JPH10236816A - Method for regenerating residual body of polycrystalline silicon - Google Patents

Method for regenerating residual body of polycrystalline silicon

Info

Publication number
JPH10236816A
JPH10236816A JP4590797A JP4590797A JPH10236816A JP H10236816 A JPH10236816 A JP H10236816A JP 4590797 A JP4590797 A JP 4590797A JP 4590797 A JP4590797 A JP 4590797A JP H10236816 A JPH10236816 A JP H10236816A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon
cogged
bodies
residual body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4590797A
Other languages
Japanese (ja)
Inventor
Takao Ishida
喬男 石田
Shigekazu Sakai
茂和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintobrator Ltd
Original Assignee
Sintobrator Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintobrator Ltd filed Critical Sintobrator Ltd
Priority to JP4590797A priority Critical patent/JPH10236816A/en
Publication of JPH10236816A publication Critical patent/JPH10236816A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To regenerate the residual body of polycrystalline silicon to reusable polycrystalline silicon at a good yield by crushing and cogging the residual body of the polycrystalline silicon solidified in a quarts crucible for melting the polycrystalline silicon and injecting silicon grains to the surfaces of the cogged bodies for contact with the crucible, thereby removing the impurities adhered to the cogged bodies. SOLUTION: The residual body of the polycrystalline silicone solidified in the quartz crucible for melting the polycrystalline silicon is divided to a plural number of pieces of the cogged bodies. The silicon grains having a grain size of 0.1 to 2.0mm are injected under an injection pressure of 0.2 to 0.5MPa to the cogged bodies to remove the impurities sticking to the cogged bodies. Raw materials for production of single crystal silicon are used for the silicon grains. For example, the cogged bodies 4 with the surfaces 3 for contact with the inside wall of the quartz crucible faced upward are placed within a vessel 5 on a turn table 9 in a projection chamber 6. The silicon grains S in a hopper 23 are injected onto the contact surfaces 3 of the rotating cogged bodies 4 while an injection nozzle 16 is oscillated in a direction A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体用単結晶シ
リコンを引上げ方式により製造する際に、石英ルツボ中
に凝固付着する多結晶シリコン残留体の再生方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a polycrystalline silicon residue which solidifies and adheres to a quartz crucible when single crystal silicon for semiconductors is manufactured by a pulling method.

【0002】[0002]

【従来の技術】引上げ方式による単結晶シリコン製造法
は、石英ルツボ中に多結晶シリコンを装入して加熱融解
し、その融液に種結晶を浸して回転させながら引上げ、
再固化させて単結晶シリコンを製造している。この製造
方式において、作業終了後には図1に示すように、石英
ルツボ1内に多結晶シリコン残留体2が凝固して残る
が、この多結晶シリコン残留体2は石英ルツボ1内壁と
の接触面3における溶着現象により取出しが困難なた
め、石英ルツボ1と共に割って多結晶シリコン残留体2
を、図2に示すような不定形塊状の分塊体4に分割して
いる。しかしながら、各分塊体4における接触面3の部
分には、石英ルツボ1よりのガラス破片のような不純物
5が溶着しているので、これらをハンマ、グラインダ等
により手作業で除去して多結晶シリコンを回収し、再生
使用している。
2. Description of the Related Art In a single crystal silicon manufacturing method by a pulling method, polycrystalline silicon is charged into a quartz crucible, melted by heating, a seed crystal is immersed in the melt, and the melt is pulled while rotating.
It is re-solidified to produce single crystal silicon. In this manufacturing method, after the operation is completed, as shown in FIG. 1, a polycrystalline silicon residue 2 is solidified and remains in a quartz crucible 1, and this polycrystalline silicon residue 2 is brought into contact with the inner wall of the quartz crucible 1. 3 is difficult to take out due to the welding phenomenon in FIG.
Is divided into irregularly shaped masses 4 as shown in FIG. However, impurities 5 such as glass shards from the quartz crucible 1 are deposited on the contact surface 3 portion of each agglomerate 4, and these are manually removed with a hammer, grinder, or the like to remove polycrystals. Silicon is recovered and reused.

