excitation state is controlled so as not to change.
The 13-phase excitation state is repeated.

【0017】図7は上記駆動方式による発生ベクトル図
である。各相による発生ベクトルは図3と同等であるの
で省略し、巻線組による発生ベクトルとその合成ベクト
ルのみを示した。同図から分かるように、各ステップに
おいて励磁状態が切り換わった巻線組による発生ベクト
ルは、電気角で18度(=180/10)回転した結
果、励磁巻線により発生する合成ベクトルは、6度(=
180/30)回転しており、ハーフステップ駆動が達
成できている。
FIG. 7 is a generated vector diagram by the above-mentioned driving method. Vectors generated by each phase are the same as those in FIG. 3 and are omitted, and only the vectors generated by the winding sets and their combined vectors are shown. As can be seen from the figure, the vector generated by the winding set whose excitation state has been switched in each step is 18 degrees (= 180/10) in electrical angle, and as a result, the resultant vector generated by the excitation winding is 6 Degree (=
180/30), and a half-step drive can be achieved.

【0018】更に、図8は、請求項4の励磁状態を表し
たタイムチャートの一例である。同図において、先ずス
テップ1では、上記ステップ1と等しく、12相励磁状
態となる。次に、ステップ2に移行すると、巻線組W1
の全相の励磁が解除され、巻線組W2及び巻線組W3の
励磁状態は切り換わらないため、8相励磁状態となる。
更にステップ3に移行すると、巻線組W1のJ′、D、
M′、G相が励磁され、巻線組W2及び巻線組W3の励
磁状態は切り換わらないため、12相励磁状態となる。
更にステップ4では、巻線組W2の全相の励磁が解除さ
れ、巻線組W1及びW3の励磁状態は切り換わらないた
め8相励磁状態となる。更にステップ5では、巻線組W
2のC、L′、F、O′相が励磁され、巻線組W1及び
W3の励磁状態は切り換わらないため12相励磁状態と
なる。更にステップ6では、巻線組W3の全相の励磁が
解除され、巻線組W1及びW2の励磁状態は切り換わら
ないため8相励磁状態となる。更にステップ7では、巻
線組W3のK′、E、N′、H相が励磁され、巻線組W
1及びW2の励磁状態は切り換わらないため12相励磁
状態となる。更にステップ8では、巻線組W1の全相の
励磁が解除され、巻線組W2及びW3の励磁状態は切り
換わらないため8相励磁状態となる。以下同様にステッ
プ9〜60においても任意の巻線組の励磁状態は入力パ
ルスにより2回連続して切り換わり、その後引き続く2
b−2パルス間は、励磁状態が変化しないように制御さ
れており、その切り換え時には、その巻線組が無励磁に
なる状態が存在するとともに、8−12相励磁を繰り返
す。
FIG. 8 is an example of a time chart showing an excitation state according to the fourth aspect. In the figure, first, in step 1, the state is the same as step 1 described above, and a 12-phase excitation state is set. Next, when the process proceeds to step 2, the winding set W1
Are released, and the excitation states of the winding set W2 and the winding set W3 are not switched, so that an eight-phase excitation state is achieved.
Further proceeding to step 3, J ', D,
Since the M 'and G phases are excited and the excitation states of the winding set W2 and the winding set W3 are not switched, a 12-phase excitation state is set.
Further, in step 4, the excitation of all phases of the winding set W2 is released, and the excitation states of the winding sets W1 and W3 are not switched, so that an eight-phase excitation state is set. Further, in step 5, the winding set W
2, the C, L ', F, and O' phases are excited, and the excitation states of the winding sets W1 and W3 are not switched, so that a 12-phase excitation state is obtained. Further, in step 6, the excitation of all phases of the winding set W3 is released, and the excitation states of the winding sets W1 and W2 are not switched, so that an eight-phase excitation state is set. Further, in step 7, the K ', E, N', and H phases of the winding set W3 are excited, and the winding set W3 is excited.
Since the excitation states of 1 and W2 are not switched, a 12-phase excitation state is set. Further, in step 8, the excitation of all phases of the winding set W1 is released, and the excitation states of the winding sets W2 and W3 are not switched, so that an eight-phase excitation state is set. Similarly, in steps 9 to 60 as well, the excitation state of an arbitrary winding set is switched twice in succession by an input pulse, and the subsequent 2
During the b-2 pulse, the excitation state is controlled so as not to change. At the time of the switching, there is a state where the winding group is not excited, and the 8-12 phase excitation is repeated.

【0019】図9は上記駆動方式による発生ベクトル図
である。各相による発生ベクトルは、図3と同等である
ので省略し、巻線組による発生ベクトルとその合成ベク
トルのみを示した。同図から分かるように、各任意の巻
線組の励磁状態の切り換え時に無励磁状態にし、引き続
きの励磁によりトルクベクトルが36度(=180/
5)回転した結果、各ステップ毎に励磁巻線により発生
する合成ベクトルは6度(=180/30)回転してお
り、ハーフステップ駆動が達成できている。
FIG. 9 is a generated vector diagram by the above driving method. Vectors generated by the respective phases are omitted because they are equivalent to those in FIG. 3, and only the vector generated by the winding set and its composite vector are shown. As can be seen from the drawing, the non-excited state is set at the time of switching the excited state of each arbitrary winding set, and the torque vector is 36 degrees (= 180/180) by the subsequent excitation.
5) As a result of the rotation, the combined vector generated by the excitation winding at each step is rotated by 6 degrees (= 180/30), and the half-step drive can be achieved.

【0020】図10は、請求項5の励磁状態を表したタ
イムチャートの一例である。同図において、先ずステッ
プ1では、上記ステップ1と等しく、12相励磁状態と
なる。次に、ステップ2に移行すると、巻線組W1のA
相及び巻線組W2のI′相及び巻線組W3のB相の励磁
が解除されると同時に、巻線組W1のG相及び巻線組2
のO′相及び巻線組W3のH相が励磁され、次に、ステ
ップ3に移行すると、巻線組W1のJ′相及び巻線組W
2のC相及び巻線組W3のK′相の励磁が解除されると
同時に、巻線組W1のA′相及び巻線組W2のI相及び
巻線組W3のB′相が励磁されるため12相励磁状態と
なる。以下同様ステップ4〜ステップ10においても3
個の巻線組の励磁状態が入力パルス毎に同時に切り換わ
るように制御され、12相励磁状態を繰り返す。
FIG. 10 is an example of a time chart showing the excitation state of claim 5. In the figure, first, in step 1, the state is the same as step 1 described above, and a 12-phase excitation state is set. Next, when the process proceeds to step 2, A of the winding set W1
At the same time as the excitation of the I 'phase of the winding set W2 and the B phase of the winding set W3 is released, the G phase of the winding set W1 and the winding set 2 are released.
O ′ phase and the H phase of the winding set W3 are excited, and then, when the process proceeds to step 3, the J ′ phase of the winding set W1 and the winding set W
At the same time, the excitation of the C phase of the winding set 2 and the K 'phase of the winding set W3 is released, and the A' phase of the winding set W1, the I phase of the winding set W2, and the B 'phase of the winding set W3 are excited. Therefore, a 12-phase excitation state is set. Hereinafter, in steps 4 to 10 as well, 3
The excitation state of the winding sets is controlled so as to be switched simultaneously for each input pulse, and the 12-phase excitation state is repeated.

【0021】図11は、上記駆動方式による発生ベクト
ル図である。各相による発生ベクトルは図3と同等であ
るので省略し、巻線組による発生ベクトルとその合成ベ
クトルのみを示した。同図から分かるように、各ステッ
プにおいて励磁状態が切り換わった巻線組による発生ベ
クトルは、電気角で36度(=180/5)回転した結
果、励磁巻線により発生する合成ベクトルは36度(1
=180/5)回転しており、5(=b)相モータのフ
ルステップ駆動が達成できている。
FIG. 11 is a generated vector diagram by the above-mentioned driving method. Vectors generated by each phase are the same as those in FIG. 3 and are omitted, and only the vectors generated by the winding sets and their combined vectors are shown. As can be seen from the figure, the vector generated by the winding set whose excitation state has been switched in each step is rotated by 36 degrees (= 180/5) in electrical angle. As a result, the resultant vector generated by the excitation winding is 36 degrees. (1
= 180/5), and full-step driving of the 5 (= b) phase motor has been achieved.