【0003】ところが、このような再生作業は手作業の
ため、非能率的であるとともに不定形塊体であるから取
扱いが厄介なうえ、除去される不純物5と共にかなりの
有効な多結晶シリコン分も除去されて歩留りが悪く、し
かも、再生作業時に鉄分その他の不純物が混入する恐れ
がある等の多くの問題がある。
However, since such a regeneration operation is a manual operation, it is inefficient and difficult to handle because it is an irregular mass. In addition to the impurities 5 to be removed, a considerable amount of polycrystalline silicon is removed. There are many problems, such as removal of the alloy, resulting in poor yield, and the possibility that iron and other impurities may be mixed during the regeneration operation.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
するところは、前記のような問題を解決して石英ルツボ
より取出した多結晶シリコン残留体に付着した不純物を
機械的に迅速に除去可能として、多結晶シリコン残留体
を歩留りよく再使用可能な多結晶シリコンに再生できる
多結晶シリコン残留体の再生方法を提供することにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to quickly and mechanically remove impurities attached to a polycrystalline silicon residue taken out of a quartz crucible. Another object of the present invention is to provide a method for regenerating a polycrystalline silicon residue that can regenerate a polycrystalline silicon residue with good yield into reusable polycrystalline silicon.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに完成された本発明方法は、多結晶シリコン溶融用の
石英ルツボ中で凝固した多結晶シリコン残留体を複数個
の分塊体に分け、この分塊体に粒径0.1〜2.0mmの
シリコン粒体を0.2〜0.5MPaの噴射圧力で噴射
して分塊体に付着している不純物を除去することを特徴
とするものである。
SUMMARY OF THE INVENTION The present invention, which has been completed to solve the above-mentioned problems, comprises a method of converting polycrystalline silicon solidified in a quartz crucible for melting polycrystalline silicon into a plurality of agglomerates. It is characterized in that impurities adhering to the agglomerate are removed by injecting silicon particles having a particle size of 0.1 to 2.0 mm into the agglomerate at an injection pressure of 0.2 to 0.5 MPa. It is assumed that.

【0006】このように所定数の分塊体をターンテーブ
ル上の容器中へ不純物の付着した接触面を上方として配
置し、ターンテーブルを回転させながら揺動している噴
射ノズルより、粒径0.1〜2.0mmのシリコン粒体を
噴射圧力0.2〜0.5MPaで噴射させると、各分塊
体の接触面の不純物は、シリコン粒体の射突によりすべ
て研掃除去される。
In this manner, a predetermined number of agglomerates are placed in a container on a turntable with the contact surface with the impurities attached thereon facing upward. When silicon particles having a diameter of 0.1 to 2.0 mm are jetted at an injection pressure of 0.2 to 0.5 MPa, all impurities on the contact surfaces of the agglomerates are removed by the impact of the silicon particles.

【0007】[0007]

【発明の実施の形態】次に、本発明の好ましい実施の形
態を図3に示す装置を使用して説明する。箱形の投射室
6内に架設したフレーム7に軸受8が取付けてあり、こ
れにターンテーブル9の縦軸10が軸支され、縦軸10
の下端に取付けたプーリ11と、投射室6外側面に取付
けたモータ12のプーリ13との間にベルト14が掛け
渡してあって、ターンテーブル9はモータ12により水
平回転可能となっている。
Next, a preferred embodiment of the present invention will be described with reference to the apparatus shown in FIG. A bearing 8 is mounted on a frame 7 installed in a box-shaped projection chamber 6, and a vertical axis 10 of a turntable 9 is supported by the bearing 8.
A belt 14 is stretched between a pulley 11 attached to the lower end of the projection table 6 and a pulley 13 of a motor 12 attached to the outer surface of the projection chamber 6, and the turntable 9 can be horizontally rotated by the motor 12.