【0022】図12は請求項5の励磁状態を表したタイ
ムチャートの上記とは異なる一例である。先ずステップ
1では、上記ステップ1と等しく、12相励磁状態とな
る。次に、ステップ2に移行すると、巻線組W1のG相
及び巻線組W2のO′相及び巻線組W3のH相が励磁さ
れるため15相励磁状態となる。次に、ステップ3に移
行すると、巻線組W1のA相の及び巻線組W2のI′相
及び巻線組W3のB相の励磁が解除されるため12相励
磁となる。次に、ステップ4に移行すると、巻線組W1
のA′相及び巻線組W2のI相及び巻線組W3のB′相
が励磁されるため15相励磁状態となる。以下同様ステ
ップ5〜ステップ20においても3個の巻線組の励磁状
態が入力パルス毎に切り換わるように制御され、12−
15相励磁状態を繰り返す。
FIG. 12 is an example different from the above of the time chart showing the excitation state of the fifth aspect. First, in step 1, the state is the same as step 1 described above, and a 12-phase excitation state is set. Next, in Step 2, the G phase of the winding set W1, the O 'phase of the winding set W2, and the H phase of the winding set W3 are excited, so that a 15-phase excitation state is established. Next, when the process proceeds to step 3, the excitation of the A phase of the winding set W1, the I 'phase of the winding set W2, and the B phase of the winding set W3 is released, resulting in a 12-phase excitation. Next, when the process proceeds to step 4, the winding set W1
A ′ phase, the I phase of the winding set W2 and the B ′ phase of the winding set W3 are excited, so that a 15-phase excitation state is achieved. Similarly, in steps 5 to 20 as well, the excitation state of the three winding sets is controlled so as to be switched for each input pulse.
The 15-phase excitation state is repeated.

【0023】図13は上記駆動方式による発生ベクトル
図である。各相による発生ベクトルは図3と同等である
ので省略し、巻線組による発生ベクトルとその合成ベク
トルのみを示した。同図から分かるように、各ステップ
において励磁状態が切り換わった巻線組による発生ベク
トルは電気角で18度(=180/10)回転した結
果、各巻線の発生する合成ベクトルは18度(=180
/10)回転しており、5(=b)相モータのハーフス
テップ駆動が達成できている。
FIG. 13 is a generated vector diagram by the above-mentioned driving method. Vectors generated by each phase are the same as those in FIG. 3 and are omitted, and only the vectors generated by the winding sets and their combined vectors are shown. As can be seen from the figure, the vector generated by the winding set whose excitation state has been switched at each step is rotated by 18 degrees (= 180/10) in electrical angle, and as a result, the combined vector generated by each winding is 18 degrees (= 180
/ 10), and half-step driving of the 5 (= b) phase motor has been achieved.

【0024】なお図示しないが、上記実施例の如き15
相ステッピングモータ以外の他の多相ステッピングモー
タ、例えば45相ステッピングモータに対しても同様に
本発明を任意に実施可能であることが分かる。また、入
力パルス毎に励磁状態が切り換わる巻線組をb以下の任
意の正数とするとともに、その巻線組のトルクベクトル
がπ/2aの2a未満の正数倍回転する駆動方式も実施
可能であることが分かる。
Although not shown, 15
It can be understood that the present invention can be arbitrarily applied to a multi-phase stepping motor other than the phase stepping motor, for example, a 45-phase stepping motor. In addition, a driving method in which a winding set whose excitation state is switched for each input pulse is set to an arbitrary positive number equal to or less than b and a torque vector of the winding set is rotated by a positive number less than 2a of π / 2a is also implemented. It turns out that it is possible.

【0025】[0025]

【発明の効果】以上説明したように、本発明による多相
ステッピングモータとその駆動方式によれば、15相ス
テッピングモータの励磁シーケンスは、5相ステッピン
グモータの励磁シーケンスを組み合わせて実現できるた
め、励磁シーケンス構築が容易になる。上記実施の形態
のように15相モータのフルステップ、ハーフステップ
駆動、5相モータのフルステップ、ハーフステップ駆動
が容易に実現できる。高速運転時には、5相モータとし
て駆動し、高分解能が必要なところで15相モータとし
て駆動することが可能となる。
As described above, according to the multi-phase stepping motor and the driving method thereof according to the present invention, the excitation sequence of the 15-phase stepping motor can be realized by combining the excitation sequence of the 5-phase stepping motor. Sequence construction becomes easy. As in the above embodiment, full-step and half-step driving of a 15-phase motor and full-step and half-step driving of a five-phase motor can be easily realized. During high-speed operation, the motor can be driven as a 5-phase motor, and can be driven as a 15-phase motor where high resolution is required.

【0026】また、上記実施の形態の12相励磁時の電
源からみた等価回路は、図14のようになり、2個の相
巻線を直列に接続した巻線群による6個の並列回路とな
る(ここで、R:1相あたりの巻線抵抗、V:電源電
圧、I:定格電流)。定格電流0.3A、1相あたりの
巻線抵抗を27Ωとすると、駆動電源としては電源容量
が1.8A以上、電圧容量が16.2V以上の電源が必
要となるが、前記電源は一般的な電源であり、また、ス
イッチング素子としても一般的なものが使用可能であ
る。
FIG. 14 shows an equivalent circuit viewed from the power supply at the time of 12-phase excitation according to the above-described embodiment, which is composed of six parallel circuits formed by a winding group in which two phase windings are connected in series. (Where, R: winding resistance per phase, V: power supply voltage, I: rated current). Assuming that the rated current is 0.3 A and the winding resistance per phase is 27 Ω, a power supply having a power supply capacity of 1.8 A or more and a voltage capacity of 16.2 V or more is required as a drive power supply. Power supply, and a general switching element can be used.

【0027】一般に、相数がa×b(aは3以上の奇
数、bは2以上の整数)のステッピングモータにおい
て、巻線組を位相差が2π/aである相巻線の始端と終
端を順次接続した環状結線または星状結線で構築する
と、m相励磁(mはbと2の公倍数)のとき、電源から
みた等価回路は、理想的には、図15に示すように、m
/2b個の相巻線を直列に接続した巻線群による2×b
個の並列回路となる(ここで、I:定格電流、R:1相
あたりの巻線抵抗、m:励磁相数、b:環状結線または
星状結線の数)。このとき、駆動電源としては電流容量
が2×b×I以上、電圧容量がm×I×R/2/b以上
の電源が必要となる。電源容量やスイッチング素子に適
したbを決めることにより通常の電源および低コストで
汎用性のあるスイッチング素子での駆動が可能になる。
Generally, in a stepping motor having a phase number a × b (a is an odd number of 3 or more, b is an integer of 2 or more), a winding set is formed by starting and ending a phase winding having a phase difference of 2π / a. Are sequentially connected to form a ring connection or a star connection, and when an m-phase excitation (m is a common multiple of b and 2), the equivalent circuit viewed from the power supply ideally has m as shown in FIG.
2 × b by a winding group in which / 2b phase windings are connected in series
(Where, I: rated current, R: winding resistance per phase, m: number of exciting phases, b: number of ring connection or star connection). At this time, a power supply having a current capacity of 2 × b × I or more and a voltage capacity of m × I × R / 2 / b or more is required as a drive power supply. By determining b suitable for the power supply capacity and the switching element, driving with a normal power supply and a low-cost and versatile switching element becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多相ステッピングモータとその駆動方
式の実施の形態を示すステッピングモータの相巻線の接
続図である。
FIG. 1 is a connection diagram of phase windings of a stepping motor showing an embodiment of a polyphase stepping motor and a driving system thereof according to the present invention.

【図2】請求項2に記載した多相ステッピングモータの
励磁状態の一例を表したタイムチャートである。
FIG. 2 is a time chart showing an example of an excited state of the multi-phase stepping motor according to claim 2;

【図3】図2で示した多相ステッピングモータの駆動方
式による発生ベクトル図である。
FIG. 3 is a diagram showing generated vectors according to the driving method of the multi-phase stepping motor shown in FIG. 2;

【図4】図1の多相ステッピングモータの励磁状態の他
の一例を表したタイムチャートである。
FIG. 4 is a time chart showing another example of the excited state of the multi-phase stepping motor of FIG. 1;

【図5】図4で示した多相ステッピングモータの駆動方
式による発生ベクトル図である。
FIG. 5 is a generated vector diagram according to the driving method of the multi-phase stepping motor shown in FIG.

【図6】請求項3に記載した多相ステッピングモータの
励磁状態の一例を表したタイムチャートである。
FIG. 6 is a time chart showing an example of an excited state of the multi-phase stepping motor according to claim 3;

【図7】図6で示した多相ステッピングモータの駆動方
式による発生ベクトル図である。
FIG. 7 is a generated vector diagram according to the driving method of the multi-phase stepping motor shown in FIG.