【0008】このターンテーブル9上には、上部を開放
した篭状の容器15が着脱自在に設けてあり、所定数の
分塊体4を接触面3を上方として載置可能な構成として
ある。ターンテーブル9上方には噴射口を下方とした噴
射ノズル16が、投射室6に架設した回転軸17に保持
されており、噴射ノズル16の上方側には、圧縮空気を
送給するゴムホース18と投射材としてのシリコン粒体
S導入用のゴムホース19のそれぞれ基端が連結してあ
り、ゴムホース18の他端は図示されない圧縮空気源
へ、また、ゴムホース19の他端は後記の下部ホッパ2
3へ連結してある。
On the turntable 9, a basket-shaped container 15 having an open top is provided detachably, and a predetermined number of masses 4 can be placed with the contact surface 3 facing upward. Above the turntable 9, an injection nozzle 16 having an injection port downward is held by a rotating shaft 17 provided in the projection chamber 6, and a rubber hose 18 for supplying compressed air is provided above the injection nozzle 16. The base end of a rubber hose 19 for introducing silicon particles S as a projection material is connected to the base end, the other end of the rubber hose 18 is connected to a compressed air source (not shown), and the other end of the rubber hose 19 is connected to a lower hopper 2 described later.
Connected to 3.

【0009】また、投射室6下部の底部ホッパ20の下
端には堆積したシリコン粒体S還送用のゴムホース21
の一端が連結してあり、その他端は投射室6天井部に設
けたシリコン粒体S分離用の分離箱22へ連結してあ
る。分離箱22下方に連設した下部ホッパ23は投射室
6内上方に臨ませてあり、その下端には前記ゴムホース
19の先端が連結され、また、分離箱22の上壁部には
図示されない集塵装置に接続されるダクト24が連結し
てある。
A rubber hose 21 for returning the deposited silicon particles S is provided at the lower end of the bottom hopper 20 below the projection chamber 6.
Is connected to one end, and the other end is connected to a separation box 22 for separating silicon particles S provided on the ceiling of the projection chamber 6. A lower hopper 23 connected to the lower part of the separation box 22 faces upward in the projection chamber 6, and a lower end thereof is connected to a tip of the rubber hose 19. A duct 24 connected to the dust device is connected.

【0010】以上の各装置部において、投射室6と底部
ホッパ20及び噴射ノズル16のそれぞれ内面、ターン
テーブル9、容器15それぞれの全面、フレーム7、軸
受8、回動軸17それぞれの外面、及び分離室22内面
やその下部ホッパ23内外面等は、シリコン粒体Sや分
塊体4に鉄分のような不純物が混入したり付着しないよ
うにウレタンコーティングを施しておく。
In each of the above device sections, the inner surfaces of the projection chamber 6, the bottom hopper 20, and the injection nozzle 16, the entire surface of the turntable 9, the container 15, the outer surfaces of the frame 7, the bearing 8, the rotating shaft 17, and Urethane coating is applied to the inner surface of the separation chamber 22 and the inner and outer surfaces of the lower hopper 23 so that impurities such as iron do not enter or adhere to the silicon granules S and the lumps 4.

【0011】シリコン粒体Sはモノシラン、三塩化シラ
ン等を原料として流動層法により製造される粒状多結晶
シリコンで、純度99.99%程度の半導体用単結晶シ
リコン製造用原料として使用されているものである。以
上の装置において、分離箱22中へ所定量のシリコン粒
体Sを装入しておいて、所定数の分塊体4をその接触面
3を上方として容器15内へ配置し、モータ12を起動
してプーリ13、ベルト14、プーリ11、縦軸10を
経てターンテーブル9と共に容器15を水平回転させ
る。また、図示されない駆動装置により回転軸17を作
動させて噴射ノズル16を矢印Aに示すように揺動させ
る。
The silicon particles S are granular polycrystalline silicon produced by a fluidized bed method using monosilane, trichloride silane, or the like as a raw material, and are used as a raw material for producing single-crystal silicon for semiconductors having a purity of about 99.99%. Things. In the above-described apparatus, a predetermined amount of silicon granules S are charged into the separation box 22, and a predetermined number of agglomerates 4 are arranged in the container 15 with the contact surface 3 thereof facing upward, and the motor 12 is The container 15 is horizontally rotated together with the turntable 9 via the pulley 13, the belt 14, the pulley 11, and the longitudinal axis 10 upon activation. Further, the rotating shaft 17 is operated by a driving device (not shown) to swing the injection nozzle 16 as shown by the arrow A.