【図8】請求項4に記載した多相ステッピングモータの
励磁状態の一例を表したタイムチャートである。
FIG. 8 is a time chart showing an example of an excitation state of the multi-phase stepping motor according to claim 4;

【図9】図8で示した多相ステッピングモータの駆動方
式による発生ベクトル図である。
FIG. 9 is a diagram showing generated vectors according to the driving method of the polyphase stepping motor shown in FIG.

【図10】請求項5に記載した多相ステッピングモータ
の励磁状態の他の一例を表したタイムチャートである。
FIG. 10 is a time chart showing another example of the excited state of the multi-phase stepping motor according to claim 5;

【図11】図10で示した多相ステッピングモータの駆
動方式による発生ベクトル図である。
11 is a diagram illustrating generated vectors in the driving method of the multi-phase stepping motor shown in FIG.

【図12】請求項5に記載した多相ステッピングモータ
の励磁状態の一例を表したタイムチャートである。
FIG. 12 is a time chart showing an example of an excited state of the multi-phase stepping motor according to claim 5;

【図13】図12で示した多相ステッピングモータの駆
動方式による発生ベクトル図である。
FIG. 13 is a generated vector diagram according to the driving method of the multi-phase stepping motor shown in FIG.

【図14】本発明の実施の形態にかかる12相励磁時の
電源からみた等価回路である。
FIG. 14 is an equivalent circuit viewed from a power supply at the time of 12-phase excitation according to the embodiment of the present invention.

【図15】本発明の実施の形態にかかるm相励磁時の電
源からみた等価回路である。
FIG. 15 is an equivalent circuit viewed from a power supply at the time of m-phase excitation according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