【0012】次いで、集塵装置を作動させるとともに圧
縮空気源より圧縮空気をゴムホース18を経て噴射ノズ
ル16へ送給すると、分離箱22内のシリコン粒体Sが
ゴムホース19より噴射ノズル16中へ流入し、その先
端の噴射口より各分塊体4上へ噴射される。各分塊体4
は、ターンテーブル9の回転と噴射ノズル16の揺動に
より接触面3側が全面的に研掃されて不純物5はすべて
除去される。
Next, when the dust collector is operated and compressed air is supplied from the compressed air source to the injection nozzle 16 through the rubber hose 18, the silicon particles S in the separation box 22 flow into the injection nozzle 16 from the rubber hose 19. Then, it is jetted onto each mass 4 from the jet port at the tip. Each agglomerate 4
The contact surface 3 side is entirely polished by the rotation of the turntable 9 and the swinging of the injection nozzle 16, so that all the impurities 5 are removed.

【0013】研掃を終了したシリコン粒体Sは底部ホッ
パ20内へ落下し、これより集塵装置による吸引気流に
よりゴムホース21内を流動上昇して分離箱22内へ還
流され、ここで不純物5の細片等の異物が分離され、正
規のシリコン粒体Sのみが下部ホッパ23へ流下して循
環使用され、前記異物はダクト24を経て集塵装置へ送
られ、処理される。
The silicon particles S, which have been cleaned, fall into the bottom hopper 20, flow upward in the rubber hose 21 by suction airflow from the dust collecting device, and are returned to the separation box 22, where the impurities 5 are removed. The foreign matter such as the small particles is separated, only the regular silicon particles S flow down to the lower hopper 23 and are circulated, and the foreign matter is sent to the dust collector via the duct 24 and processed.

【0014】このようにして研掃が終了したら前記各駆
動部及びシリコン粒体Sの噴射を停止して各分塊体4を
取出し、付着粉塵等を除去したのち接触面3をフッ酸で
洗浄処理すればよい。
When the cleaning is completed in this manner, the driving of the driving units and the silicon granules S is stopped, and the agglomerates 4 are taken out. After removing the attached dust and the like, the contact surface 3 is washed with hydrofluoric acid. It should be processed.

【0015】次に、前記装置を使用して、接触面3の寸
法が約5cm×5cmのほぼ同じ高さの分塊体4を処理した
結果をしめす。容器15内へ前記分塊体4を7箇、接触
面3を上方として配置し、ターンテーブル9を11r.p.
m で回転させるとともに噴射ノズル16を60cpm で揺
動させておいて、該噴射ノズル16から粒径1.0〜1.
6mmのシリコン粒体Sを噴射圧力0.3MPaで噴射し
て接触面3の研掃を3分間行ったところ、すべての接触
面3における不純物5は除去された。なお、この場合の
シリコン粒体Sの接触面3への投射距離は100〜15
0mmで、接触面3表面の研掃による取り代は0.4〜
1.0mm程度である。
Next, the results of treating the agglomerates 4 of approximately the same height with the dimensions of the contact surface 3 of about 5 cm × 5 cm using the apparatus described above are shown. Seven pieces of the masses 4 were placed in the container 15 with the contact surface 3 facing upward, and the turntable 9 was placed at 11 r.p.
m and the injection nozzle 16 is oscillated at 60 cpm.
When the contact surface 3 was cleaned for 3 minutes by injecting 6 mm silicon particles S at an ejection pressure of 0.3 MPa, the impurities 5 on all the contact surfaces 3 were removed. In this case, the projection distance of the silicon particles S to the contact surface 3 is 100 to 15
0mm, the removal of the contact surface 3 by polishing is 0.4 ~
It is about 1.0 mm.

【0016】本発明におけるシリコン粒体Sの使用粒径
は0.1〜2.0mmの範囲で、粒径0.1mm未満では十
分な研掃効果が得られないとともに取扱いが厄介であ
り、粒径が2.0mmを超えると表面異物を埋め込む効果
が大きくなって、かえって異物除去能率が低下するので
好ましくない。また、噴射ノズル16の噴射圧力は0.
2〜0.5MPaで、0.2MPa未満では研掃力が弱
くて時間がかかり、0.5MPaを超えるとシリコン粒
体の破砕による損耗が多くてランニングコストが高くな
る問題がある。なお、シリコン粒体Sの噴射量が100
〜150kg/H程度で、分塊体4への噴射距離は100〜
200mmくらいが好ましい。
The particle size of the silicon particles S used in the present invention is in the range of 0.1 to 2.0 mm. If the particle size is less than 0.1 mm, a sufficient polishing effect cannot be obtained and handling is troublesome. If the diameter exceeds 2.0 mm, the effect of embedding foreign matter on the surface becomes large, and the foreign matter removal efficiency is rather lowered, which is not preferable. Further, the injection pressure of the injection nozzle 16 is set to 0.1.
If the pressure is 2 to 0.5 MPa and the pressure is less than 0.2 MPa, the polishing force is weak and it takes a long time. If the pressure exceeds 0.5 MPa, there is a problem that silicon particles are liable to be crushed and the running cost is increased. Note that the injection amount of the silicon particles S is 100
~ 150kg / H, the injection distance to the mass 4 is 100 ~
About 200 mm is preferable.

【0017】[0017]

【発明の効果】本発明は以上説明したように、多結晶シ
リコン残留体回収の際、石英ルツボとの接触面に付着す
る不純物を、シリコン粒体の噴射により研掃除去して再
生するようにしたもので、労力を要することなく極めて
短時間で再生処理でき、また、研掃による多結晶シリコ
ン残留体の損耗もわずかであって歩留りがよく、しか
も、シリコン粒体を投射材としているため、不純物の混
入の恐れはなく、高純度の再生品が得られる。従って、
本発明は従来の多結晶シリコンの残留体の再生上の問題
点を解決した多結晶シリコン残留体の再生方法として業
界にもたらすところ大きいものがある。
As described above, according to the present invention, when recovering polycrystalline silicon, impurities adhering to the contact surface with the quartz crucible are blasted and removed by spraying silicon particles to regenerate. It can be regenerated in a very short time without any labor, and the wear of the polycrystalline silicon residue by polishing is small, the yield is good, and silicon particles are used as the projectile, There is no risk of contamination with impurities, and a high-purity recycled product can be obtained. Therefore,
The present invention has a large effect on the industry as a method for regenerating a polycrystalline silicon residue which has solved the conventional problems of regenerating the polycrystalline silicon residue.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石英ルツボ中の多結晶シリコン残留体を示す一
部切欠正面図である。
FIG. 1 is a partially cutaway front view showing a polycrystalline silicon residue in a quartz crucible.

【図2】多結晶シリコン残留体を分割した分塊体の斜視
図である。
FIG. 2 is a perspective view of a lump obtained by dividing a polycrystalline silicon residual body.