W1,W2,W3 巻線組 φA〜φO 相巻線 C1〜C15 入力端子 W1, W2, W3 winding set φA to φO phase winding C1 to C15 Input terminal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 相数がa×b(aは3以上の奇数、bは
2以上の整数)で表される6以上の相数を有するステッ
ピングモータにおいて、固定子突極に施された相巻線
は、位相が、2π/aずつずれたa個の相巻線を環状ま
たは星状に接続した巻線組をb組備えるよう構成される
とともに、a×b個の入力端子を有することを特徴とす
る多相ステッピングモータ。
In a stepping motor having a phase number of 6 or more represented by a × b (a is an odd number of 3 or more, b is an integer of 2 or more), a phase applied to a stator salient pole is provided. The windings are configured to include b sets of windings in which a phase windings are connected in a ring or star shape with a phase winding shifted by 2π / a, and have a × b input terminals. A multi-phase stepping motor.
【請求項2】 相数がa×b(aは3以上の奇数、bは
2以上の整数)で表される6以上の相数を有し、かつ固
定子突極に施された相巻線は位相が2π/aずつずれた
a個の相巻線を環状または星状に接続した巻線組をb組
備えるように構成するとともに、a×b個の入力端子を
有するステッピングモータであって、上記a×b個の入
力端子に各別にスイッチング手段を接続し、スイッチン
グにより前記各入力端子を駆動電源の正極または負極に
接続するか、或いは、いずれの極にも接続しないように
制御して、相巻線の励磁を切り換えるステッピングモー
タの駆動回路において、入力パルス毎に、ひとつの巻線
組の励磁状態が切り換わるとともに、任意の巻線組の励
磁状態は、b入力パルス毎に切り換わるように制御され
ており、その切換により、その巻線組によるトルクベク
トルは、π/a、またはπ/2a回転することを特徴と
する多相ステッピングモータの駆動方式。
2. A phase winding having a phase number of 6 or more represented by a × b (a is an odd number of 3 or more, b is an integer of 2 or more), and a phase winding applied to the stator salient poles. The line is a stepping motor having a winding set in which a phase windings each having a phase shift of 2π / a are connected in a ring or a star, and b sets are provided, and having a × b input terminals. Switching means are individually connected to the a × b input terminals, and the input terminals are connected to the positive electrode or the negative electrode of the driving power supply by switching, or are controlled so as not to be connected to any of the poles. In a stepping motor drive circuit that switches the excitation of the phase winding, the excitation state of one winding set is switched for each input pulse, and the excitation state of an arbitrary winding set is switched for each b input pulse. Are controlled so that , Torque vector due to the winding set is, [pi / a or [pi / 2a rotating polyphase stepping motor driving method which is characterized in that,.
【請求項3】 相数がa×b(aは3以上の奇数、bは
2以上の整数)で表される6以上の相数を有し、かつ固
定子突極に施された相巻線は位相が2π/aずつずれた
a個の相巻線を環状または星状に接続した巻線組をb組
備えるよう構成するとともに、a×b個の入力端子を有
するステッピングモータであって、上記a×b個の入力
端子に各別にスイッチング手段を接続し、スイッチング
により前記各入力端子を駆動電源の正極または負極に接
続するか、或いはいずれの極にも接続しないように制御
して相巻線の励磁状態を切り換えるステッピングモータ
の駆動回路において、入力パルス毎に一つの巻線組の励
磁状態が切り換わるとともに、任意の巻線組の励磁状態
は入力パルスにより2回連続して切り換わり、その後引
き続く2b−2パルス間は、励磁状態が変化しないこと
をくり返すように制御されており、その切換時には、そ
の巻線組によるトルクベクトルがπ/2aずつ回転する
ことを特徴とする多相ステッピングモータの駆動方式。
3. A phase winding having a number of phases of 6 or more represented by a × b (a is an odd number of 3 or more, b is an integer of 2 or more), and a phase winding applied to the stator salient poles. The line is a stepping motor having a set of b winding sets in which a phase windings each having a phase shift of 2π / a are connected in a ring or star shape, and having a × b input terminals. A switching means is connected to each of the a × b input terminals, and each input terminal is connected to the positive electrode or the negative electrode of the driving power source by switching, or is controlled so as not to be connected to any of the electrodes. In a stepping motor drive circuit that switches the excitation state of windings, the excitation state of one winding group is switched for each input pulse, and the excitation state of any winding group is switched twice consecutively by an input pulse. Followed by 2b-2 pulses It is controlled so as to repeat that excited state does not change, the its switching, the driving method of a multi-phase stepping motor, characterized in that the torque vector by that the winding set is rotated by [pi / 2a.
【請求項4】 相数がa×b(aは3以上の奇数、bは
2以上の整数)で表される6以上の相数を有し、かつ固
定子突極に施された相巻線は位相が2π/aずつずれた
a個の相巻線を環状または星状に接続した巻線組をb組
備えるよう構成するとともに、a×b個の入力端子を有
するステッピングモータであって、上記a×b個の入力
端子に各別にスイッチング手段を接続し、スイッチング
により前記各入力端子を駆動電源の正極または負極に接
続するか、或いはいずれの極にも接続しないように制御
して相巻線の励磁状態を切り換えるステッピングモータ
の駆動回路において、入力パルス毎にひとつの巻線組の
励磁状態が切り換わるとともに任意の巻線組の励磁状態
は入力パルスにより2回連続して切り換わり、その後引
き続く2b−2パルス間は、励磁状態が変化しないこと
をくり返すように制御されており、その切り換え時に
は、その巻線組が無励磁になる状態が存在するととも
に、その前後のトルクベクトルの角度はπ/a異なるこ
とを特徴とする多相ステッピングモータの駆動方式。
4. A phase winding applied to a stator salient pole having a number of phases of 6 or more represented by a × b (a is an odd number of 3 or more, b is an integer of 2 or more). The line is a stepping motor having a set of b winding sets in which a phase windings each having a phase shift of 2π / a are connected in a ring or star shape, and having a × b input terminals. A switching means is connected to each of the a × b input terminals, and each input terminal is connected to the positive electrode or the negative electrode of the driving power source by switching, or is controlled so as not to be connected to any of the electrodes. In a stepping motor drive circuit that switches the excitation state of the windings, the excitation state of one winding set is switched for each input pulse, and the excitation state of any winding set is switched twice consecutively by the input pulse. Subsequent 2b-2 pulses Is controlled so that the excitation state does not change repeatedly. At the time of the switching, there is a state in which the winding group is not excited, and the angles of the torque vectors before and after the winding set differ by π / a. A driving method of a multi-phase stepping motor characterized by the following.
【請求項5】 相数がa×b(aは3以上の奇数、bは
2以上の整数)で表される6以上の相数を有し、かつ固
定子突極に施された相巻線は位相が2π/aずつずれた
a個の相巻線を環状または星状に接続した巻線組をb組
備えるよう構成するとともに、a×b個の入力端子を有
するステッピングモータであって、上記a×b個の入力
端子に各別にスイッチング手段を接続し、スイッチング
により前記各入力端子を駆動電源の正極または負極に接
続するか、或いは、いずれの極にも接続しないように制
御した相巻線の励磁状態を切り換えるステッピングモー
タの駆動回路において、b個の巻線組の励磁状態が入力
パルス毎に同時に切り換わるように制御されており、そ
の切換により各巻線組によるトルクベクトルが、π/
a、またはπ/2a回転することを特徴とする多相ステ
ッピングモータの駆動方式。
5. A phase winding having a number of phases of 6 or more represented by a × b (a is an odd number of 3 or more, b is an integer of 2 or more), and a phase winding applied to the stator salient poles. The line is a stepping motor having a set of b winding sets in which a phase windings each having a phase shift of 2π / a are connected in a ring or star shape, and having a × b input terminals. A switching means is connected to each of the a × b input terminals, and each of the input terminals is connected to the positive electrode or the negative electrode of the driving power supply by switching, or a phase is controlled so as not to be connected to any of the poles. In the drive circuit of the stepping motor for switching the excitation state of the windings, the excitation state of the b winding sets is controlled so as to be simultaneously switched for each input pulse, and the torque vector by each winding set is π by the switching. /
a, or a π / 2a rotation, for driving a multi-phase stepping motor.
JP16889596A 1996-06-28 1996-06-28 Multiphase stepping motor and its drive system Expired - Fee Related JP3751367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16889596A JP3751367B2 (en) 1996-06-28 1996-06-28 Multiphase stepping motor and its drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16889596A JP3751367B2 (en) 1996-06-28 1996-06-28 Multiphase stepping motor and its drive system