【図3】本発明方法を実施するための処理装置の一例を
示す一部切欠正面図である。
FIG. 3 is a partially cutaway front view showing an example of a processing apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 石英ルツボ 2 多結晶シリコン残留体 4 分塊体 5 不純物 16 噴射ノズル DESCRIPTION OF SYMBOLS 1 Quartz crucible 2 Residual body of polycrystalline silicon 4 Blob 5 Impurity 16 Injection nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多結晶シリコン溶融用の石英ルツボ中で
凝固した多結晶シリコン残留体を複数個の分塊体に分
け、この分塊体に粒径0.1〜2.0mmのシリコン粒体
を0.2〜0.5MPaの噴射圧力で噴射して分塊体に
付着している不純物を除去することを特徴とする多結晶
シリコン残留体の再生方法。
1. A polycrystalline silicon residue solidified in a quartz crucible for melting polycrystalline silicon is divided into a plurality of agglomerates, and the agglomerates are made of silicon particles having a particle size of 0.1 to 2.0 mm. Of a polycrystalline silicon residue, characterized by removing impurities adhering to the agglomerates by injecting the particles at an injection pressure of 0.2 to 0.5 MPa.
JP4590797A 1997-02-28 1997-02-28 Method for regenerating residual body of polycrystalline silicon Withdrawn JPH10236816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4590797A JPH10236816A (en) 1997-02-28 1997-02-28 Method for regenerating residual body of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4590797A JPH10236816A (en) 1997-02-28 1997-02-28 Method for regenerating residual body of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPH10236816A true JPH10236816A (en) 1998-09-08

Family

ID=12732326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4590797A Withdrawn JPH10236816A (en) 1997-02-28 1997-02-28 Method for regenerating residual body of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPH10236816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037617A (en) * 2000-07-28 2002-02-06 Kawasaki Steel Corp Method of removing quartz adhered to silicon and its removing apparatus
WO2008026728A1 (en) * 2006-08-31 2008-03-06 Mitsubishi Materials Corporation Metallic silicon and process for producing the same
JP2008081394A (en) * 2006-08-31 2008-04-10 Mitsubishi Materials Corp Metallic silicon and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037617A (en) * 2000-07-28 2002-02-06 Kawasaki Steel Corp Method of removing quartz adhered to silicon and its removing apparatus
JP4686824B2 (en) * 2000-07-28 2011-05-25 Jfeスチール株式会社 Method and apparatus for removing quartz adhering to silicon
WO2008026728A1 (en) * 2006-08-31 2008-03-06 Mitsubishi Materials Corporation Metallic silicon and process for producing the same
JP2008081394A (en) * 2006-08-31 2008-04-10 Mitsubishi Materials Corp Metallic silicon and process for producing the same
US7955583B2 (en) 2006-08-31 2011-06-07 Mitsubishi Materials Corporation Metallic silicon and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101817047B1 (en) Polycrystalline silicon fragment, method for manufacturing polycrystalline silicon fragment, and polycrystalline silicon block fracture device
JP6462144B2 (en) Apparatus and method for classification and dust removal of granular polysilicon
US2707314A (en) Method of reclaiming granular material
US3716947A (en) Abrasive blast cleaning system
JP2000176598A (en) Rotary drum for reconditioning casting sand and apparatus for reconditioning casting sand
CN108994255A (en) A kind of antiquated sand regeneration technology of sand casting
CN106623770A (en) Casting resin sand regeneration production line
JPS6113894B2 (en)
JPH10236816A (en) Method for regenerating residual body of polycrystalline silicon
US3848815A (en) Granulating apparatus
US3694964A (en) Abrasive blast cleaning system
CN104384100A (en) Device and method for removing powder and dust attached to re-put silicon raw materials
CN211437022U (en) Chinese-medicinal material centrifugation edulcoration device
JPS63207563A (en) Grinding/polishing/cleaning method for die by electric discharge machine
CN210307381U (en) Rotary table type automatic sand blasting machine
CN204208808U (en) A kind of device removing broken end and the dust that multiple throwing silicon raw material adheres to
CN203679173U (en) High-efficiency fine sorting device for recovering casting sodium silicate used sand
US3829029A (en) Abrasive blast cleaning system
JP2005081369A (en) Method and device for polish-cleaning inner surface of mold for var
JP3314315B2 (en) Casting sand refining classifier
US3690066A (en) Abrasive blast cleaning system
JP2020513313A (en) Separation equipment for polysilicon
JP2000233170A (en) Method and apparatus for recycling cathode ray tube
JPH01289666A (en) Blasting device
CN218179568U (en) Carborundum miropowder stoving recovery unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511