Publications (2)

Publication Number Publication Date
JPH1023730A true JPH1023730A (en) 1998-01-23
JP3751367B2 JP3751367B2 (en) 2006-03-01

Family

ID=15876566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16889596A Expired - Fee Related JP3751367B2 (en) 1996-06-28 1996-06-28 Multiphase stepping motor and its drive system

Country Status (1)

Country Link
JP (1) JP3751367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508806A (en) * 2006-11-06 2010-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical equipment
US11340515B2 (en) 2018-06-08 2022-05-24 Panasonic Intellectual Property Management Co., Ltd. Linear motor, and lens barrel and imaging device equipped with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508806A (en) * 2006-11-06 2010-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical equipment
US11340515B2 (en) 2018-06-08 2022-05-24 Panasonic Intellectual Property Management Co., Ltd. Linear motor, and lens barrel and imaging device equipped with same

Also Published As

Publication number Publication date
JP3751367B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US4607204A (en) Five-phase stepping motor
US5084662A (en) Unipolar converter for variable reluctance machines
US3229179A (en) Dynamo-electric machine with commutation by scr's or the like
JPS61150655A (en) Drive circuit of multilayer stepping motor
JPH05244759A (en) Three-phase hybrid stepping motor
JP3751367B2 (en) Multiphase stepping motor and its drive system
US4603287A (en) Method of driving 5-phase stepping motor
US4799002A (en) Method of driving a five-phase stepping motor
JPH1118382A (en) Pole-number changing electric rotating machine system
JP2572997B2 (en) Drive circuit for 5-phase stepping motor
US4835451A (en) Switching circuit for five-phase stepping motor and method of switching
WO2023164871A1 (en) Tooth winding few-pole multi-speed direct current stator
JP2975886B2 (en) Drive device for multi-phase permanent magnet type stepping motor
WO2023164882A1 (en) Tooth winding-based multi-pole multi-speed direct current stator
JP3172565B2 (en) Driving method of N-phase pulse motor
JPH05122994A (en) Circuit and method for driving n-phase pulse motor
WO2023164883A1 (en) Yoke-winding-based multi-pole and multi-speed direct-current stator
US731996A (en) Method of operating alternating-current electric motors.
JP2000201498A (en) Method and circuit for driving stepping motor
JP3062308B2 (en) Complementary excitation drive method for N-phase pulse motor
JP3124499B2 (en) Composite three-phase stepping motor and method of driving the same
JPS63262096A (en) Driver for multiphase stepping motor
WO1994018744A1 (en) Method for driving stepping motor of multiphase hybrid type
JP3120082B2 (en) Drive device for N-phase stepping motor
JPH03284192A (en) Driving circuit for stepping motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees